Special Report: Special Report on the Ocean and Cryosphere in a Changing Climate
Ch 05

Changing Ocean, Marine Ecosystems, and Dependent Communities

Coordinating Lead Authors:

  • Nathaniel L. Bindoff (Australia)
  • William W. L. Cheung (Canada)
  • James G. Kairo (Kenya)

Lead Authors:

  • Javier Arístegui (Spain)
  • Valeria A. Guinder (Argentina)
  • Robert Hallberg (United States)
  • Nathalie Hilmi (Monaco, France)
  • ()
  • (Australia)
  • Lisa Levin (United States)
  • Sean O’Donoghue (South Africa)
  • Sara R. Purca Cuicapusa (Peru)
  • Baruch Rinkevich (Israel)
  • Toshio Suga (Japan)
  • Alessandro Tagliabue (United Kingdom)
  • Phillip Williamson (United Kingdom)

Contributing Authors:

  • Sevil Acar (Turkey)
  • Juan Jose Alava (Ecuador, Canada)
  • Eddie Allison (United Kingdom)
  • Brian Arbic (United States)
  • Tamatoa Bambridge (French Polynesia)
  • Inka Bartsch (Germany)
  • Laurent Bopp (France)
  • Philip W. Boyd (Australia, United Kingdom)
  • Thomas Browning (Germany, United Kingdom)
  • Jorn Bruggeman (Netherlands)
  • Momme Butenschön (Germany)
  • Francisco P. Chávez (United States)
  • Lijing Cheng (China)
  • Mine Cinar (United States)
  • Daniel Costa (United States)
  • Omar Defeo (Uruguay)
  • Salpie Djoundourian (Lebanon)
  • Catia Domingues (Australia)
  • Tyler Eddy (Canada)
  • Sonja Endres (Germany)
  • Alan Fox (United Kingdom)
  • Christopher Free (United States)
  • Thomas Frölicher (Switzerland)
  • Jean-Pierre Gattuso (France)
  • Gemma Gerber (South Africa)
  • Charles Greene (United States)
  • Nicolas Gruber (Switzerland)
  • Gustaav Hallegraef (Australia)
  • Matthew Harrison (United States)
  • Sebastian Hennige (United Kingdom)
  • Mark Hindell (Australia)
  • Andrew Hogg (Australia)
  • Taka Ito (United States)
  • Tiff-Annie Kenny ()
  • Kristy Kroeker (United States)
  • Lester Kwiatkowski (France, United Kingdom)
  • Vicky Lam (China, Canada)
  • Charlotte Laüfkotter (Switzerland, Germany)
  • Philippe LeBillon (Canada)
  • Nadine Le Bris (France)
  • Heike Lotze (Canada)
  • Jennifer MacKinnon (United States)
  • Annick de Marffy-Mantuano ()
  • Patrick Martel (South Africa)
  • Nadine Marshall (Australia)
  • Kathleen McInnes (Australia)
  • Jorge García Molinos (Japan, Spain)
  • Serena Moseman-Valtierra (United States)
  • Andries Motau (South Africa)
  • Sandor Mulsow (Brazil)
  • Kana Mutombo (South Africa)
  • Andreas Oschlies (Germany)
  • Muhammed Oyinlola (Nigeria)
  • Elvira S. Poloczanska (Australia)
  • Nicolas Pascal (France)
  • Maxime Philip (France)
  • Sarah Purkey (United States)
  • Saurabh Rathore ()
  • Xavier Rebelo (South Africa)
  • Gabriel Reygondeau (France)
  • Jake Rice (Canada)
  • Anthony Richardson (Australia)
  • Ulf Riebesell (Germany)
  • Christopher Roach ()
  • (Sweden)
  • Murray Roberts (United Kingdom)
  • (France)
  • Sunke Schmidtko (Germany)
  • Gerald Singh ()
  • Bernadette Sloyan (Australia)
  • Karinna von Schuckmann (France)
  • Manal Shehabi (United Kingdom)
  • Matthew Smith (United States)
  • Amy Shurety (South Africa)
  • Fernando Tuya ()
  • Cristian Vargas (Chile)
  • Colette Wabnitz (France)
  • Caitlin Whalen (United States)

Review Editors:

  • Manuel Barange (South Africa)
  • Brad Seibel (United States)

Chapter Scientist:

  • Axel Durand (Australia)

FAQ5.1: How is life in the sea affected by climate change?

Climate change poses a serious threat to life in our seas, including coral reefs and fisheries, with impacts on marine ecosystems, economies and societies, especially those most dependent upon natural resources. The risk posed by climate change can be reduced by limiting global warming to no more than 1.5°C.

Life in most of the global ocean, from pole to pole and from sea surface to the abyssal depths, is already experiencing higher temperatures due to human-driven climate change. In many places, that increase may be barely measurable. In others, particularly in near-surface waters, warming has already had dramatic impacts on marine animals, plants and microbes. Due to closely linked changes in seawater chemistry, less oxygen remains available (in a process called ocean deoxygenation). Seawater contains more dissolved carbon dioxide, causing ocean acidification. Non-climatic effects of human activities are also ubiquitous, including over-fishing and pollution. Whilst these stressors and their combined effects are likely to be harmful to almost all marine organisms, food-webs and ecosystems, some are at greater risk (FAQ5.1, Figure 1). The consequences for human society can be serious unless sufficient action is taken to constrain future climate change.

Warm water coral reefs host a wide variety of marine life and are very important for tropical fisheries and other marine and human systems. They are particularly vulnerable, since they can suffer high mortalities when water temperatures persist above a threshold of between 1°C–2°C above the normal range. Such conditions occurred in many tropical seas between 2015 and 2017 and resulted in extensive coral bleaching, when the coral animal hosts ejected the algal partners upon which they depend. After mass coral mortalities due to bleaching, reef recovery typically takes at least 10–15 years. Other impacts of climate change include SLR, acidification and reef erosion. Whilst some coral species are more resilient than others, and impacts vary between regions, further reef degradation due to future climate change now seems inevitable, with serious consequences for other marine and coastal ecosystems, like loss of coastal protection for many islands and low-lying areas and loss of the high biodiversity these reefs host. Coral habitats can also occur in deeper waters and cooler seas, and more research is needed to understand impacts in these reefs. Although these cold water corals are not at risk from bleaching, due to their cooler environment, they may weaken or dissolve under ocean acidification, and other ocean changes. 

Mobile species, such as fish, may respond to climate change by moving to more favorable regions, with populations shifting poleward or to deeper water, to find their preferred range of water temperatures or oxygen levels. As a result, projections of total future fishery yields under different climate change scenarios only show a moderate decrease of around 4% (~3.4 million tonnes) per degree Celsius warming. However, there are dramatic regional variations. With high levels of climate change, fisheries in tropical regions could lose up to half of their current catch levels by the end of this century. Polar catch levels may increase slightly, although the extent of such gains is uncertain, because fish populations that are currently depleted by overfishing and subject to other stressors may not be capable of migrating to polar regions, as assumed in models.

In polar seas, species adapted to life on or under sea ice are directly threatened by habitat loss due to climate change. The Arctic and Southern Oceans are home to a rich diversity of life, from tiny plankton to fish, krill and seafloor invertebrates to whales, seals, polar bears or penguins. Their complex interactions may be altered if new warmer-water species extend their ranges as sea temperatures rise. The effects of acidification on shelled organisms, as well as increased human activities (e.g., shipping) in ice-free waters, can amplify these disruptions. 

Whilst some climate change impacts (like possible increased catch levels in polar regions) may benefit humans, most will be disruptive for ecosystems, economies and societies, especially those that are highly dependent upon natural resources. However, the impacts of climate change can be much reduced if the world as a whole, through inter-governmental interventions, manages to limit global warming to no more than 1.5°C. 

Box 5.5, Figure 1
View details
Figure 5.24
View details

Footnotes

  1. In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: Virtually certain 99–100% probability, Very likely 90–100%, Likely 66–100%, About as likely as not 33–66%, Unlikely 0–33%, Very unlikely 0–10%, and Exceptionally unlikely 0–1%. Additional terms (Extremely likely: 95–100%, More likely than not >50–100%, and Extremely unlikely 0–5%) may also be used when appropriate. Assessed likelihood is typeset in italics, e.g., very likely (see Section 1.9.2 and Figure 1.4 for more details). This Report also uses the term ‘likely range’ to indicate that the assessed likelihood of an outcome lies within the 17-83% probability range.
  2. In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; and for the degree of agreement: low, medium, or high. A level of confidence is expressed using five qualifiers: very low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and agreement statement, different confidence levels can be assigned, but increasing levels of evidence and degrees of agreement are correlated with increasing confidence (see Section 1.9.2 and Figure 1.4 for more details).
  3. The 30 CMIP5 ESMs used in here in various contexts were selected based on the availability of ocean data from the historical period, RCP2.6 and RCP8.5 projections, and corresponding control runs to correct for model drift. The models used include: ACCESS1.0, ACCESS1.3, BNU-ESM, BCC-CSM1-1, CCSM4, CESM1, CMCC-CESM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3, CanESM2, FGOALS-S2.0, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, INM-CM4, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MIROC-ESM, MIROC5, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, and NorESM1-M. Up to 3 ensemble members or variants were included per model, and all changes are relative to a control run with an identical initial condition but with preindustrial forcing. A table with a description and citations for each of these models, along with more detailed discussion of the use of ESM output, can be found in Flato et al. (2013).
  4. ZJ is Zettajoule and is equal to 1021 Joules. Warming the entire ocean by 1℃ requires about 5500 ZJ; 144 ZJ would warm the top 100 m by about 1℃.
  5. Following common oceanographic practice dating back to Helland-Hansen (1916) and discussed in detail by Sverdrup et al. (1942), an ocean water-mass is defined as a large volume of seawater with a characteristic range of temperature and salinity properties, typically falling along a line in temperature-salinity space, often with common formation processes and locations.

References

  1. Inniss, L. et al., 2017: The First Global Integrated Marine Assessment: World Ocean Assessment I. United Nations, New York, 1752 pp.
  2. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
  3. Pörtner, H.O., 2012: Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog. Ser., 470, 273–290, doi:10.3354/meps10123.
  4. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  5. Rhein, M. et al., 2013: Observations: Ocean. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 255–316.
  6. Bindoff, N.L. et al., 2013: Detection and Attribution of Climate Change: from Global to Regional. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 867–952.
  7. Collins, M. et al., 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1029–1136.
  8. Rhein, M. et al., 2013: Observations: Ocean. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 255–316.
  9. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  10. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
  11. Roemmich, D., W. John Gould and J. Gilson, 2012: 135 years of global ocean warming between the Challenger expedition and the Argo Programme. Nat. Clim. Change, 2, 425, doi:10.1038/nclimate1461.
  12. Abraham, J.P. et al., 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51(3), 450–483, doi:10.1002/rog.20022.
  13. Abraham, J.P. et al., 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51(3), 450–483, doi:10.1002/rog.20022.
  14. Riser, S.C. et al., 2016: Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change, 6, 145, doi:10.1038/nclimate2872.
  15. Wong, A.P.S. and S.C. Riser, 2011: Profiling Float Observations of the Upper Ocean under Sea Ice off the Wilkes Land Coast of Antarctica. J. Phys. Oceanogr., 41(6), 1102–1115, doi:10.1175/2011JPO4516.1.
  16. Wong, A.P.S. and S.C. Riser, 2013: Modified shelf water on the continental slope north of Mac Robertson Land, East Antarctica. Geophys. Res. Lett., 40(23), 6186–6190, doi:10.1002/2013gl058125.
  17. Johnson, G.C., J.M. Lyman and S.G. Purkey, 2015: Informing Deep Argo Array Design Using Argo and Full-Depth Hydrographic Section Data. J. Atmos. Ocean. Tech., 32(11), 2187–2198, doi:10.1175/JTECH-D-15-0139.1.
  18. Zilberman, N., 2017: Deep Argo – Sampling the total ocean volume. Bull. Am. Meteorol. Soc., State of the Climate in 2016 report, 8(98), 73–74.
  19. Johnson, D., M. Adelaide Ferreira and E. Kenchington, 2018: Climate change is likely to severely limit the effectiveness of deep sea ABMTs in the North Atlantic. Mar. Policy, 87, 111–122, doi:10.1016/j.marpol.2017.09.034.
  20. Roemmich, D. et al., 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change, 5, 240, doi:10.1038/nclimate2513,
  21. Riser, S.C. et al., 2016: Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change, 6, 145, doi:10.1038/nclimate2872.
  22. Bindoff, N.L. et al., 2013: Detection and Attribution of Climate Change: from Global to Regional. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 867–952.
  23. Bindoff, N.L. et al., 2013: Detection and Attribution of Climate Change: from Global to Regional. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 867–952.
  24. Rhein, M. et al., 2013: Observations: Ocean. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 255–316.
  25. Abraham, J.P. et al., 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51(3), 450–483, doi:10.1002/rog.20022.
  26. Durack, P.J., 2015: Ocean Salinity and the Global Water Cycle. Oceanography, 28(1), 20–31.
  27. Chen, C.-T. A. et al., 2017: Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Change, 7(12), 890–894, doi:10.1038/s41558-017-0003-y.
  28. Chen, C.-T. A. et al., 2017: Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Change, 7(12), 890–894, doi:10.1038/s41558-017-0003-y.
  29. Johnson, D., M. Adelaide Ferreira and E. Kenchington, 2018: Climate change is likely to severely limit the effectiveness of deep sea ABMTs in the North Atlantic. Mar. Policy, 87, 111–122, doi:10.1016/j.marpol.2017.09.034.
  30. Chen, C.-T. A. et al., 2017: Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Change, 7(12), 890–894, doi:10.1038/s41558-017-0003-y.
  31. Chen, C.-T. A. et al., 2017: Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Change, 7(12), 890–894, doi:10.1038/s41558-017-0003-y.
  32. Ishii, M. et al., 2017: Accuracy of Global Upper Ocean Heat Content Estimation Expected from Present Observational Data Sets. SOLA, 13, 163–167.
  33. Chen, C.-T. A. et al., 2017: Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Change, 7(12), 890–894, doi:10.1038/s41558-017-0003-y.
  34. Chen, C.-T. A. et al., 2017: Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Change, 7(12), 890–894, doi:10.1038/s41558-017-0003-y.
  35. Ishii, M. et al., 2017: Accuracy of Global Upper Ocean Heat Content Estimation Expected from Present Observational Data Sets. SOLA, 13, 163–167.
  36. Gleckler, P.J. et al., 2012: Human-induced global ocean warming on multidecadal timescales. Nat. Clim. Change, 2, 524, doi:10.1038/nclimate1553.
  37. Gleckler, P.J. et al., 2012: Human-induced global ocean warming on multidecadal timescales. Nat. Clim. Change, 2, 524, doi:10.1038/nclimate1553.
  38. Cheng, L., J. Abraham, Z. Hausfather and K.E. Trenberth, 2019: How fast are the oceans warming? Science, 363(6423), 128, doi:10.1126/science.aav7619.
  39. Bindoff, N.L. et al., 2013: Detection and Attribution of Climate Change: from Global to Regional. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 867–952.
  40. Gleckler, P.J. et al., 2016: Industrial-era global ocean heat uptake doubles in recent decades. Nat. Clim. Change, 6, 394, doi:10.1038/nclimate2915.
  41. Cheng, L., J. Abraham, Z. Hausfather and K.E. Trenberth, 2019: How fast are the oceans warming? Science, 363(6423), 128, doi:10.1126/science.aav7619.
  42. Palmer, M., K. Haines, S. Tett and T. Ansell, 2007: Isolating the signal of ocean global warming. Geophys. Res. Lett., 34(23), 1–6.
  43. Levin, L.A. and M. Sibuet, 2012: Understanding Continental Margin Biodiversity: A New Imperative. Annu. Rev. Mar. Sci., 4(1), 79–112, doi:10.1146/annurev-marine-120709-142714.
  44. Lyman, J.M. and G.C. Johnson, 2014: Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Clim., 27(5), 1945–1957.
  45. Chen, C.-T. A. et al., 2017: Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Change, 7(12), 890–894, doi:10.1038/s41558-017-0003-y.
  46. Chen, C.-T. A. et al., 2017: Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Change, 7(12), 890–894, doi:10.1038/s41558-017-0003-y.
  47. Ishii, M. et al., 2017: Accuracy of Global Upper Ocean Heat Content Estimation Expected from Present Observational Data Sets. SOLA, 13, 163–167.
  48. Johnson, D., M. Adelaide Ferreira and E. Kenchington, 2018: Climate change is likely to severely limit the effectiveness of deep sea ABMTs in the North Atlantic. Mar. Policy, 87, 111–122, doi:10.1016/j.marpol.2017.09.034.
  49. Palmer, M., K. Haines, S. Tett and T. Ansell, 2007: Isolating the signal of ocean global warming. Geophys. Res. Lett., 34(23), 1–6.
  50. Lyman, J.M. and G.C. Johnson, 2014: Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Clim., 27(5), 1945–1957.
  51. Chen, C.-T. A. et al., 2017: Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Change, 7(12), 890–894, doi:10.1038/s41558-017-0003-y.
  52. Chen, C.-T. A. et al., 2017: Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Change, 7(12), 890–894, doi:10.1038/s41558-017-0003-y.
  53. Ishii, M. et al., 2017: Accuracy of Global Upper Ocean Heat Content Estimation Expected from Present Observational Data Sets. SOLA, 13, 163–167.
  54. Johnson, D., M. Adelaide Ferreira and E. Kenchington, 2018: Climate change is likely to severely limit the effectiveness of deep sea ABMTs in the North Atlantic. Mar. Policy, 87, 111–122, doi:10.1016/j.marpol.2017.09.034.
  55. Good, S.A., M.J. Martin and N.A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res-Oceans, 118(12), 6704–6716, doi:10.1002/2013JC009067.
  56. Cartapanis, O., E.D. Galbraith, D. Bianchi and S. L. Jaccard, 2018: Carbon burial in deep sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. Clim. Past, 14(11), 1819–1850, doi:10.5194/cp-14-1819-2018.
  57. Meehl, G.A. et al., 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Change, 1, 360, doi:10.1038/nclimate1229.
  58. Trenberth, K.E., M. Marquis and S. Zebiak, 2016: The vital need for a climate information system. Nat. Clim. Change, 6, 1057, doi:10.1038/nclimate3170.
  59. Meehl, G.A. et al., 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Change, 1, 360, doi:10.1038/nclimate1229.
  60. England, M.H., J.B. Kajtar and N. Maher, 2015: Robust warming projections despite the recent hiatus. Nat. Clim. Change, 5, 394, doi:10.1038/nclimate2575.
  61. Knutson, T.R., R. Zhang and L. W. Horowitz, 2016: Prospects for a prolonged slowdown in global warming in the early 21st century. Nat. Commun., 7, 13676, doi:10.1038/ncomms13676.
  62. Collins, M. et al., 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1029–1136.
  63. Jones, D.C. et al., 2016a: How does subantarctic mode water ventilate the Southern Hemisphere subtropics? J. Geophys. Res-Oceans, 121(9), 6558–6582.
  64. Frölicher, T.L., K.B. Rodgers, C.A. Stock and W.W.L. Cheung, 2016: Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Global Biogeochem. Cy., 30(8), 1224–1243, doi:10.1002/2015gb005338.
  65. Terada, M. and S. Minobe, 2018: Projected sea level rise, gyre circulation and water mass formation in the western North Pacific: CMIP5 inter-model analysis. Clim. Dyn., 50(11), 4767–4782, doi:10.1007/s00382-017-3902-8.
  66. Collins, M. et al., 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1029–1136.
  67. Armour, K.C. et al., 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9(7), 549.
  68. Mitchell, J.F., T. Johns, J.M. Gregory and S. Tett, 1995: Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376(6540), 501.
  69. Collins, S., B. Rost and T.A. Rynearson, 2014: Evolutionary potential of marine phytoplankton under ocean acidification. Evol. Appl., 7(1), 140–155, doi:doi:10.1111/eva.12120.
  70. Durack, P.J., 2015: Ocean Salinity and the Global Water Cycle. Oceanography, 28(1), 20–31.
  71. Zika, J.D. et al., 2018: Improved estimates of water cycle change from ocean salinity: the key role of ocean warming. Environ. Res. Lett., 13(7), 074036, doi:10.1088/1748-9326/aace42.
  72. Rhein, M. et al., 2013: Observations: Ocean. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 255–316.
  73. Held, I.M. and B.J. Soden, 2006: Robust Responses of the Hydrological Cycle to Global Warming. J. Clim., 19(21), 5686–5699, doi:10.1175/JCLI3990.1.
  74. Collins, M. et al., 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1029–1136.
  75. Purich, A. et al., 2018: Impacts of broad-scale surface freshening of the Southern Ocean in a coupled climate model. J. Clim., 31(7), 2613–2632.
  76. Jordà, G. et al., 2017: The Mediterranean Sea heat and mass budgets: Estimates, uncertainties and perspectives. Progr. Oceanogr., 156, 174–208, doi:10.1016/j.pocean.2017.07.001.
  77. Collins, M. et al., 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1029–1136.
  78. Rhein, M. et al., 2013: Observations: Ocean. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 255–316.
  79. Helland-Hansen, B., 1916: Nogen hydrografiske metoder. Scand. Naturforsker Mote, Kristiana, Oslo.
  80. Sverdrup, H.U., M.W. Johnson and R.H. Fleming, 1942: The Oceans: Their physics, chemistry, and general biology. Prentice-Hall, New York.
  81. Roemmich, D. et al., 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change, 5, 240, doi:10.1038/nclimate2513,
  82. Desbruyères, D., E. L. McDonagh, B.A. King and V. Thierry, 2016a: Global and Full-Depth Ocean Temperature Trends during the Early Twenty-First Century from Argo and Repeat Hydrography. J. Clim., 30(6), 1985–1997, doi:10.1175/JCLI-D-16-0396.1.
  83. Roemmich, D. et al., 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change, 5, 240, doi:10.1038/nclimate2513,
  84. Trenberth, K.E., M. Marquis and S. Zebiak, 2016: The vital need for a climate information system. Nat. Clim. Change, 6, 1057, doi:10.1038/nclimate3170.
  85. Roemmich, D. et al., 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change, 5, 240, doi:10.1038/nclimate2513,
  86. Chen, C.-T. A. et al., 2017: Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Change, 7(12), 890–894, doi:10.1038/s41558-017-0003-y.
  87. Roemmich, D. et al., 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change, 5, 240, doi:10.1038/nclimate2513,
  88. Shi, J.-R., S.-P. Xie and L.D. Talley, 2018: Evolving Relative Importance of the Southern Ocean and North Atlantic in Anthropogenic Ocean Heat Uptake. J. Clim., 31(18), 7459–7479, doi:10.1175/jcli-d-18-0170.1.
  89. England, M.H. et al., 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change, 4, 222, doi:10.1038/nclimate2106.
  90. Liu, W., S.-P. Xie and J. Lu, 2016: Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun., 7, 10926, doi:10.1038/ncomms10926.
  91. Buckley, M.W. and J. Marshall, 2015: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Rev. Geophys., 54(1), 5–63, doi:10.1002/2015RG000493.
  92. Gao, L., S.R. Rintoul and W. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nat. Clim. Change, 8(1), 58–63, doi:10.1038/s41558-017-0022-8.
  93. Josey, S.A. et al., 2018: The Recent Atlantic Cold Anomaly: Causes, Consequences, and Related Phenomena. Annu. Rev. Mar. Sci., 10(1), 475–501, doi:10.1146/annurev-marine-121916-063102.
  94. Smeed, D.A. et al., 2018: The North Atlantic Ocean Is in a State of Reduced Overturning. Geophys. Res. Lett., 45(3), 1527–1533, doi:10.1002/2017gl076350.
  95. Yashayaev, I. and J.W. Loder, 2017: Further intensification of deep convection in the Labrador Sea in 2016. Geophys. Res. Lett., 44(3), 1429–1438, doi:10.1002/2016gl071668.
  96. Robson, J., R. Sutton and D. Smith, 2014: Decadal predictions of the cooling and freshening of the North Atlantic in the 1960s and the role of ocean circulation. Clim. Dyn., 42(9), 2353–2365, doi:10.1007/s00382-014-2115-7.
  97. Yeager, S.G., A.R. Karspeck and G. Danabasoglu, 2015: Predicted slowdown in the rate of Atlantic sea ice loss. Geophys. Res. Lett., 42(24), 10,704–10,713, doi:10.1002/2015gl065364.
  98. Han, W. et al., 2014: Indian Ocean Decadal Variability: A Review. Bull. Am. Meteorol. Soc., 95(11), 1679–1703, doi:10.1175/BAMS-D-13-00028.1.
  99. Kay, J.E. et al., 2014: The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bull. Am. Meteorol. Soc., 96(8), 1333–1349, doi:10.1175/BAMS-D-13-00255.1.
  100. Abraham, J.P. et al., 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51(3), 450–483, doi:10.1002/rog.20022.
  101. Ishii, M. et al., 2017: Accuracy of Global Upper Ocean Heat Content Estimation Expected from Present Observational Data Sets. SOLA, 13, 163–167.
  102. Bindoff, N.L. et al., 2013: Detection and Attribution of Climate Change: from Global to Regional. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 867–952.
  103. Kay, J.E. et al., 2014: The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bull. Am. Meteorol. Soc., 96(8), 1333–1349, doi:10.1175/BAMS-D-13-00255.1.
  104. Weller, E. et al., 2016: Multi-model attribution of upper-ocean temperature changes using an isothermal approach. Sci. Rep., 6, 26926, doi:10.1038/srep26926.
  105. Frajka-Williams, E. et al., 2016: Compensation between meridional flow components of the Atlantic MOC at 26N. Ocean Sci., 12(2), 481–493.
  106. Purkey, S.G. and G.C. Johnson, 2010: Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets. J. Clim., 23(23), 6336–6351, doi:10.1175/2010JCLI3682.1.
  107. Desbruyères, D.G. et al., 2016b: Deep and abyssal ocean warming from 35 years of repeat hydrography. Geophys. Res. Lett., 43(19), 10,356–10,365, doi:10.1002/2016gl070413.
  108. Desbruyères, D.G. et al., 2014: Full-depth temperature trends in the northeastern Atlantic through the early 21st century. Geophys. Res. Lett., 41(22), 7971–7979, doi:10.1002/2014GL061844.
  109. Caesar, L. et al., 2018: Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556(7700), 191–196, doi:10.1038/s41586-018-0006-5.
  110. Thornalley, D.J.R. et al., 2018: Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556(7700), 227–230, doi:10.1038/s41586-018-0007-4.
  111. Purkey, S.G., G.C. Johnson and P. Chambers Don, 2014: Relative contributions of ocean mass and deep steric changes to sea level rise between 1993 and 2013. J. Geophys. Res-Oceans, 119(11), 7509–7522, doi:10.1002/2014JC010180.
  112. Lyman, J.M. and G.C. Johnson, 2014: Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Clim., 27(5), 1945–1957.
  113. Desbruyères, D.G. et al., 2016b: Deep and abyssal ocean warming from 35 years of repeat hydrography. Geophys. Res. Lett., 43(19), 10,356–10,365, doi:10.1002/2016gl070413.
  114. Talley, L.D. et al., 2016: Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. Annu. Rev. Mar. Sci., 8(1), 185–215, doi:10.1146/annurev-marine-052915-100829.
  115. Johnson, G.C., S.G. Purkey, N.V. Zilberman and D. Roemmich, 2019: Deep Argo Quantifies Bottom Water Warming Rates in the Southwest Pacific Basin. Geophys. Res. Lett., 46(5), 2662–2669, doi:10.1029/2018GL081685.
  116. Johnson, G.C., J.M. Lyman and S.G. Purkey, 2015: Informing Deep Argo Array Design Using Argo and Full-Depth Hydrographic Section Data. J. Atmos. Ocean. Tech., 32(11), 2187–2198, doi:10.1175/JTECH-D-15-0139.1.
  117. Llovel, W., J.K. Willis, F.W. Landerer and I. Fukumori, 2014: Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat. Clim. Change, 4, 1031, doi:10.1038/nclimate2387.
  118. Heuzé, C., K.J. Heywood, D.P. Stevens and J.K. Ridley, 2015: Changes in global ocean bottom properties and volume transports in CMIP5 models under climate change scenarios. J. Clim., 28(8), 2917–2944.
  119. Kawase, M., 1987: Establishment of Deep Ocean Circulation Driven by Deep-Water Production. J. Phys. Oceanogr., 17(12), 2294–2317, doi:10.1175/1520-0485(1987)017<2294:EODOCD>2.0.CO;2.
  120. Purkey, S.G. and G.C. Johnson, 2010: Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets. J. Clim., 23(23), 6336–6351, doi:10.1175/2010JCLI3682.1.
  121. Purkey, S.G. and G.C. Johnson, 2013: Antarctic Bottom Water Warming and Freshening: Contributions to Sea Level Rise, Ocean Freshwater Budgets, and Global Heat Gain. J. Clim., 26(16), 6105–6122, doi:10.1175/JCLI-D-12-00834.1.
  122. Menezes, V.V., A.M. Macdonald and C. Schatzman, 2017: Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean. Sci. Adv., 3(1), e1601426, doi:10.1126/sciadv.1601426.
  123. Spence, P. et al., 2017: Localized rapid warming of West Antarctic subsurface waters by remote winds. Nat. Clim. Change, 7, 595, doi:10.1038/nclimate3335.
  124. Martin, R.M. and S. Moseman-Valtierra, 2015: Greenhouse gas fluxes vary between Phragmites australis and native vegetation zones in coastal wetlands along a salinity gradient. Wetlands, 35(6), 1021–1031.
  125. Zanowski, H. and R. Hallberg, 2017: Weddell Polynya Transport Mechanisms in the Abyssal Ocean. J. Phys. Oceanogr., doi:10.1175/JPO-D-17-0091.1.
  126. Zanowski, H., R. Hallberg and J.L. Sarmiento, 2015: Abyssal Ocean Warming and Salinification after Weddell Polynyas in the GFDL CM2G Coupled Climate Model. J. Phys. Oceanogr., 45(11), 2755–2772, doi:10.1175/JPO-D-15-0109.1.
  127. Helm, K.P., N.L. Bindoff and J.A. Church, 2011: Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett., 38(23), doi:10.1029/2011GL049513.
  128. Talley, L.D. et al., 2016: Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. Annu. Rev. Mar. Sci., 8(1), 185–215, doi:10.1146/annurev-marine-052915-100829.
  129. Capotondi, A. et al., 2012: Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res-Oceans, 117(C4), doi:10.1029/2011JC007409.
  130. Bopp, L. et al., 2013: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10(10), 6225–6245, doi:10.5194/bg-10-6225-2013.
  131. Good, S.A., M.J. Martin and N.A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res-Oceans, 118(12), 6704–6716, doi:10.1002/2013JC009067.
  132. Lyman, J.M. and G.C. Johnson, 2014: Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Clim., 27(5), 1945–1957.
  133. Desbruyères, D.G. et al., 2016b: Deep and abyssal ocean warming from 35 years of repeat hydrography. Geophys. Res. Lett., 43(19), 10,356–10,365, doi:10.1002/2016gl070413.
  134. Wang, D., T.C. Gouhier, B.A. Menge and A.R. Ganguly, 2015a: Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518(7539), 390–394, doi:10.1038/nature14235.
  135. Adloff, F. et al., 2015: Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn., 45(9), 2775–2802, doi:10.1007/s00382-015-2507-3.
  136. Tinker, J. et al., 2016: Uncertainty in climate projections for the 21st century northwest European shelf seas. Progr. Oceanogr., 148, 56–73, doi:10.1016/j.pocean.2016.09.003.
  137. Saba, V.S. et al., 2016: Enhanced warming of the Northwest Atlantic Ocean under climate change. J. Geophys. Res-Oceans, 121(1), 118–132, doi:10.1002/2015JC011346.
  138. Arbic, B.K., R.H. Karsten and C. Garrett, 2009: On tidal resonance in the global ocean and the back‐effect of coastal tides upon open‐ocean tides. Atmos. Ocean, 47(4), 239–266, doi:10.3137/OC311.2009.
  139. Newton, I., 1687: Philosophiæ Naturalis Principia Mathematica. London.
  140. Laplace, P.S., 1799: Traité de Mécanique Céleste, Vol. 1. Duprat, Paris.
  141. Müller, M., 2012: The influence of changing stratification conditions on barotropic tidal transport and its implications for seasonal and secular changes of tides. Cont. Shelf Res., 47(Supplement C), 107–118, doi:10.1016/j.csr.2012.07.003.
  142. Schindelegger, M., J.A.M. Green, S.B. Wilmes and I.D. Haigh, 2018: Can We Model the Effect of Observed Sea Level Rise on Tides? J. Geophys. Res-Oceans, 123(7), 4593–4609, doi:10.1029/2018JC013959.
  143. Woodworth, P L., 2010: A survey of recent changes in the main components of the ocean tide. Cont. Shelf Res., 30(15), 1680–1691, doi:10.1016/j.csr.2010.07.002.
  144. Müller, M., B.K. Arbic and J.X. Mitrovica, 2011: Secular trends in ocean tides: Observations and model results. J. Geophys. Res-Oceans, 116(C5), n/a–n/a, doi:10.1029/2010JC006387.
  145. Devlin, A.T. et al., 2017: Tidal Variability Related to Sea Level Variability in the Pacific Ocean. J. Geophys. Res-Ocean, 122(11), 8445-8463 doi:10.1002/2017JC013165.
  146. Jayne, S.R. and L.C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28(5), 811–814.
  147. Müller, M., 2012: The influence of changing stratification conditions on barotropic tidal transport and its implications for seasonal and secular changes of tides. Cont. Shelf Res., 47(Supplement C), 107–118, doi:10.1016/j.csr.2012.07.003.
  148. Zhao, Q. et al., 2016a: A review of methodologies and success indicators for coastal wetland restoration. Ecol. Indic., 60, 442–452, doi:10.1016/j.ecolind.2015.07.003.
  149. Ward, S.L., J.A.M. Green and H.E. Pelling, 2012: Tides, sea level rise and tidal power extraction on the European shelf. Ocean Dyn., 62(8), 1153–1167, doi:10.1007/s10236-012-0552-6.
  150. Pickering, M.D., N.C. Wells, K.J. Horsburgh and J.A.M. Green, 2012: The impact of future sea level rise on the European Shelf tides. Cont. Shelf Res., 35(Supplement C), 1–15, doi:10.1016/j.csr.2011.11.011.
  151. Devlin, A.T. et al., 2017: Tidal Variability Related to Sea Level Variability in the Pacific Ocean. J. Geophys. Res-Ocean, 122(11), 8445-8463 doi:10.1002/2017JC013165.
  152. Pickering, M.D. et al., 2017: The impact of future sea level rise on the global tides. Cont. Shelf Res., 142, 50–68, doi:10.1016/j.csr.2017.02.004.
  153. Pickering, M.D. et al., 2017: The impact of future sea level rise on the global tides. Cont. Shelf Res., 142, 50–68, doi:10.1016/j.csr.2017.02.004.
  154. Schindelegger, M., J.A.M. Green, S.B. Wilmes and I.D. Haigh, 2018: Can We Model the Effect of Observed Sea Level Rise on Tides? J. Geophys. Res-Oceans, 123(7), 4593–4609, doi:10.1029/2018JC013959.
  155. Pelling, H.E., K. Uehara and J.A.M. Green, 2013: The impact of rapid coastline changes and sea level rise on the tides in the Bohai Sea, China. J. Geophys. Res-Oceans, 118(7), 3462–3472, doi:10.1002/jgrc.20258.
  156. Hwang, J.H. et al., 2014: The physical processes in the Yellow Sea. Ocean Coast. Manage., 102, 449–457.
  157. Hwang, J.H. et al., 2014: The physical processes in the Yellow Sea. Ocean Coast. Manage., 102, 449–457.
  158. Pickering, M.D., N.C. Wells, K.J. Horsburgh and J.A.M. Green, 2012: The impact of future sea level rise on the European Shelf tides. Cont. Shelf Res., 35(Supplement C), 1–15, doi:10.1016/j.csr.2011.11.011.
  159. Ilıcak, M., A.J. Adcroft, S.M. Griffies and R.W. Hallberg, 2012: Spurious dianeutral mixing and the role of momentum closure. Ocean Model.., 45–46(Supplement C), 37–58, doi:10.1016/j.ocemod.2011.10.003.
  160. Megann, A., 2018: Estimating the numerical diapycnal mixing in an eddy-permitting ocean model. Ocean Model.., 121, 19–33, doi:10.1016/j.ocemod.2017.11.001.
  161. Hallberg, R. et al., 2012: Sensitivity of Twenty-First-Century Global-Mean Steric Sea Level Rise to Ocean Model Formulation. J. Clim., 26(9), 2947–2956, doi:10.1175/JCLI-D-12-00506.1.
  162. Bachman, S.D., J.R. Taylor, K.A. Adams and P.J. Hosegood, 2017: Mesoscale and Submesoscale Effects on Mixed Layer Depth in the Southern Ocean. J. Phys. Oceanogr., 47(9), 2173–2188, doi:10.1175/JPO-D-17-0034.1.
  163. Lévy, M. et al., 2012: Bringing physics to life at the submesoscale. Geophys. Res. Lett., 39(14), doi:10.1029/2012GL052756.
  164. Bachman, S.D., J.R. Taylor, K.A. Adams and P.J. Hosegood, 2017: Mesoscale and Submesoscale Effects on Mixed Layer Depth in the Southern Ocean. J. Phys. Oceanogr., 47(9), 2173–2188, doi:10.1175/JPO-D-17-0034.1.
  165. Brannigan, L. et al., 2017: Submesoscale Instabilities in Mesoscale Eddies. J. Phys. Oceanogr., 47(12), 3061–3085, doi:10.1175/JPO-D-16-0178.1.
  166. Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Model.., 72, 92–103, doi:10.1016/j.ocemod.2013.08.007.
  167. Schmittner, A., M. Urban Nathan, K. Keller and D. Matthews, 2009: Using tracer observations to reduce the uncertainty of ocean diapycnal mixing and climate–carbon cycle projections. Global Biogeochem. Cy., 23(4), doi:10.1029/2008GB003421.
  168. MacKinnon, J.A. et al., 2017: Climate Process Team on Internal-Wave Driven Ocean Mixing. Bull. Am. Meteorol. Soc., 98(11), 2429-2454. doi:10.1175/BAMS-D-16-0030.1.
  169. Whalen, C.B., L.D. Talley and J.A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39(18), doi:10.1029/2012GL053196.
  170. Polzin, K.L., J.M. Toole, J.R. Ledwell and R.W. Schmitt, 1997: Spatial Variability of Turbulent Mixing in the Abyssal Ocean. Science, 276(5309), 93.
  171. Waterman, S., A.C. Naveira Garabato and K.L. Polzin, 2012: Internal Waves and Turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43(2), 259–282, doi:10.1175/JPO-D-11-0194.1.
  172. Whalen, C.B., L.D. Talley and J.A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39(18), doi:10.1029/2012GL053196.
  173. Alford, M.H. et al., 2013: Turbulent mixing and hydraulic control of abyssal water in the Samoan Passage. Geophys. Res. Lett., 40(17), 4668–4674, doi:10.1002/grl.50684.
  174. Hummels, R., M. Dengler and B. Bourlès, 2013: Seasonal and regional variability of upper ocean diapycnal heat flux in the Atlantic cold tongue. Progr. Oceanogr., 111, 52–74, doi:10.1016/j.pocean.2012.11.001.
  175. Sheen, K.L. et al., 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res-Oceans, 118(6), 2774–2792, doi:10.1002/jgrc.20217.
  176. Waterhouse, A.F. et al., 2014: Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate. J. Phys. Oceanogr., 44(7), 1854–1872, doi:10.1175/JPO-D-13-0104.1.
  177. Kunze, E., 2017: Internal-Wave-Driven Mixing: Global Geography and Budgets. J. Phys. Oceanogr., 47(6), 1325–1345, doi:10.1175/JPO-D-16-0141.1.
  178. Whalen, C.B., L.D. Talley and J.A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39(18), doi:10.1029/2012GL053196.
  179. Klymak, J.M., R. Pinkel and L. Rainville, 2008: Direct Breaking of the Internal Tide near Topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38(2), 380–399, doi:10.1175/2007JPO3728.1.
  180. Whalen, C.B., J.A. MacKinnon and L.D. Talley, 2018: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci., 11(11), 842–847, doi:10.1038/s41561-018-0213-6.
  181. Sloyan, B.M. et al., 2010: Antarctic Intermediate Water and Subantarctic Mode Water Formation in the Southeast Pacific: The Role of Turbulent Mixing. J. Phys. Oceanogr., 40(7), 1558–1574, doi:10.1175/2010JPO4114.1.
  182. Moum, J.N., A. Perlin, J.D. Nash and M.J. McPhaden, 2013: Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature, 500, 64, doi:10.1038/nature12363.
  183. Tanaka, Y., T. Hibiya and H. Sasaki, 2015: Downward lee wave radiation from tropical instability waves in the central equatorial Pacific Ocean: A possible energy pathway to turbulent mixing. J. Geophys. Res-Oceans, 120(11), 7137–7149, doi:10.1002/2015JC011017.
  184. Wunsch, C. and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36(1), 281–314, doi:10.1146/annurev.fluid.36.050802.122121.
  185. Eden, C. and D. Olbers, 2014: An Energy Compartment Model for Propagation, Nonlinear Interaction, and Dissipation of Internal Gravity Waves. J. Phys. Oceanogr., 44(8), 2093–2106, doi:10.1175/JPO-D-13-0224.1.
  186. Alford, M.H., J.A. MacKinnon, H.L. Simmons and J.D. Nash, 2016: Near-Inertial Internal Gravity Waves in the Ocean. Annu. Rev. Mar. Sci., 8(1), 95–123, doi:10.1146/annurev-marine-010814-015746.
  187. Melet, A., S. Legg and R. Hallberg, 2016: Climatic Impacts of Parameterized Local and Remote Tidal Mixing. J. Clim., 29(10), 3473–3500, doi:10.1175/jcli-d-15-0153.1.
  188. Meyer, A., K L. Polzin, B.M. Sloyan and H.E. Phillips, 2016: Internal Waves and Mixing near the Kerguelen Plateau. J. Phys. Oceanogr., 46(2), 417–437, doi:10.1175/jpo-d-15-0055.1.
  189. Zhao, Z. et al., 2016b: Global Observations of Open-Ocean Mode-1 M2 Internal Tides. J. Phys. Oceanogr., 46(6), 1657–1684, doi:10.1175/JPO-D-15-0105.1.
  190. Dosser, H.V. and L. Rainville, 2016: Dynamics of the Changing Near-Inertial Internal Wave Field in the Arctic Ocean. J. Phys. Oceanogr., 46(2), 395–415, doi:10.1175/jpo-d-15-0056.1.
  191. Young, I.R., S. Zieger and A.V. Babanin, 2011: Global Trends in Wind Speed and Wave Height. Science, 332(6028), 451.
  192. Jones, J.M. et al., 2016b: Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change, 6, 917, doi:10.1038/nclimate3103.
  193. Hogg, A.M. et al., 2015: Recent trends in the Southern Ocean eddy field. J. Geophys. Res-Oceans, 120(1), 257–267, doi:10.1002/2014JC010470.
  194. Jayne, S.R. and L.C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28(5), 811–814.
  195. Eden, C. and D. Olbers, 2014: An Energy Compartment Model for Propagation, Nonlinear Interaction, and Dissipation of Internal Gravity Waves. J. Phys. Oceanogr., 44(8), 2093–2106, doi:10.1175/JPO-D-13-0224.1.
  196. Rödenbeck, C. et al., 2014: Interannual sea-air CO 2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences, 11, 3167–3207.
  197. Landschützer, P., N. Gruber and D.C.E. Bakker, 2016: Decadal variations and trends of the global ocean carbon sink. Global Biogeochem. Cy., 30(10), 1396–1417, doi:10.1002/2015gb005359.
  198. Resplandy, L., R. F. Keeling, C. Roedenbeck, B. B. Stephens, S. Khatiwala, K. B. Rodgers, M. C. Long, L. Bopp and P. P. Tans (2018): Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nature Geoscience 11(7): 504-508.
  199. Rödenbeck, C. et al., 2014: Interannual sea-air CO 2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences, 11, 3167–3207.
  200. Landschützer, P., N. Gruber and D.C.E. Bakker, 2016: Decadal variations and trends of the global ocean carbon sink. Global Biogeochem. Cy., 30(10), 1396–1417, doi:10.1002/2015gb005359.
  201. Talley, L.D. et al., 2016: Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. Annu. Rev. Mar. Sci., 8(1), 185–215, doi:10.1146/annurev-marine-052915-100829.
  202. Olsen, A. et al., 2016a: The Global Ocean Data Analysis Project version 2 (GLODAPv2)–an internally consistent data product for the world ocean. Earth Syst. Sci. Data (Online), 8(2), 297–323.
  203. Wanninkhof, R. et al., 2010: Detecting anthropogenic CO2 changes in the interior Atlantic Ocean between 1989 and 2005. J. Geophys. Res-Oceans, 115(C11). https://doi.org/10.1029/2010JC006251
  204. Pérez, F.F. et al., 2013: Atlantic Ocean CO 2 uptake reduced by weakening of the meridional overturning circulation. Nat. Geosci., 6(2), 146.
  205. Woosley, R.J., F.J. Millero and R. Wanninkhof, 2016: Rapid anthropogenic changes in CO2 and pH in the Atlantic Ocean: 2003–2014. Global Biogeochem. Cy., 30(1), 70–90.
  206. Carter, B. et al., 2017: Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Ship‐based Hydrographic Investigations Program sections P16 and P02. Global Biogeochem. Cy., 31(2), 306–327.
  207. Gruber, N., 2019: A diagnosis for marine nitrogen fixation. Nature, 566(7743), 191–193.
  208. Khatiwala, S. et al., 2013: Global ocean storage of anthropogenic carbon. Biogeosciences, 10(4), 2169–2191.
  209. DeVries, T., 2014: The oceanic anthropogenic CO2 sink: Storage, air‐sea fluxes, and transports over the industrial era. Global Biogeochem. Cy., 28(7), 631–647, doi:10.1002/2013GB004739.
  210. Gruber, N., 2019: A diagnosis for marine nitrogen fixation. Nature, 566(7743), 191–193.
  211. Rödenbeck, C. et al., 2015: Data-based estimates of the ocean carbon sink variability–first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM). Biogeosciences, 12, 7251–7278.
  212. Landschützer, P., N. Gruber and D.C.E. Bakker, 2016: Decadal variations and trends of the global ocean carbon sink. Global Biogeochem. Cy., 30(10), 1396–1417, doi:10.1002/2015gb005359.
  213. Rödenbeck, C. et al., 2015: Data-based estimates of the ocean carbon sink variability–first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM). Biogeosciences, 12, 7251–7278.
  214. Landschützer, P., N. Gruber and D.C.E. Bakker, 2016: Decadal variations and trends of the global ocean carbon sink. Global Biogeochem. Cy., 30(10), 1396–1417, doi:10.1002/2015gb005359.
  215. Landschützer, P., N. Gruber and D.C.E. Bakker, 2016: Decadal variations and trends of the global ocean carbon sink. Global Biogeochem. Cy., 30(10), 1396–1417, doi:10.1002/2015gb005359.
  216. Munro, D.R. et al., 2015: Recent evidence for a strengthening CO2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002–2015). Geophys. Res. Lett., 42(18), 7623–7630.
  217. Ritter, R. et al., 2017: Observation‐Based Trends of the Southern Ocean Carbon Sink. Geophys. Res. Lett., 44(24), 12,339–12,348.
  218. Gruber, N., 2019: A diagnosis for marine nitrogen fixation. Nature, 566(7743), 191–193.
  219. Pérez, F.F. et al., 2013: Atlantic Ocean CO 2 uptake reduced by weakening of the meridional overturning circulation. Nat. Geosci., 6(2), 146.
  220. DeVries, T., M. Holzer and F. Primeau, 2017: Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542(7640), 215.
  221. Gruber, N., 2019: A diagnosis for marine nitrogen fixation. Nature, 566(7743), 191–193.
  222. Sabine, C.L. et al., 2004: The oceanic sink for anthropogenic CO2. Science, 305(5682), 367–71, doi:10.1126/science.1097403.
  223. Gruber, N., 2019: A diagnosis for marine nitrogen fixation. Nature, 566(7743), 191–193.
  224. Dore, J.E. et al., 2009: Physical and biogeochemical modulation of ocean acidification in the central North Pacific. PNAS, 106(30), 12235, doi:10.1073/pnas.0906044106.
  225. Takahashi, T. et al., 2014: Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Mar. Chem., 164, 95–125, doi:10.1016/j.marchem.2014.06.004.
  226. Lauvset, S.K. et al., 2015: Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences, 12(5), 1285–1298, doi:10.5194/bg-12-1285-2015.
  227. Lauvset, S.K. et al., 2015: Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences, 12(5), 1285–1298, doi:10.5194/bg-12-1285-2015.
  228. Bopp, L. et al., 2013: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10(10), 6225–6245, doi:10.5194/bg-10-6225-2013.
  229. Gattuso, J.-P. et al., 2015: OCEANOGRAPHY. Contrasting futures for ocean and society from different anthropogenic CO₂ emissions scenarios. Science, 349(6243), 1 -10, doi:10.1126/science.aac4722.
  230. Bopp, L. et al., 2013: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10(10), 6225–6245, doi:10.5194/bg-10-6225-2013.
  231. Gattuso, J.-P. et al., 2015: OCEANOGRAPHY. Contrasting futures for ocean and society from different anthropogenic CO₂ emissions scenarios. Science, 349(6243), 1 -10, doi:10.1126/science.aac4722.
  232. Orr, J.C. et al., 2005: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059), 681–686, doi:10.1038/nature04095.
  233. Hauri, C., T. Friedrich and A. Timmermann, 2015: Abrupt onset and prolongation of aragonite undersaturation events in the Southern Ocean. Nat. Clim. Change, 6, 172, doi:10.1038/nclimate2844.
  234. Sasse, T.P., B.I. McNeil, R.J. Matear and A. Lenton, 2015: Quantifying the influence of CO2 seasonality on future aragonite undersaturation onset. Biogeosciences, 12(20), 6017–6031, doi:10.5194/bg-12-6017-2015.
  235. Franco, A.C., N. Gruber, T.L. Frölicher and L. Kropuenske Artman, 2018a: Contrasting Impact of Future CO2 Emission Scenarios on the Extent of CaCO3 Mineral Undersaturation in the Humboldt Current System. J. Geophys. Res-Oceans, 123(3), 2018–2036, doi:10.1002/2018JC013857.
  236. Steiner, N.S. et al., 2014: Future ocean acidification in the Canada Basin and surrounding Arctic Ocean from CMIP5 earth system models. J. Geophys. Res-Oceans, 119(1), 332–347, doi:10.1002/2013JC009069.
  237. Resplandy, L., L. Bopp, J.C. Orr and J.P. Dunne, 2013: Role of mode and intermediate waters in future ocean acidification: Analysis of CMIP5 models. Geophys. Res. Lett., 40(12), 3091–3095, doi:10.1002/grl.50414.
  238. Chen, C.-T. A. et al., 2017: Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Change, 7(12), 890–894, doi:10.1038/s41558-017-0003-y.
  239. Gehlen, M. et al., 2014: Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk. Biogeosciences, 11(23), 6955–6967, doi:10.5194/bg-11-6955-2014.
  240. Sweet, M.J. and M.T. Bulling, 2017: On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Front. Mar. Sci., 4(9), doi:10.3389/fmars.2017.00009.
  241. Landschützer, P. et al., 2018: Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2. Nat. Clim. Change, 8(2), 146–150, doi:10.1038/s41558-017-0057-x.
  242. McNeil, B.I. and T.P. Sasse, 2016: Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature, 529, 383, doi:10.1038/nature16156.
  243. Kwiatkowski, L. and J. C. Orr, 2018: Diverging seasonal extremes for ocean acidification during the twenty45 first century. Nature Climate Change, 8 (2), 141-145, doi:10.1038/s41558-017-0054-0.
  244. Frölicher, T.L., K.B. Rodgers, C.A. Stock and W.W.L. Cheung, 2016: Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Global Biogeochem. Cy., 30(8), 1224–1243, doi:10.1002/2015gb005338.
  245. Kwiatkowski, L. and J. C. Orr, 2018: Diverging seasonal extremes for ocean acidification during the twenty45 first century. Nature Climate Change, 8 (2), 141-145, doi:10.1038/s41558-017-0054-0.
  246. Mongwe, N.P., M. Vichi and P.M.S. Monteiro, 2018: The seasonal cycle of p CO 2 and CO 2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models. Biogeosciences, 15(9), 2851.
  247. Schmidtko, S., L. Stramma and M. Visbeck, 2017: Decline in global oceanic oxygen content during the past five decades. Nature, 542(7641), 335–339, doi:10.1038/nature21399.
  248. Helm, K.P., N.L. Bindoff and J.A. Church, 2011: Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett., 38(23), doi:10.1029/2011GL049513.
  249. Ito, T., S. Minobe, M.C. Long and C. Deutsch, 2017: Upper ocean O2 trends: 1958–2015. Geophys. Res. Lett., 44(9), 4214–4223, doi:10.1002/2017GL073613.
  250. Whitney, F.A., H.J. Freeland and M. Robert, 2007: Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Progr. Oceanogr., 75(2), 179–199, doi:10.1016/j.pocean.2007.08.007.
  251. Sasano, D. et al., 2015: Multidecadal trends of oxygen and their controlling factors in the western North Pacific. Global Biogeochem. Cy., 29(7), 935–956, doi:10.1002/2014gb005065.
  252. Bograd, S.J. et al., 2015: Changes in source waters to the Southern California Bight. Deep Sea Res. Pt. II, 112, 42–52, doi:10.1016/j.dsr2.2014.04.009.
  253. Helm, K.P., N.L. Bindoff and J.A. Church, 2011: Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett., 38(23), doi:10.1029/2011GL049513.
  254. Schmidtko, S., L. Stramma and M. Visbeck, 2017: Decline in global oceanic oxygen content during the past five decades. Nature, 542(7641), 335–339, doi:10.1038/nature21399.
  255. Talley, L.D. et al., 2016: Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. Annu. Rev. Mar. Sci., 8(1), 185–215, doi:10.1146/annurev-marine-052915-100829.
  256. Helm, K.P., N.L. Bindoff and J.A. Church, 2011: Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett., 38(23), doi:10.1029/2011GL049513.
  257. Ito, T., S. Minobe, M.C. Long and C. Deutsch, 2017: Upper ocean O2 trends: 1958–2015. Geophys. Res. Lett., 44(9), 4214–4223, doi:10.1002/2017GL073613.
  258. Schmidtko, S., L. Stramma and M. Visbeck, 2017: Decline in global oceanic oxygen content during the past five decades. Nature, 542(7641), 335–339, doi:10.1038/nature21399.
  259. Oschlies, A., P. Brandt, L. Stramma and S. Schmidtko, 2018: Drivers and mechanisms of ocean deoxygenation. Nat. Geosci., 11(7), 467–473, doi:10.1038/s41561-018-0152-2.
  260. Ito, T., S. Minobe, M.C. Long and C. Deutsch, 2017: Upper ocean O2 trends: 1958–2015. Geophys. Res. Lett., 44(9), 4214–4223, doi:10.1002/2017GL073613.
  261. Oschlies, A., P. Brandt, L. Stramma and S. Schmidtko, 2018: Drivers and mechanisms of ocean deoxygenation. Nat. Geosci., 11(7), 467–473, doi:10.1038/s41561-018-0152-2.
  262. Whitney, F.A., S.J. Bograd and T. Ono, 2013: Nutrient enrichment of the subarctic Pacific Ocean pycnocline. Geophys. Res. Lett., 40(10), 2200–2205, doi:10.1002/grl.50439.
  263. Sasano, D. et al., 2015: Multidecadal trends of oxygen and their controlling factors in the western North Pacific. Global Biogeochem. Cy., 29(7), 935–956, doi:10.1002/2014gb005065.
  264. Goericke, R., S.J. Bograd and D.S. Grundle, 2015: Denitrification and flushing of the Santa Barbara Basin bottom waters. Deep Sea Res. Pt. II, 112, 53–60, doi:10.1016/j.dsr2.2014.07.012.
  265. Goericke, R., S.J. Bograd and D.S. Grundle, 2015: Denitrification and flushing of the Santa Barbara Basin bottom waters. Deep Sea Res. Pt. II, 112, 53–60, doi:10.1016/j.dsr2.2014.07.012.
  266. Karstensen, J. et al., 2015: Open ocean dead zones in the tropical North Atlantic Ocean. Biogeosciences, 12(8), 2597–2605, doi:10.5194/bg-12-2597-2015.
  267. Grundle, D.S. et al., 2017: Low oxygen eddies in the eastern tropical North Atlantic: Implications for N2O cycling. Sci. Rep., 7(1), 4806, doi:10.1038/s41598-017-04745-y.
  268. Watanabe, Y.W. et al., 2003: Synchronous bidecadal periodic changes of oxygen, phosphate and temperature between the Japan Sea deep water and the North Pacific intermediate water. Geophys. Res. Lett., 30(24), doi:10.1029/2003GL018338.
  269. Stendardo, I. and N. Gruber, 2012: Oxygen trends over five decades in the North Atlantic. J. Geophys. Res-Oceans, 117(C11), doi:10.1029/2012JC007909.
  270. Ito, T., S. Minobe, M.C. Long and C. Deutsch, 2017: Upper ocean O2 trends: 1958–2015. Geophys. Res. Lett., 44(9), 4214–4223, doi:10.1002/2017GL073613.
  271. Lachkar, Z., M. Lévy and S. Smith, 2018: Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity. Biogeosciences, 15(1),159-186.
  272. Deutsch, C. et al., 2011: Climate-Forced Variability of Ocean Hypoxia. Science, 333(6040), 336.
  273. Ito, T. and C. Deutsch, 2013: Variability of the oxygen minimum zone in the tropical North Pacific during the late twentieth century. Global Biogeochem. Cy., 27(4), 1119–1128, doi:10.1002/2013gb004567.
  274. Eddebbar, Y.A. et al., 2017: Impacts of ENSO on air-sea oxygen exchange: Observations and mechanisms. Global Biogeochem. Cy., 31(5), 901–921, doi:doi:10.1002/2017GB005630.
  275. Duteil, O., F.U. Schwarzkopf, C.W. Böning and A. Oschlies, 2014: Major role of the equatorial current system in setting oxygen levels in the eastern tropical Atlantic Ocean: A high-resolution model study. Geophys. Res. Lett., 41(6), 2033–2040, doi:10.1002/2013GL058888.
  276. Deutsch, C. et al., 2015: Climate change tightens a metabolic constraint on marine habitats. Science, 348(6239), 1132.
  277. Llanillo, P.J., J. Karstensen, J.L. Pelegrí and L. Stramma, 2013: Physical and biogeochemical forcing of oxygen and nitrate changes during El Niño/El Viejo and La Niña/La Vieja upper-ocean phases in the tropical eastern South Pacific along 86° W. Biogeosciences, 10(10), 6339–6355, doi:10.5194/bg-10-6339-2013.
  278. Duteil, O., A. Oschlies and C.W. Böning, 2018: Pacific Decadal Oscillation and recent oxygen decline in the eastern tropical Pacific Ocean. Biogeosciences, 15, 7111-7126.
  279. Ito, T. et al., 2016: Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants. Nat. Geosci., 9, 443, doi:10.1038/ngeo2717.
  280. Yang, S. and N. Gruber, 2016: The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: Nitrogen cycle feedbacks and the 15N Haber-Bosch effect. Global Biogeochem. Cy., 30(10), 1418–1440, doi:10.1002/2016GB005421.
  281. Bopp, L. et al., 2013: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10(10), 6225–6245, doi:10.5194/bg-10-6225-2013.
  282. Oschlies, A., P. Brandt, L. Stramma and S. Schmidtko, 2018: Drivers and mechanisms of ocean deoxygenation. Nat. Geosci., 11(7), 467–473, doi:10.1038/s41561-018-0152-2.
  283. Bopp, L. et al., 2013: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10(10), 6225–6245, doi:10.5194/bg-10-6225-2013.
  284. Cocco, V. et al., 2013: Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences, 10(3), 1849–1868, doi:10.5194/bg-10-1849-2013.
  285. Cabré, A., I. Marinov, R. Bernardello and D. Bianchi, 2015: Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends. Biogeosciences, 12(18), 5429–5454, doi:10.5194/bg-12-5429-2015.
  286. Bopp, L. et al., 2017: Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth System models. Philos. Trans. Roy. Soc. A., 375(2102), 20160323, doi:10.1098/rsta.2016.0323.
  287. Moore, C.M. et al., 2013: Processes and patterns of oceanic nutrient limitation. Nat. Geosci., 6(9), ngeo1765, doi:10.1038/ngeo1765.
  288. Saito, M.A. et al., 2014: Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science, 345(6201), 1173–1177, doi:10.1126/science.1256450.
  289. Browning, T.J. et al., 2017: Nutrient co-limitation at the boundary of an oceanic gyre. Nature, 551(7679), 242–246, doi:10.1038/nature24063.
  290. Tagliabue, A. et al., 2017: The integral role of iron in ocean biogeochemistry. Nature, 543(7643), 51–59, doi:10.1038/nature21058.
  291. Browning, T.J. et al., 2017: Nutrient co-limitation at the boundary of an oceanic gyre. Nature, 551(7679), 242–246, doi:10.1038/nature24063.
  292. Jickells, T.D. et al., 2017: A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Global Biogeochem. Cy., 31(2), 289–305, doi:10.1002/2016gb005586.
  293. Kim, T.-W. et al., 2011: Increasing N Abundance in the Northwestern Pacific Ocean Due to Atmospheric Nitrogen Deposition. Science, 334(6055), 505, doi:10.1126/science.1206583.
  294. Kim, I.-N. et al., 2014: Increasing anthropogenic nitrogen in the North Pacific Ocean. Science, 346(6213), 1102, doi:10.1126/science.1258396.
  295. Ren, H. et al., 2017: 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science, 356(6339), 749, doi:10.1126/science.aal3869.
  296. Yang, S. and N. Gruber, 2016: The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: Nitrogen cycle feedbacks and the 15N Haber-Bosch effect. Global Biogeochem. Cy., 30(10), 1418–1440, doi:10.1002/2016GB005421.
  297. Somes, C.J., A. Landolfi, W. Koeve and A. Oschlies, 2016: Limited impact of atmospheric nitrogen deposition on marine productivity due to biogeochemical feedbacks in a global ocean model. Geophys. Res. Lett., 43(9), 4500–4509, doi:10.1002/2016GL068335.
  298. Landolfi, A. et al., 2017: Oceanic nitrogen cycling and N2O flux perturbations in the Anthropocene. Global Biogeochem. Cy., 31(8), 1236–1255, doi:10.1002/2017GB005633.
  299. Dave, A.C. and M.S. Lozier, 2013: Examining the global record of interannual variability in stratification and marine productivity in the low-latitude and mid-latitude ocean. J. Geophys. Res-Oceans, 118(6), 3114–3127, doi:10.1002/jgrc.20224.
  300. Talley, L.D. et al., 2016: Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. Annu. Rev. Mar. Sci., 8(1), 185–215, doi:10.1146/annurev-marine-052915-100829.
  301. Kwiatkowski, L., O. Aumont, L. Bopp and P. Ciais, 2018: The Impact of Variable Phytoplankton Stoichiometry on Projections of Primary Production, Food Quality, and Carbon Uptake in the Global Ocean. Global Biogeochem. Cy., 32(4), 516–528, doi:10.1002/2017GB005799.
  302. Wang, R. et al., 2015b: Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming. Geophys. Res. Lett., 42(24), 10745–10754, doi:10.1002/2015GL066753.
  303. Somes, C.J., A. Landolfi, W. Koeve and A. Oschlies, 2016: Limited impact of atmospheric nitrogen deposition on marine productivity due to biogeochemical feedbacks in a global ocean model. Geophys. Res. Lett., 43(9), 4500–4509, doi:10.1002/2016GL068335.
  304. Yang, S. and N. Gruber, 2016: The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: Nitrogen cycle feedbacks and the 15N Haber-Bosch effect. Global Biogeochem. Cy., 30(10), 1418–1440, doi:10.1002/2016GB005421.
  305. Sweet, M.J. and M.T. Bulling, 2017: On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Front. Mar. Sci., 4(9), doi:10.3389/fmars.2017.00009.
  306. Battaglia, G. and F. Joos, 2018: Hazards of decreasing marine oxygen: the near-term and millennial-scale benefits of meeting the Paris climate targets. Earth Syst. Dyn., 9(2), 797.
  307. Fu, W. et al., 2018: Reversal of Increasing Tropical Ocean Hypoxia Trends with Sustained Climate Warming. Global Biogeochem. Cy.,32(4), 551-564, doi:10.1002/2017gb005788.
  308. Yamamoto, A. et al., 2015: Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean under long-term global warming. Global Biogeochem. Cy., 29(10), 1801–1815, doi:10.1002/2015GB005181.
  309. Battaglia, G. and F. Joos, 2018: Hazards of decreasing marine oxygen: the near-term and millennial-scale benefits of meeting the Paris climate targets. Earth Syst. Dyn., 9(2), 797.
  310. Moore, C.M. et al., 2013: Processes and patterns of oceanic nutrient limitation. Nat. Geosci., 6(9), ngeo1765, doi:10.1038/ngeo1765.
  311. Browning, T.J. et al., 2017: Nutrient co-limitation at the boundary of an oceanic gyre. Nature, 551(7679), 242–246, doi:10.1038/nature24063.
  312. Shilova, I.N. et al., 2017: Differential effects of nitrate, ammonium, and urea as N sources for microbial communities in the North Pacific Ocean. Limnol. Oceanogr., 62(2), 2550–2574. doi:10.1002/lno.10590.
  313. Misumi, K. et al., 2013: The iron budget in ocean surface waters in the 20th and 21st centuries: projections by the Community Earth System Model version 1. Biogeosciences, 10(5), 8505–8559.
  314. Tagliabue, A. and C. Völker, 2011: Towards accounting for dissolved iron speciation in global ocean models. Biogeosciences, 8(10), 3025–3039, doi:10.5194/bg-8-3025-2011.
  315. Tagliabue, A. et al., 2016: How well do global ocean biogeochemistry models simulate dissolved iron distributions? Global Biogeochem. Cy., 30(2), 149–174, doi:10.1002/2015gb005289.
  316. Boyd, P.W. et al., 2019: Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 568(7752), 327–335, doi:10.1038/s41586-019-1098-2.
  317. Boyce, D.G., M. Dowd, M.R. Lewis and B. Worm, 2014: Estimating global chlorophyll changes over the past century. Progr. Oceanogr., 122, 163–173, doi:10.1016/j.pocean.2014.01.004.
  318. Gregg, W.W. and C.S. Rousseaux, 2014: Decadal trends in global pelagic ocean chlorophyll: A new assessment integrating multiple satellites, in situ data, and models. J. Geophys. Res-Oceans, 119(9), 5921–5933, doi:10.1002/2014JC010158.
  319. Boyce, D. G. and B. Worm, 2015: Patterns and ecological implications of historical marine phytoplankton change. Mar. Ecol. Prog. Ser., 534, 251–272, doi:10.3354/meps11411.
  320. Hammond, M.L., C. Beaulieu, S.K. Sahu and S.A. Henson, 2017: Assessing trends and uncertainties in satellite-era ocean chlorophyll using space-time modeling. Global Biogeochem. Cy., 31(7), 1103–1117, doi:10.1002/2016gb005600.
  321. Mélin, F. et al., 2017: Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: A protocol applied to OC-CCI chlorophyll-a data. Remote Sens. Environ., 203, 139–151, doi:10.1016/j.rse.2017.03.039.
  322. Mélin, F. et al., 2017: Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: A protocol applied to OC-CCI chlorophyll-a data. Remote Sens. Environ., 203, 139–151, doi:10.1016/j.rse.2017.03.039.
  323. Gómez-Letona, M., A.G. Ramos, J. Coca and J. Arístegui, 2017: Trends in Primary Production in the Canary Current Upwelling System—A Regional Perspective Comparing Remote Sensing Models. Front. Mar. Sci., 4, 1–18, doi:10.3389/fmars.2017.00370.
  324. Lee, Z., J. Marra, M.J. Perry and M. Kahru, 2015: Estimating oceanic primary productivity from ocean color remote sensing: A strategic assessment. J. Mar. Syst., 149, 50–59, doi:10.1016/j.jmarsys.2014.11.015.
  325. Kahru, M., R. Kudela, M. Manzano‐Sarabia and B.G. Mitchell, 2009: Trends in primary production in the California Current detected with satellite data. J. Geophys. Res-Oceans, 114(C2).
  326. Beaulieu, C. et al., 2013: Factors challenging our ability to detect long-term trends in ocean chlorophyll. Biogeosciences, 10(4), 2711–2724, doi:10.5194/bg-10-2711-2013.
  327. Laufkötter, C. et al., 2015: Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences, 12(23), 6955–6984, doi:10.5194/bg-12-6955-2015.
  328. Kwiatkowski, L., O. Aumont, L. Bopp and P. Ciais, 2018: The Impact of Variable Phytoplankton Stoichiometry on Projections of Primary Production, Food Quality, and Carbon Uptake in the Global Ocean. Global Biogeochem. Cy., 32(4), 516–528, doi:10.1002/2017GB005799.
  329. Laufkötter, C. et al., 2015: Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences, 12(23), 6955–6984, doi:10.5194/bg-12-6955-2015.
  330. Kwiatkowski, L. and J. C. Orr, 2018: Diverging seasonal extremes for ocean acidification during the twenty45 first century. Nature Climate Change, 8 (2), 141-145, doi:10.1038/s41558-017-0054-0.
  331. Boyd, P.W. et al., 2015a: Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nat. Clim. Change, 6(2), 207–213, doi:10.1038/nclimate2811.
  332. Tagliabue, A. et al., 2017: The integral role of iron in ocean biogeochemistry. Nature, 543(7643), 51–59, doi:10.1038/nature21058.
  333. Lima-Mendez, G. et al., 2015: Determinants of community structure in the global plankton interactome. Science, 348(6237), 1262073, doi:10.1126/science.1262073.
  334. Wang, R. et al., 2015b: Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming. Geophys. Res. Lett., 42(24), 10745–10754, doi:10.1002/2015GL066753.
  335. Wang, R. et al., 2015b: Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming. Geophys. Res. Lett., 42(24), 10745–10754, doi:10.1002/2015GL066753.
  336. Fu, W., J.T. Randerson and J.K. Moore, 2016: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences, 13(18), 5151–5170, doi:10.5194/bg-13-5151-2016.
  337. Bopp, L. et al., 2013: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10(10), 6225–6245, doi:10.5194/bg-10-6225-2013.
  338. Fu, W., J.T. Randerson and J.K. Moore, 2016: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences, 13(18), 5151–5170, doi:10.5194/bg-13-5151-2016.
  339. Laufkötter, C. et al., 2016: Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences, 13(13), 4023–4047, doi:10.5194/bg-13-4023-2016.
  340. Guidi, L. et al., 2016: Plankton networks driving carbon export in the oligotrophic ocean. Nature, 532, 465, doi:10.1038/nature16942.
  341. Tréguer, P. et al., 2018: Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci., 11(1), 27–37, doi:10.1038/s41561-017-0028-x.
  342. Bopp, L. et al., 2013: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10(10), 6225–6245, doi:10.5194/bg-10-6225-2013.
  343. Fu, W., J.T. Randerson and J.K. Moore, 2016: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences, 13(18), 5151–5170, doi:10.5194/bg-13-5151-2016.
  344. Laufkötter, C. et al., 2016: Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences, 13(13), 4023–4047, doi:10.5194/bg-13-4023-2016.
  345. Sweet, M.J. and M.T. Bulling, 2017: On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Front. Mar. Sci., 4(9), doi:10.3389/fmars.2017.00009.
  346. Laufkötter, C. et al., 2015: Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences, 12(23), 6955–6984, doi:10.5194/bg-12-6955-2015.
  347. Tagliabue, A. et al., 2016: How well do global ocean biogeochemistry models simulate dissolved iron distributions? Global Biogeochem. Cy., 30(2), 149–174, doi:10.1002/2015gb005289.
  348. Moreno, A.R. et al., 2017: Marine Phytoplankton Stoichiometry Mediates Nonlinear Interactions Between Nutrient Supply, Temperature, and Atmospheric CO2. Biogeosciences, 1–28, doi:10.5194/bg-2017-367.
  349. Moreno, A.R. et al., 2017: Marine Phytoplankton Stoichiometry Mediates Nonlinear Interactions Between Nutrient Supply, Temperature, and Atmospheric CO2. Biogeosciences, 1–28, doi:10.5194/bg-2017-367.
  350. Sarmiento, J.L. and N. Gruber, 2002: Sinks for Anthropogenic Carbon. Physics Today, 55(8), 30–36, doi:10.1063/1.1510279.
  351. Fu, W., J.T. Randerson and J.K. Moore, 2016: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences, 13(18), 5151–5170, doi:10.5194/bg-13-5151-2016.
  352. Laufkötter, C. et al., 2015: Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences, 12(23), 6955–6984, doi:10.5194/bg-12-6955-2015.
  353. Hawkins, E. and R. Sutton, 2012: Time of emergence of climate signals. Geophys. Res. Lett., 39(1); 1-6, doi:10.1029/2011gl050087.
  354. Ilyina, T., R.E. Zeebe, E. Maier-Reimer and C. Heinze, 2009: Early detection of ocean acidification effects on marine calcification. Global Biogeochem. Cy., 23(1); 1-11, doi:10.1029/2008gb003278.
  355. Friedrich, E. and D. Kretzinger, 2012: Vulnerability of wastewater infrastructure of coastal cities to sea level rise: A South African case study. Water SA, 38(5), 755–764.
  356. Keller, K.M., F. Joos and C.C. Raible, 2014b: Time of emergence of trends in ocean biogeochemistry. Biogeosciences, 11(13), 3647–3659, doi:10.5194/bg-11-3647-2014.
  357. Lovelock, C.E. et al., 2015: The vulnerability of Indo-Pacific mangrove forests to sea level rise. Nature, 526, 559, doi:10.1038/nature15538.
  358. Rodgers, K.B., J. Lin and T.L. Frölicher, 2015: Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences, 12(11), 3301–3320, doi:10.5194/bg-12-3301-2015.
  359. Keller, K.M., F. Joos and C.C. Raible, 2014b: Time of emergence of trends in ocean biogeochemistry. Biogeosciences, 11(13), 3647–3659, doi:10.5194/bg-11-3647-2014.
  360. Rodgers, K.B., J. Lin and T.L. Frölicher, 2015: Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences, 12(11), 3301–3320, doi:10.5194/bg-12-3301-2015.
  361. Henson, S.A., C. Beaulieu and R. Lampitt, 2016: Observing climate change trends in ocean biogeochemistry: when and where. Global Change Biol., 22(4), 1561–1571, doi:10.1111/gcb.13152.
  362. Henson, S.A. et al., 2017: Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun., 8, 14682, doi:10.1038/ncomms14682.
  363. Frölicher, T.L., K.B. Rodgers, C.A. Stock and W.W.L. Cheung, 2016: Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Global Biogeochem. Cy., 30(8), 1224–1243, doi:10.1002/2015gb005338.
  364. Weatherhead, E.C. et al., 1998: Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res-Atmos., 103(D14), 17149–17161, doi:10.1029/98jd00995.
  365. Hameau, A., J. Mignot and F. Joos, 2019: Assessment of time of emergence of anthropogenic deoxygenation and warming: insights from a CESM simulation from 850 to 2100 CE. Biogeosciences, 16(8), 1755–1780, doi:10.5194/bg-16-1755-2019.
  366. Stocker, T.F., D. Qin, G.-K. Plattner, LV. Alexander, S.K. Allen, N.L. Bindoff, F.-M. Bréon, J.A. Church, U. Cubasch, S. Emori, P. Forster, P. Friedlingstein, N. Gillett, J.M. Gregory, D.L. Hartmann, E. Jansen, B. Kirtman, R. Knutti, K. Krishna Kumar, P. Lemke, J. Marotzke, V. Masson-Delmotte, G.A. Meehl, I.I. Mokhov, S. Piao, V. Ramaswamy, D. Randall, M. Rhein, M. Rojas, C. Sabine, D. Shindell, L.D. Talley, D.G. Vaughan, 2014: Technical Summary. In: Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Intergovernmental Panel on Climate, C. (ed.)]. Cambridge University Press, Cambridge, 31–116.
  367. Henson, S.A. et al., 2017: Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun., 8, 14682, doi:10.1038/ncomms14682.
  368. Hameau, A., J. Mignot and F. Joos, 2019: Assessment of time of emergence of anthropogenic deoxygenation and warming: insights from a CESM simulation from 850 to 2100 CE. Biogeosciences, 16(8), 1755–1780, doi:10.5194/bg-16-1755-2019.
  369. Frölicher, T.L., K.B. Rodgers, C.A. Stock and W.W.L. Cheung, 2016: Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Global Biogeochem. Cy., 30(8), 1224–1243, doi:10.1002/2015gb005338.
  370. Henson, S.A., C. Beaulieu and R. Lampitt, 2016: Observing climate change trends in ocean biogeochemistry: when and where. Global Change Biol., 22(4), 1561–1571, doi:10.1111/gcb.13152.
  371. Mora, C. et al., 2013: The projected timing of climate departure from recent variability. Nature, 502(7470), 183–7, doi:10.1038/nature12540.
  372. Pendleton, L.H., O. Thébaud, R.C. Mongruel and H. Levrel, 2016: Has the value of global marine and coastal ecosystem services changed? Mar. Policy, 64(Supplement C), 156–158, doi:10.1016/j.marpol.2015.11.018.
  373. Deutsch, C. et al., 2015: Climate change tightens a metabolic constraint on marine habitats. Science, 348(6239), 1132.
  374. Jones, K.R. et al., 2018: The Location and Protection Status of Earth’s Diminishing Marine Wilderness. Curr. Biol., 28(15), 2506–2512.e3, doi:10.1016/j.cub.2018.06.010.
  375. Mackenzie, C.L. et al., 2014: Ocean Warming, More than Acidification, Reduces Shell Strength in a Commercial Shellfish Species during Food Limitation. PLoS One, 9(1), e86764, doi:10.1371/journal.pone.0086764.
  376. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  377. Edwards, M. et al., 2013: Marine Ecosystem Response to the Atlantic Multidecadal Oscillation. PLoS One, 8(2), doi:10.1371/journal.pone.0057212.
  378. Poloczanska, E.S. et al., 2013: Global imprint of climate change on marine life. Nat. Clim. Change, 3(10), 919–925, doi:10.1038/NCLIMATE1958.
  379. Poloczanska, E.S. et al., 2016: Responses of Marine Organisms to Climate Change across Oceans. Front. Mar. Sci., 3(28), 515, doi:10.3389/fmars.2016.00062.
  380. Hoegh-Guldberg, O. et al., 2014: The Ocean. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1655–1731 pp., ISBN: 978-1-107-05807-1
  381. Herring, P.J. and D.R. Dixon, 1998: Extensive deep sea dispersal of postlarval shrimp from a hydrothermal vent. Deep sea Res. Pt. I, 45(12), 2105–2118, doi:10.1016/S0967-0637(98)00050-8.
  382. Gage, J.D., 2003: Food inputs, utilization, carbon flow and energetics. In: Ecosystems of the Deep Sea [Tyler, P.A. (ed.)]. Elsevier, Amsterdam, Volume 28, 1st eddition, pp. 313–380. ISBN: 9780080494654
  383. Frölicher, T.L., K.B. Rodgers, C.A. Stock and W.W.L. Cheung, 2016: Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Global Biogeochem. Cy., 30(8), 1224–1243, doi:10.1002/2015gb005338.
  384. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  385. Schulte, P.M., 2015: The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol., 218(12), 1856, doi:10.1242/jeb.118851.
  386. Pörtner, H.-O., C. Bock and F.C. Mark, 2017: Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol., 220(15), 2685.
  387. Somero, G. ., B.L. Lockwood and L. Tomanek, 2017: Biochemical adaptation: response to environmental challenges, from life’s origins to the Anthropocene. Sinauer Associates, Incorporated Publishers, Oxford University Press, Sunderland, Massachusetts, p. 572. ISBN: 9781605355641.
  388. Payne, N.L. et al., 2016: Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol., 30(6), 903–912, doi:10.1111/1365-2435.12618.
  389. Pörtner, H.O. and J. Gutt, 2016: Impacts of Climate Variability and Change on (Marine) Animals: Physiological Underpinnings and Evolutionary Consequences. Integr. Comp. Biol., 56(1), 31–44, doi:10.1093/icb/icw019.
  390. Gunderson, A.R., B. Tsukimura and J.H. Stillman, 2017: Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences. Integr. Comp. Biol., 57(1), 48–54, doi:10.1093/icb/icx056.
  391. Beaugrand, G. et al., 2015: Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change, 5(7), 695–701, doi:10.1038/nclimate2650.
  392. Stuart-Smith, R.D. et al., 2015: Thermal biases and vulnerability to warming in the world’s marine fauna. Nature, 528, 88, doi:10.1038/nature16144.
  393. Pinsky, M.L. et al., 2019: Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature, 569(7754), 108–111, doi:10.1038/s41586-019-1132-4.
  394. Mackenzie, C.L. et al., 2014: Ocean Warming, More than Acidification, Reduces Shell Strength in a Commercial Shellfish Species during Food Limitation. PLoS One, 9(1), e86764, doi:10.1371/journal.pone.0086764.
  395. Rosas-Navarro, A., G. Langer and P. Ziveri, 2016: Temperature affects the morphology and calcification of Emiliania huxleyi strains. Biogeosciences, 13(10), 2913–2926, doi:10.5194/bg-13-2913-2016.
  396. Pörtner, H.-O., C. Bock and F.C. Mark, 2017: Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol., 220(15), 2685.
  397. Gobler, C.J. and H. Baumann, 2016: Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol. Lett., 12(5), 20150976, doi:10.1098/rsbl.2015.0976.
  398. Lefevre, S., 2016: Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction. Conserv. Physiol., 4(1), cow009–cow009, doi:10.1093/conphys/cow009.
  399. Poloczanska, E.S. et al., 2016: Responses of Marine Organisms to Climate Change across Oceans. Front. Mar. Sci., 3(28), 515, doi:10.3389/fmars.2016.00062.
  400. Poloczanska, E.S. et al., 2016: Responses of Marine Organisms to Climate Change across Oceans. Front. Mar. Sci., 3(28), 515, doi:10.3389/fmars.2016.00062.
  401. Jonkers, L., H. Hillebrand and M. Kucera, 2019: Global change drives modern plankton communities away from the pre-industrial state. Nature, 570, 372-375, doi:10.1038/s41586-019-1230-3.
  402. Pinsky, M.L. et al., 2013: Marine Taxa Track Local Climate Velocities. Science, 341(6151), 1239–1242, doi:10.1126/science.1239352.
  403. Asch, R.G., 2015: Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. PNAS, 112(30), E4065–E4074, doi:10.1073/pnas.1421946112.
  404. Jones, M.C. and W.W.L. Cheung, 2015: Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci., 72(3), 741–752, doi:10.1093/icesjms/fsu172.
  405. Poloczanska, E.S. et al., 2016: Responses of Marine Organisms to Climate Change across Oceans. Front. Mar. Sci., 3(28), 515, doi:10.3389/fmars.2016.00062.
  406. Chivers, W.J., A.W. Walne and G.C. Hays, 2017: Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun., 8, doi:10.1038/ncomms14434.
  407. Beaugrand, G., 2009: Decadal changes in climate and ecosystems in the North Atlantic Ocean and adjacent seas. Deep Sea Res. Pt. II, 56(8–10), 656–673, doi:10.1016/j.dsr2.2008.12.022.
  408. Chivers, W.J., A.W. Walne and G.C. Hays, 2017: Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun., 8, doi:10.1038/ncomms14434.
  409. Philippart, C.J.M. et al., 2003: Climate-related changes in recruitment of the bivalve Macoma balthica. Limnol. Oceanogr., 48(6), 2171–2185, doi:10.4319/lo.2003.48.6.2171.
  410. Edwards, M. and A.J. Richardson, 2004: Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430(7002), nature02808-884, doi:10.1038/nature02808.
  411. Asch, R.G., 2015: Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. PNAS, 112(30), E4065–E4074, doi:10.1073/pnas.1421946112.
  412. Crespo, O., D. Guillermo and C. Daniel, 2017: A review of the impacts of fisheries on open-ocean ecosystems. ICES J. Mar. Sci., 74(9), 2283–2297, doi:10.1093/icesjms/fsx084.
  413. Poloczanska, E.S. et al., 2013: Global imprint of climate change on marine life. Nat. Clim. Change, 3(10), 919–925, doi:10.1038/NCLIMATE1958.
  414. Sydeman, W.J., E. Poloczanska, T.E. Reed and S.A. Thompson, 2015: Climate change and marine vertebrates. Science, 350(6262), 772–777, doi:10.1126/science.aac9874.
  415. Poloczanska, E.S. et al., 2016: Responses of Marine Organisms to Climate Change across Oceans. Front. Mar. Sci., 3(28), 515, doi:10.3389/fmars.2016.00062.
  416. Cheung, W.W.L., R. Watson and D. Pauly, 2013: Signature of ocean warming in global fisheries catch. Nature, 497, 365, doi:10.1038/nature121.
  417. Deutsch, C. et al., 2015: Climate change tightens a metabolic constraint on marine habitats. Science, 348(6239), 1132.
  418. Burrows, M.T. et al., 2014: Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507(7493), 492–495, doi:10.1038/nature12976.
  419. Barton, A.D., A.J. Irwin, Z.V. Finkel and C.A. Stock, 2016: Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. PNAS, 113(11), 2964–2969, doi:10.1073/pnas.1519080113.
  420. Sunday, J.M. et al., 2015: Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett., 18(9), 944–953, doi:10.1111/ele.12474.
  421. Barton, A.D., A.J. Irwin, Z.V. Finkel and C.A. Stock, 2016: Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. PNAS, 113(11), 2964–2969, doi:10.1073/pnas.1519080113.
  422. García Molinos, J., M.T. Burrows and E.S. Poloczanska, 2017: Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep., 7(1), 1332, doi:10.1038/s41598-017-01309-y.
  423. Pinsky, M.L. et al., 2013: Marine Taxa Track Local Climate Velocities. Science, 341(6151), 1239–1242, doi:10.1126/science.1239352.
  424. Kleisner, K.M. et al., 2015: Evaluating changes in marine communities that provide ecosystem services through comparative assessments of community indicators. Ecosyst. Serv., 16(Supplement C), 413–429, doi:10.1016/j.ecoser.2015.02.002.
  425. Pinsky, M.L. et al., 2013: Marine Taxa Track Local Climate Velocities. Science, 341(6151), 1239–1242, doi:10.1126/science.1239352.
  426. Burrows, M.T. et al., 2014: Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507(7493), 492–495, doi:10.1038/nature12976.
  427. Sydeman, W.J., E. Poloczanska, T.E. Reed and S.A. Thompson, 2015: Climate change and marine vertebrates. Science, 350(6262), 772–777, doi:10.1126/science.aac9874.
  428. Engel, J. et al., 2014: Towards the Disease Biomarker in an Individual Patient Using Statistical Health Monitoring. PLoS One, 9(4), e92452, doi:10.1371/journal.pone.0092452.
  429. Hoegh-Guldberg, O. et al., 2014: The Ocean. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1655–1731 pp., ISBN: 978-1-107-05807-1
  430. Edwards, M. et al., 2013: Marine Ecosystem Response to the Atlantic Multidecadal Oscillation. PLoS One, 8(2), doi:10.1371/journal.pone.0057212.
  431. Harris, P.T., M. Macmillan-Lawler, J. Rupp and E.K. Baker, 2014: Geomorphology of the oceans. Mar. Geol., 352(Supplement C), 4–24.
  432. Dornelas, M. et al., 2018: BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecol. Biogeogr., 27(7), 760–786, doi:10.1111/geb.12729.
  433. Chivers, W.J., A.W. Walne and G.C. Hays, 2017: Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun., 8, doi:10.1038/ncomms14434.
  434. Pecl, G.T. et al., 2017: Biodiversity redistribution under climate change: Impacts on ecosystems and human well–being. Science, 355(6332), eaai9214, doi:10.1126/science.aai9214.
  435. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  436. Cavallo, C. et al., 2015: Predicting climate warming effects on green turtle hatchling viability and dispersal performance. Funct. Ecol., 29(6), 768–778, doi:10.1111/1365-2435.12389.
  437. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  438. Henderson, E.E. et al., 2014: Effects of fluctuations in sea-surface temperature on the occurrence of small cetaceans off Southern California. Fish-B NOAA, 112(2–3), 159–177, doi:10.7755/fb.112.2-3.5.
  439. Hiscock, J.A. and B.L. Chilvers, 2014: Declining eastern rockhopper (Eudyptes filholi) and erect-crested (E-sclateri) penguins on the Antipodes Islands, New Zealand. New Zeal. J. Ecol., 38(1), 124–131.
  440. Ramp, C. et al., 2015: Adapting to a Warmer Ocean-Seasonal Shift of Baleen Whale Movements over Three Decades. PLoS One, 10(3), e0121374, doi:10.1371/journal.pone.0121374.
  441. Descamps, S. et al., 2015: Demographic effects of extreme weather events: snow storms, breeding success, and population growth rate in a long-lived Antarctic seabird. Ecol. Evol., 5(2), 314–325, doi:10.1002/ece3.1357.
  442. Thorne, L.H. et al., 2016: Effects of El Niño-driven changes in wind patterns on North Pacific albatrosses. J R Soc Interface, 13(119), 20160196, doi:10.1098/rsif.2016.0196.
  443. Hays, G.C., A.C. Broderick, F. Glen and B.J. Godley, 2003: Climate change and sea turtles: a 150-year reconstruction of incubation temperatures at a major marine turtle rookery. Global Change Biol., 9(4), 642–646, doi:10.1046/j.1365-2486.2003.00606.x.
  444. Pike, D.A., 2014: Forecasting the viability of sea turtle eggs in a warming world. Global Change Biol., 20(1), 7–15, doi:10.1111/gcb.12397.
  445. Dudley, P.N., R. Bonazza and W P. Porter, 2016: Climate change impacts on nesting and internesting leatherback sea turtles using 3D animated computational fluid dynamics and finite volume heat transfer. Ecol. Modell., 320(Supplement C), 231–240, doi:10.1016/j.ecolmodel.2015.10.012.
  446. Santora, J.A. et al., 2017: Impacts of ocean climate variability on biodiversity of pelagic forage species in an upwelling ecosystem. Mar. Ecol. Prog. Ser., 580, 205–220, doi:10.3354/meps12278.
  447. Hatfield, J.S., M.H. Reynolds, N.E. Seavy and C.M. Krause, 2012: Population dynamics of Hawaiian seabird colonies vulnerable to sea level rise. Conserv. Biol., 26(4), 667–78, doi:10.1111/j.1523-1739.2012.01853.x.
  448. Santidrián Tomillo, P. et al., 2014: High beach temperatures increased female-biased primary sex ratios but reduced output of female hatchlings in the leatherback turtle. Biol. Conserv., 176(Supplement C), 71–79, doi:10.1016/j.biocon.2014.05.011.
  449. Patricio, A.R. et al., 2017: Balanced primary sex ratios and resilience to climate change in a major sea turtle population. Mar. Ecol. Prog. Ser., 577, 189–203, doi:10.3354/meps12242.
  450. Fish, M.R. et al., 2005: Predicting the impact of sea level rise on Caribbean sea turtle nesting habitat. Conserv. Biol., 19(2), 482–491, doi:10.1111/j.1523-1739.2005.00146.x.
  451. Fuentes, M., C.J. Limpus, M. Hamann and J. Dawson, 2010: Potential impacts of projected sea level rise on sea turtle rookeries. Aquat. Conserv. Mar. Frewshw. Ecosyst., 20(2), 132–139, doi:10.1002/aqc.1088.
  452. Funayama, K., E. Hines, J. Davis and S. Allen, 2013: Effects of sea level rise on northern elephant seal breeding habitat at Point Reyes Peninsula, California. Aquat. Conserv. Mar. Frewshw. Ecosyst., 23(2), 233–245, doi:10.1002/aqc.2318.
  453. Reece, J.S. et al., 2013: Sea level rise, land use, and climate change influence the distribution of loggerhead turtle nests at the largest USA rookery (Melbourne Beach, Florida). Mar. Ecol. Prog. Ser., 493, 259–274, doi:10.3354/meps10531.
  454. Katselidis, K.A. et al., 2014: Employing sea level rise scenarios to strategically select sea turtle nesting habitat important for long-term management at a temperate breeding area. J. Exp. Mar. Biol. Ecol., 450, 47–54, doi:10.1016/j.jembe.2013.10.017.
  455. Patino-Martinez, J., A. Marco, L. Quinones and L.A. Hawkes, 2014: The potential future influence of sea level rise on leatherback turtle nests. J. Exp. Mar. Biol. Ecol., 461, 116–123, doi:10.1016/j.jembe.2014.07.021.
  456. Pike, D.A., E.A. Roznik and I. Bell, 2015: Nest inundation from sea level rise threatens sea turtle population viability. R. Soc. Open Sci., 2(7), 150127, doi:10.1098/rsos.150127.
  457. Lefevre, S., 2016: Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction. Conserv. Physiol., 4(1), cow009–cow009, doi:10.1093/conphys/cow009.
  458. Bost, C.A. et al., 2009: The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst., 78(3), 363–376, doi:10.1016/j.jmarsys.2008.11.022.
  459. Sydeman, W.J., E. Poloczanska, T.E. Reed and S.A. Thompson, 2015: Climate change and marine vertebrates. Science, 350(6262), 772–777, doi:10.1126/science.aac9874.
  460. Breed, G.A. et al., 2017: Sustained disruption of narwhal habitat use and behavior in the presence of Arctic killer whales. PNAS, 114(10), 2628–2633, doi:10.1073/pnas.1611707114.
  461. Bost, C.A. et al., 2015: Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat. Commun., 6, 8220, doi:10.1038/ncomms9220.
  462. Kavanaugh, M.T. et al., 2015: Effect of continental shelf canyons on phytoplankton biomass and community composition along the western Antarctic Peninsula. Mar. Ecol. Prog. Ser., 524, 11–26, doi:10.3354/meps11189.
  463. Hindell, M.A. et al., 2016: Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories. Ecosphere, 7(5), e01213, doi:10.1002/ecs2.1213.
  464. Hunt, G.L. et al., 2016: Advection in polar and sub-polar environments: Impacts on high latitude marine ecosystems. Progr. Oceanogr., 149(40), 40–81, doi:10.1016/j.pocean.2016.10.004.
  465. Santora, J.A. et al., 2017: Impacts of ocean climate variability on biodiversity of pelagic forage species in an upwelling ecosystem. Mar. Ecol. Prog. Ser., 580, 205–220, doi:10.3354/meps12278.
  466. Crocker, D.E. et al., 2006: Impact of El Niño on the foraging behavior of female northern elephant seals. Mar. Ecol. Prog. Ser., 309(1), 1–10, doi:10.3354/meps309001.
  467. Baez, J.C. et al., 2011: The North Atlantic Oscillation and sea surface temperature affect loggerhead abundance around the Strait of Gibraltar. Sci. Mar., 75(3), 571–575, doi:10.3989/scimar.2011.75n3571.
  468. Dugger, K.M. et al., 2014: Adelie penguins coping with environmental change: results from a natural experiment at the edge of their breeding range. Frontiers in Ecol. Evol., 2, doi:10.3389/fevo.2014.00068.
  469. Abrahms, B. et al., 2017: Climate mediates the success of migration strategies in a marine predator. Ecol. Lett., 14, 21: 63-71, doi:10.1111/ele.12871.
  470. Youngflesh, C. et al., 2017: Circumpolar analysis of the Adelie Penguin reveals the importance of environmental variability in phenological mismatch. Ecology, 98(4), 940–951, doi:10.1002/ecy.1749.
  471. Costa, D.P. et al., 2010: Approaches to studying climatic change and its role on the habitat selection of antarctic pinnipeds. Integr. Comp. Biol., 50(6), 1018–1030, doi:10.1093/icb/icq054.
  472. Ancona, S. and H. Drummond, 2013: Life History Plasticity of a Tropical Seabird in Response to El Nino Anomalies during Early Life. PLoS One, 8(9), doi:10.1371/journal.pone.0072665.
  473. Ducklow, H.W. et al., 2013: West Antarctic Peninsula: An Ice-Dependent Coastal Marine Ecosystem in Transition. Oceanography, 26(3), 190–203, doi:10.5670/oceanog.2013.62.
  474. Chambers, L.E., P. Dann, B. Cannell and E.J. Woehler, 2014: Climate as a driver of phenological change in southern seabirds. International Journal of Biometeorology, 58(4), 603–612, doi:10.1007/s00484-013-0711-6.
  475. Descamps, S. et al., 2015: Demographic effects of extreme weather events: snow storms, breeding success, and population growth rate in a long-lived Antarctic seabird. Ecol. Evol., 5(2), 314–325, doi:10.1002/ece3.1357.
  476. Abadi, F., C. Barbraud and O. Gimenez, 2017: Integrated population modeling reveals the impact of climate on the survival of juvenile emperor penguins. Global Change Biol., 23(3), 1353–1359, doi:10.1111/gcb.13538.
  477. Bjorndal, K.A. et al., 2017: Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic. Global Change Biol., 23(11), 4556–4568, doi:10.1111/gcb.13712.
  478. Polovina, J.J., 2005: Climate variation, regime shifts, and implications for sustainable fisheries. Bulletin of Marine Science, 76(2), 233–244.
  479. Polovina, J.J., J.P. Dunne, P.A. Woodworth and E.A. Howell, 2011: Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming. ICES J. Mar. Sci., 68(6), 986–995, doi:10.1093/icesjms/fsq198.
  480. Doney, S.C. et al., 2012: Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci., 4(1), 11–37, doi:10.1146/annurev-marine-041911-111611.
  481. Sydeman, W.J., E. Poloczanska, T.E. Reed and S.A. Thompson, 2015: Climate change and marine vertebrates. Science, 350(6262), 772–777, doi:10.1126/science.aac9874.
  482. Briscoe, D.K. et al., 2017: Ecological bridges and barriers in pelagic ecosystems. Deep sea Res. Pt. II, 140, 182–192, doi:10.1016/j.dsr2.2016.11.004.
  483. Woodworth-Jefcoats, P.A., J.J. Polovina and J.C. Drazen, 2017: Climate change is projected to reduce carrying capacity and redistribute species richness in North Pacific pelagic marine ecosystems. Global Change Biol., 23(3), 1000–1008, doi:10.1111/gcb.13471.
  484. Ascani, F. et al., 2016: Juvenile recruitment in loggerhead sea turtles linked to decadal changes in ocean circulation. Global Change Biol., 22(11), 3529–3538, doi:10.1111/gcb.13331.
  485. McKeon, C.S. et al., 2016: Melting barriers to faunal exchange across ocean basins. Global Change Biol., 22(2), 465–473, doi:10.1111/gcb.13116.
  486. Alter, S.E. et al., 2015: Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100. Mol. Ecol., 24(7), 1510–1522, doi:10.1111/mec.13121.
  487. George, J.C. et al., 2015: Bowhead whale body condition and links to summer sea ice and upwelling in the Beaufort Sea. Progr. Oceanogr., 136, 250–262, doi:10.1016/j.pocean.2015.05.001.
  488. Laidre, K.L. et al., 2015: Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conserv. Biol., 29(3), 724–737, doi:10.1111/cobi.12474.
  489. MacIntyre, K.Q. et al., 2015: The relationship between sea ice concentration and the spatio-temporal distribution of vocalizing bearded seals (Erignathus barbatus) in the Bering, Chukchi, and Beaufort Seas from 2008 to 2011. Progr. Oceanogr., 136, 241–249, doi:10.1016/j.pocean.2015.05.008.
  490. McKeon, C.S. et al., 2016: Melting barriers to faunal exchange across ocean basins. Global Change Biol., 22(2), 465–473, doi:10.1111/gcb.13116.
  491. Breed, G.A. et al., 2017: Sustained disruption of narwhal habitat use and behavior in the presence of Arctic killer whales. PNAS, 114(10), 2628–2633, doi:10.1073/pnas.1611707114.
  492. Hauser, D.D.W. et al., 2017: Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation. Global Change Biol., 23(6), 2206–2217, doi:10.1111/gcb.13564.
  493. Riebesell, U. et al., 2017: Ocean acidification impairs competitive fitness of a predominant pelagic calcifier, Nat. Geosci., 10, 19–24.
  494. Alguero-Muniz, M. et al., 2017: Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment. PLoS One, 12(4), doi:10.1371/journal.pone.0175851.
  495. Seebacher, F., C.R. White and C.E. Franklin, 2014: Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change, 5, 61, doi:10.1038/nclimate2457.
  496. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  497. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  498. Schaum, E., B. Rost, A.J. Millar and S. Collins, 2013: Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nat. Clim. Change, 3(3), 298–302, doi:10.1038/NCLIMATE1774.
  499. Boyd, P.W. and M. Bressac, 2016: Developing a test-bed for robust research governance of geoengineering: the contribution of ocean iron biogeochemistry. Philos. Trans. Roy. Soc. A., 374(2081).
  500. O’Brien, P.A., K.M. Morrow, B.L. Willis and D.G. Bourne, 2016: Implications of Ocean Acidification for Marine Microorganisms from the Free-Living to the Host-Associated. Front. Mar. Sci., 3(fiv142), 1029, doi:10.3389/fmars.2016.00047.
  501. Moore, J.C., 2018: Predicting tipping points in complex environmental systems. PNAS, 115(4), 635, doi:10.1073/pnas.1721206115.
  502. Stock, C.A., J.P. Dunne and J.G. John, 2014: Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences, 11(24), 7125.
  503. Barton, A.D., A.J. Irwin, Z.V. Finkel and C.A. Stock, 2016: Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. PNAS, 113(11), 2964–2969, doi:10.1073/pnas.1519080113.
  504. Gittings, J.A., D.E. Raitsos, G. Krokos and I. Hoteit, 2018: Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem. Sci. Rep., 8(1), 2240, doi:10.1038/s41598-018-20560-5.
  505. Poloczanska, E.S. et al., 2016: Responses of Marine Organisms to Climate Change across Oceans. Front. Mar. Sci., 3(28), 515, doi:10.3389/fmars.2016.00062.
  506. Neuheimer, A.B., B.R. MacKenzie and M.R. Payne, 2018: Temperature-dependent adaptation allows fish to meet their food across their species’ range. Sci. Adv., 4(7), eaar4349, doi:10.1126/sciadv.aar4349.
  507. Poloczanska, E.S. et al., 2013: Global imprint of climate change on marine life. Nat. Clim. Change, 3(10), 919–925, doi:10.1038/NCLIMATE1958.
  508. Lindley, J.A. and R.R. Kirby, 2010: Climate-induced changes in the North Sea Decapoda over the last 60 years. Clim. Res., 42(3), 257–264.
  509. Bruge, A. et al., 2016: Thermal Niche Tracking and Future Distribution of Atlantic Mackerel Spawning in Response to Ocean Warming. Front. Mar. Sci., 3(86), doi:10.3389/fmars.2016.00086.
  510. Poloczanska, E.S. et al., 2016: Responses of Marine Organisms to Climate Change across Oceans. Front. Mar. Sci., 3(28), 515, doi:10.3389/fmars.2016.00062.
  511. Riebesell, U. and J.-P. Gattuso, 2014: Lessons learned from ocean acidification research. Nat. Clim. Change, 5(1), 12–14, doi:10.1038/nclimate2456.
  512. Gattuso, J.-P. et al., 2015: OCEANOGRAPHY. Contrasting futures for ocean and society from different anthropogenic CO₂ emissions scenarios. Science, 349(6243), 1 -10, doi:10.1126/science.aac4722.
  513. Nagelkerken, I. and S.D. Connell, 2015: Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. PNAS, 112(43), 13272–13277, doi:10.1073/pnas.1510856112.
  514. Nagelkerken, I. and S.D. Connell, 2015: Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. PNAS, 112(43), 13272–13277, doi:10.1073/pnas.1510856112.
  515. Lefevre, S., 2016: Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction. Conserv. Physiol., 4(1), cow009–cow009, doi:10.1093/conphys/cow009.
  516. Harvey, B.P., D. Gwynn-Jones and P.J. Moore, 2013: Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol., 3(4), 1016–1030, doi:10.1002/ece3.516.
  517. Kroeker, K.J. et al., 2013: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biol., 19(6), 1884–1896.
  518. Nagelkerken, I. and S.D. Connell, 2015: Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. PNAS, 112(43), 13272–13277, doi:10.1073/pnas.1510856112.
  519. Boyd, P.W. and M. Bressac, 2016: Developing a test-bed for robust research governance of geoengineering: the contribution of ocean iron biogeochemistry. Philos. Trans. Roy. Soc. A., 374(2081).
  520. Nagelkerken, I. and S.D. Connell, 2015: Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. PNAS, 112(43), 13272–13277, doi:10.1073/pnas.1510856112.
  521. Dutkiewicz, S., J.R. Scott and M.J. Follows, 2013b: Winners and losers: Ecological and biogeochemical changes in a warming ocean. Global Biogeochem. Cy., 27(2), 463–477, doi:10.1002/gbc.20042.
  522. Flombaum, P. et al., 2013: Present and future global distributions of the marine Cyanobacteria, Prochlorococcus and Synechococcus. PNAS, 110(24), 9824, doi:10.1073/pnas.1307701110.
  523. Fu, F.-X. et al., 2007: Effects of increased temperature and CO2 on photosynthesis, growth and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J. Phycol., 43(3), 485–496, doi:10.1111/j.1529-8817.2007.00355.x.
  524. Hutchins, D.A. and F. Fu, 2017: Microorganisms and ocean global change. Nature Microbiol., 2, 17058, doi:10.1038/nmicrobiol.2017.58.
  525. Dutkiewicz, S. et al., 2015: Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Change, 5, 1002, doi:10.1038/nclimate2722.
  526. Sohm, J.A., E.A. Webb and D.G. Capone, 2011: Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol., 9, 499, doi:10.1038/nrmicro2594.
  527. Boyd, P.W. et al., 2013: Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters – Outcome of a Scientific Community-Wide Study. PLoS One, 8(5), e63091, doi:10.1371/journal.pone.0063091.
  528. Ward, B.A., S. Dutkiewicz, C.M. Moore and M.J. Follows, 2013: Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol. Oceanogr., 58(6), 2059–2075, doi:10.4319/lo.2013.58.6.2059.
  529. Hutchins, D.A. and F. Fu, 2017: Microorganisms and ocean global change. Nature Microbiol., 2, 17058, doi:10.1038/nmicrobiol.2017.58.
  530. Boyd, P.W. and D.A. Hutchins, 2012: Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar. Ecol. Prog. Ser., 470, 125–135.
  531. Lohbeck, K.T., U. Riebesell and T.B.H. Reusch, 2012: Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci., 5, 346, doi:10.1038/ngeo1441.
  532. Khanna, N., J.A. Godbold, W.E.N. Austin and D.M. Paterson, 2013: The Impact of Ocean Acidification on the Functional Morphology of Foraminifera. PLoS One, 8(12), e83118, doi:10.1371/journal.pone.0083118.
  533. Roy, T., F. Lombard, L. Bopp and M. Gehlen, 2015: Projected impacts of climate change and ocean acidification on the global biogeography of planktonic Foraminifera. Biogeosciences, 12(10), 2873–2889, doi:10.5194/bg-12-2873-2015.
  534. Brussaard, C. et al., 2013: Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences, 10(2), 719–731.
  535. Rose, J.M. et al., 2009: Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages. Biogeosciences, 6(12), 3131–3147, doi:10.5194/bg-6-3131-2009.
  536. Gruber, N., 2019: A diagnosis for marine nitrogen fixation. Nature, 566(7743), 191–193.
  537. Wang, W.-L., J. K. Moore, A.C. Martiny and F.W. Primeau, 2019: Convergent estimates of marine nitrogen fixation. Nature, 566(7743), 205–211, doi:10.1038/s41586-019-0911-2.
  538. Eichner, M., B. Rost and S.A. Kranz, 2014: Diversity of ocean acidification effects on marine N2 fixers. J. Exp. Mar. Biol. Ecol., 457, 199–207, doi:10.1016/j.jembe.2014.04.015.
  539. Garcia, N.S., F. Fu, P.N. Sedwick and D.A. Hutchins, 2014: Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria. The Isme Journal, 9, 238, doi:10.1038/ismej.2014.104.
  540. Gradoville, M.R. et al., 2014: Diversity trumps acidification: Lack of evidence for carbon dioxide enhancement of Trichodesmium community nitrogen or carbon fixation at Station ALOHA. Limnol. Oceanogr., 59(3), 645–659, doi:10.4319/lo.2014.59.3.0645.
  541. Walworth, N.G. et al., 2016: Mechanisms of increased Trichodesmium fitness under iron and phosphorus co-limitation in the present and future ocean. Nat. Commun., 7, 12081–12081, doi:10.1038/ncomms12081.
  542. Hong, H. et al., 2017: The complex effects of ocean acidification on the prominent N<sub>2</sub>-fixing cyanobacterium Trichodesmium. Science, 356(6337), 527, doi:10.1126/science.aal2981.
  543. Luo, Y.-W. et al., 2019: Reduced nitrogenase efficiency dominates response of the globally important nitrogen fixer Trichodesmium to ocean acidification. Nat. Commun., 10(1), 1521, doi:10.1038/s41467-019-09554-7.
  544. Breitberg, D. et al., 2015: And on Top of All That… Coping with Ocean Acidification in the Midst of Many Stressors. Oceanography, 25(2), 48–61, doi:10.5670/oceanog.2015.31.
  545. Hutchins, D.A. and P.W. Boyd, 2016: Marine phytoplankton and the changing ocean iron cycle. Nat. Clim. Change, 6(12), 1072–1079, doi:10.1038/NCLIMATE3147.
  546. O’Brien, P.A., K.M. Morrow, B.L. Willis and D.G. Bourne, 2016: Implications of Ocean Acidification for Marine Microorganisms from the Free-Living to the Host-Associated. Front. Mar. Sci., 3(fiv142), 1029, doi:10.3389/fmars.2016.00047.
  547. Kwiatkowski, L., O. Aumont and L. Bopp, 2019: Consistent trophic amplification of marine biomass declines under climate change. Global Change Biol., 25(1), 218–229, doi:10.1111/gcb.14468.
  548. Stock, C.A., J.P. Dunne and J.G. John, 2014: Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences, 11(24), 7125.
  549. Stock, C.A., J.P. Dunne and J.G. John, 2014: Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences, 11(24), 7125.
  550. Kwiatkowski, L., O. Aumont and L. Bopp, 2019: Consistent trophic amplification of marine biomass declines under climate change. Global Change Biol., 25(1), 218–229, doi:10.1111/gcb.14468.
  551. Chust, G. et al., 2014: Biomass changes and trophic amplification of plankton in a warmer ocean. Global Change Biol., 20(7), 2124–2139, doi:10.1111/gcb.12562.
  552. Stock, C.A., J.P. Dunne and J.G. John, 2014: Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences, 11(24), 7125.
  553. Kwiatkowski, L., O. Aumont and L. Bopp, 2019: Consistent trophic amplification of marine biomass declines under climate change. Global Change Biol., 25(1), 218–229, doi:10.1111/gcb.14468.
  554. Sundby, S., K.F. Drinkwater and O.S. Kjesbu, 2016: The North Atlantic Spring-Bloom System—Where the Changing Climate Meets the Winter Dark. Front. Mar. Sci., 3(28), doi:10.3389/fmars.2016.00028.
  555. Woodworth-Jefcoats, P.A., J.J. Polovina and J.C. Drazen, 2017: Climate change is projected to reduce carrying capacity and redistribute species richness in North Pacific pelagic marine ecosystems. Global Change Biol., 23(3), 1000–1008, doi:10.1111/gcb.13471.
  556. Mayor, D. J., U. Sommer, K.B. Cook and M.R. Viant, 2015: The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food. Sci. Rep., 5, 13690, doi:10.1038/srep13690.
  557. Chapman, A. and S. Darby, 2016: Evaluating sustainable adaptation strategies for vulnerable mega-deltas using system dynamics modelling: Rice agriculture in the Mekong Delta’s An Giang Province, Vietnam. Sci. Total Environ., 559, 326–338, doi:10.1016/j.scitotenv.2016.02.162.
  558. Weydmann, A., J.E. Søreide, S. Kwasniewski and S. Widdicombe, 2012: Influence of CO2-induced acidification on the reproduction of a key Arctic copepod Calanus glacialis. J. Exp. Mar. Biol. Ecol., 428, 39–42, doi:10.1016/j.jembe.2012.06.002.
  559. McConville, K. et al., 2013: Effects of elevated CO2 on the reproduction of two calanoid copepods. Mar. Pollut. Bull., 73(2), 428–434, doi:10.1016/j.marpolbul.2013.02.010.
  560. Cripps, G., P. Lindeque and K.J. Flynn, 2014: Have we been underestimating the effects of ocean acidification in zooplankton? Global Change Biol., 20(11), 3377–3385, doi:10.1111/gcb.12582.
  561. Alguero-Muniz, M. et al., 2016: Withstanding multiple stressors: ephyrae of the moon jellyfish (Aurelia aurita, Scyphozoa) in a high-temperature, high-CO2 and low-oxygen environment. Mar. Biol., 163(9), doi:10.1007/s00227-016-2958-z.
  562. Bailey, A. et al., 2016: Early life stages of the Arctic copepod Calanus glacialisare unaffected by increased seawater pCO2. ICES J. Mar. Sci., 74(4), 996-1004 doi:10.1093/icesjms/fsw066.
  563. Lischka, S., J. Büdenbender, T. Boxhammer and U. Riebesell, 2011: Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences, 8(4), 919–932, doi:10.5194/bg-8-919-2011.
  564. Cripps, G., P. Lindeque and K.J. Flynn, 2014: Have we been underestimating the effects of ocean acidification in zooplankton? Global Change Biol., 20(11), 3377–3385, doi:10.1111/gcb.12582.
  565. Alguero-Muniz, M. et al., 2017: Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment. PLoS One, 12(4), doi:10.1371/journal.pone.0175851.
  566. Alguero-Muniz, M. et al., 2017: Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment. PLoS One, 12(4), doi:10.1371/journal.pone.0175851.
  567. Taucher, J. et al., 2017: Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects. PLoS One, 12(2), e0169737, doi:10.1371/journal.pone.0169737.
  568. Caron, D.A. and D.A. Hutchins, 2012: The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J. Plankton Res., 35(2), 235–252, doi:10.1093/plankt/fbs091.
  569. Winder, M. et al., 2017: The land–sea interface: A source of high‐quality phytoplankton to support secondary production. Limnol. Oceanogr., 62(S1), S258-S271.
  570. Boyd, P.W. et al., 2015a: Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nat. Clim. Change, 6(2), 207–213, doi:10.1038/nclimate2811.
  571. Jones, M.C. and W.W.L. Cheung, 2015: Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci., 72(3), 741–752, doi:10.1093/icesjms/fsu172.
  572. Robins, P.E. et al., 2016: Impact of climate change on UK estuaries: A review of past trends and potential projections. Estuar. Coast. Shelf Sci., 169, 119–135, doi:10.1016/j.ecss.2015.12.016.
  573. Morley, J.W. et al., 2018: Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS One, 13(5), e0196127, doi:10.1371/journal.pone.0196127.
  574. Jones, M.C. and W.W.L. Cheung, 2015: Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci., 72(3), 741–752, doi:10.1093/icesjms/fsu172.
  575. Robins, P.E. et al., 2016: Impact of climate change on UK estuaries: A review of past trends and potential projections. Estuar. Coast. Shelf Sci., 169, 119–135, doi:10.1016/j.ecss.2015.12.016.
  576. Morley, J.W. et al., 2018: Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS One, 13(5), e0196127, doi:10.1371/journal.pone.0196127.
  577. Jones, M.C. and W.W.L. Cheung, 2015: Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci., 72(3), 741–752, doi:10.1093/icesjms/fsu172.
  578. Cheung, W.W.L. et al., 2016a: Transform high seas management to build climate resilience in marine seafood supply. Fish Fish., 18(2), 254–263, doi:10.1111/faf.12177.
  579. Molinos, J.G. et al., 2016: Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change, 6(1), 83–88, doi:10.1038/NCLIMATE2769.
  580. Jones, M.C. and W.W.L. Cheung, 2015: Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci., 72(3), 741–752, doi:10.1093/icesjms/fsu172.
  581. Molinos, J.G. et al., 2016: Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change, 6(1), 83–88, doi:10.1038/NCLIMATE2769.
  582. Jones, M.C. and W.W.L. Cheung, 2015: Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci., 72(3), 741–752, doi:10.1093/icesjms/fsu172.
  583. Molinos, J.G. et al., 2016: Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change, 6(1), 83–88, doi:10.1038/NCLIMATE2769.
  584. Cheung, W.W.L., R. Watson and D. Pauly, 2013: Signature of ocean warming in global fisheries catch. Nature, 497, 365, doi:10.1038/nature121.
  585. Burrows, M.T. et al., 2014: Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507(7493), 492–495, doi:10.1038/nature12976.
  586. García Molinos, J. et al., 2015: Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change, 6, 83, doi:10.1038/nclimate2769.
  587. Jones, M.C. and W.W.L. Cheung, 2015: Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci., 72(3), 741–752, doi:10.1093/icesjms/fsu172.
  588. Wabnitz, C.C.C. et al., 2018: Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf. PLoS One, 13(5), e0194537, doi:10.1371/journal.pone.0194537.
  589. Cheung, W.W.L., R. Watson and D. Pauly, 2013: Signature of ocean warming in global fisheries catch. Nature, 497, 365, doi:10.1038/nature121.
  590. Burrows, M.T. et al., 2014: Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507(7493), 492–495, doi:10.1038/nature12976.
  591. García Molinos, J. et al., 2015: Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change, 6, 83, doi:10.1038/nclimate2769.
  592. Jones, M.C. and W.W.L. Cheung, 2015: Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci., 72(3), 741–752, doi:10.1093/icesjms/fsu172.
  593. Rutterford, L.A. et al., 2015: Future fish distributions constrained by depth in warming seas. Nat. Clim. Change, 5, 569, doi:10.1038/nclimate2607.
  594. Deutsch, C. et al., 2015: Climate change tightens a metabolic constraint on marine habitats. Science, 348(6239), 1132.
  595. Pauly, D. and W.W.L. Cheung, 2017: Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Global Change Biol., 25(2), n/a–n/a, doi:10.1111/gcb.13831.
  596. Lefort, S. et al., 2015: Spatial and body-size dependent response of marine pelagic communities to projected global climate change. Global Change Biol., 21(1), 154–164, doi:10.1111/gcb.12679.
  597. Kroeker, K.J. et al., 2013: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biol., 19(6), 1884–1896.
  598. Heuer, R.M. and M. Grosell, 2014: Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am. J. Physiol. Regul. Integr. Comp. Physiol., 307(9), R1061–R1084, doi:10.1152/ajpregu.00064.2014.
  599. Nagelkerken, I. and S.D. Connell, 2015: Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. PNAS, 112(43), 13272–13277, doi:10.1073/pnas.1510856112.
  600. Lotze, H.K. et al., 2018: Ensemble projections of global ocean animal biomass with climate change. bioRxiv, 467175, doi:10.1101/467175.
  601. Lotze, H.K. et al., 2018: Ensemble projections of global ocean animal biomass with climate change. bioRxiv, 467175, doi:10.1101/467175.
  602. Blanchard, J.L. et al., 2012: Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos. Trans. Roy. Soc. B., 367(1605), 2979–2989.
  603. Fernandes, J.A. et al., 2013: Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Global Change Biol., 19(8), 2596–2607, doi:10.1111/gcb.12231.
  604. Carozza, D.A., D. Bianchi and E.D. Galbraith, 2016: The ecological module of BOATS-1.0: a bioenergetically constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry. Geosci. Model Dev., 9(4), 1545–1565, doi:10.5194/gmd-9-1545-2016.
  605. Cheung, W.W.L. et al., 2016a: Transform high seas management to build climate resilience in marine seafood supply. Fish Fish., 18(2), 254–263, doi:10.1111/faf.12177.
  606. Bryndum-Buchholz, A. et al., 2019: Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Global Change Biol., 25(2), 459–472, doi:10.1111/gcb.14512.
  607. Bopp, L. et al., 2013: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10(10), 6225–6245, doi:10.5194/bg-10-6225-2013.
  608. Boyd, P.W. et al., 2015a: Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nat. Clim. Change, 6(2), 207–213, doi:10.1038/nclimate2811.
  609. Fu, W., J.T. Randerson and J.K. Moore, 2016: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences, 13(18), 5151–5170, doi:10.5194/bg-13-5151-2016.
  610. Laufkötter, C. et al., 2016: Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences, 13(13), 4023–4047, doi:10.5194/bg-13-4023-2016.
  611. Lotze, H.K. et al., 2018: Ensemble projections of global ocean animal biomass with climate change. bioRxiv, 467175, doi:10.1101/467175.
  612. Boyd, P.W. et al., 2013: Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters – Outcome of a Scientific Community-Wide Study. PLoS One, 8(5), e63091, doi:10.1371/journal.pone.0063091.
  613. Maranon, E. et al., 2014: Resource Supply Overrides Temperature as a Controlling Factor of Marine Phytoplankton Growth. PLoS One, 9(6), doi:10.1371/journal.pone.0099312.
  614. Engel, J. et al., 2014: Towards the Disease Biomarker in an Individual Patient Using Statistical Health Monitoring. PLoS One, 9(4), e92452, doi:10.1371/journal.pone.0092452.
  615. Riebesell, U. et al., 2007: Enhanced biological carbon consumption in a high CO2 ocean. Nature, 450, 545, doi:10.1038/nature06267.
  616. Seebacher, F., C.R. White and C.E. Franklin, 2014: Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change, 5, 61, doi:10.1038/nclimate2457.
  617. Moràn, X.A.G., Á. Lòpez-Urrutia, A. Calvo-DÍAz and W.K.W. Li, 2010: Increasing importance of small phytoplankton in a warmer ocean. Global Change Biol., 16(3), 1137–1144, doi:10.1111/j.1365-2486.2009.01960.x.
  618. Li, H. et al., 2009: The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078–2079, doi:10.1093/bioinformatics/btp352.
  619. Dutkiewicz, S., J.R. Scott and M. Follows, 2013a: Winners and losers: Ecological and biogeochemical changes in a warming ocean. Global Biogeochem. Cy., 27(2), 463–477.
  620. Tréguer, P. et al., 2018: Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci., 11(1), 27–37, doi:10.1038/s41561-017-0028-x.
  621. Sett, S. et al., 2014: Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO(2). PLoS One, 9(2), doi:10.1371/journal.pone.0088308.
  622. Burrell, T.J., E.W. Maas, D.A. Hulston and C.S. Law, 2017: Variable response to warming and ocean acidification by bacterial processes in different plankton communities. Aqut. Microb. Ecol., 79(1), 49–62.
  623. Bopp, L. et al., 2013: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10(10), 6225–6245, doi:10.5194/bg-10-6225-2013.
  624. Boxhammer, T. et al., 2018: Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: A mass balance approach. PLoS One, 13(5), e0197502, doi:10.1371/journal.pone.0197502.
  625. Rose, J.M. and D.A. Caron, 2007: Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr., 52(2), 886–895.
  626. Isla, J.A., K. Lengfellner and U. Sommer, 2008: Physiological response of the copepod Pseudocalanus sp in the Baltic Sea at different thermal scenarios. Global Change Biol., 14(4), 895–906, doi:10.1111/j.1365-2486.2008.01531.x.
  627. Edwards, M. et al., 2013: Marine Ecosystem Response to the Atlantic Multidecadal Oscillation. PLoS One, 8(2), doi:10.1371/journal.pone.0057212.
  628. Taucher, J., L.T. Bach, U. Riebesell and A. Oschlies, 2014: The viscosity effect on marine particle flux: A climate relevant feedback mechanism. Global Biogeochem. Cy., 28(4), 415–422, doi:10.1002/2013GB004728.
  629. Almén, A.-K., A. Vehmaa, A. Brutemark and J. Engström-Öst, 2014: Coping with climate change? Copepods experience drastic variations in their physicochemical environment on a diurnal basis. J. Exp. Mar. Biol. Ecol., 460, 120–128, doi:10.1016/j.jembe.2014.07.001.
  630. Berge, J. et al., 2014: Arctic complexity: a case study on diel vertical migration of zooplankton. J. Plankton Res., 36(5), 1279–1297, doi:10.1093/plankt/fbu059.
  631. Boyd, P.W. et al., 2015a: Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nat. Clim. Change, 6(2), 207–213, doi:10.1038/nclimate2811.
  632. Marsay, C.M. et al., 2015: Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. PNAS, 112(4), 1089.
  633. DeVries, T., M. Holzer and F. Primeau, 2017: Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542(7640), 215.
  634. Boyd, P.W. et al., 2015a: Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nat. Clim. Change, 6(2), 207–213, doi:10.1038/nclimate2811.
  635. Marsay, C.M. et al., 2015: Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. PNAS, 112(4), 1089.
  636. Guidi, L. et al., 2016: Plankton networks driving carbon export in the oligotrophic ocean. Nature, 532, 465, doi:10.1038/nature16942.
  637. DeVries, T., M. Holzer and F. Primeau, 2017: Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542(7640), 215.
  638. Sweet, M.J. and M.T. Bulling, 2017: On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Front. Mar. Sci., 4(9), doi:10.3389/fmars.2017.00009.
  639. Chust, G. et al., 2014: Biomass changes and trophic amplification of plankton in a warmer ocean. Global Change Biol., 20(7), 2124–2139, doi:10.1111/gcb.12562.
  640. Stock, C.A., J.P. Dunne and J.G. John, 2014: Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences, 11(24), 7125.
  641. Wohlers-Zöllner, J. et al., 2011: Temperature and nutrient stoichiometry interactively modulate organic matter cycling in a pelagic algal–bacterial community. Limnol. Oceanogr., 56(2), 599–610, doi:10.4319/lo.2011.56.2.0599.
  642. Endres, S. et al., 2014: Stimulated Bacterial Growth under Elevated pCO2: Results from an Off-Shore Mesocosm Study. PLoS One, 9(6), e99228, doi:10.1371/journal.pone.0099228.
  643. Bendtsen, J., J. Mortensen, K. Lennert and S. Rysgaard, 2015: Heat sources for glacial ice melt in a west Greenland tidewater outlet glacier fjord: The role of subglacial freshwater discharge. Geophys. Res. Lett., 42(10), 4089–4095, doi:10.1002/2015GL063846.
  644. Piontek, J., M. Sperling, E.-M. Noethig and A. Engel, 2015: Multiple environmental changes induce interactive effects on bacterial degradation activity in the Arctic Ocean. Limnol. Oceanogr., 60(4), 1392–1410, doi:10.1002/lno.10112.
  645. Burd, A.B. and G.A. Jackson, 2002: Modeling steady-state particle size spectra. Environ. Sci. Technol., 36(3), 323–327.
  646. Ikeda, T., Y. Kanno, K. Ozaki and A. Shinada, 2001: Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar. Biol., 139(3), 587–596, doi:10.1007/s002270100608.
  647. Rykaczewski, R.R. and J.P. Dunne, 2010: Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an earth system model. Geophys. Res. Lett., 37(21), L21606 . doi:10.1029/2010GL045019.
  648. Cocco, V. et al., 2013: Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences, 10(3), 1849–1868, doi:10.5194/bg-10-1849-2013.
  649. Hofmann, M. and H.-J. Schellnhuber, 2009: Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. PNAS, 106(9), 3017.
  650. Arístegui, J., M. Gasol Josep, M. Duarte Carlos and J. Herndld Gerhard, 2009: Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr., 54(5), 1501–1529, doi:10.4319/lo.2009.54.5.1501.
  651. Legendre, L. et al., 2015: The microbial carbon pump concept: Potential biogeochemical significance in the globally changing ocean. Progr. Oceanogr., 134, 432–450, doi:10.1016/j.pocean.2015.01.008.
  652. DeVries, T., M. Holzer and F. Primeau, 2017: Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542(7640), 215.
  653. Sweet, M.J. and M.T. Bulling, 2017: On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Front. Mar. Sci., 4(9), doi:10.3389/fmars.2017.00009.
  654. Boyd, P.W. et al., 2019: Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 568(7752), 327–335, doi:10.1038/s41586-019-1098-2.
  655. Bianchi, D., C. Stock, E.D. Galbraith and J.L. Sarmiento, 2013: Diel vertical migration: Ecological controls and impacts on the biological pump in a one-dimensional ocean model. Global Biogeochem. Cy., 27(2), 478–491, doi:10.1002/gbc.20031.
  656. Davison, P.C., D.M. Checkley, J.A. Koslow and J. Barlow, 2013: Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Progr. Oceanogr., 116, 14–30, doi:10.1016/j.pocean.2013.05.013.
  657. Hudson, J.M. et al., 2014: Myctophid feeding ecology and carbon transport along the northern Mid-Atlantic Ridge. Deep sea Res. Pt. I, 93, 104–116, doi:10.1016/j.dsr.2014.07.002.
  658. Jónasdóttir, S.H., A.W. Visser, K. Richardson and M.R. Heath, 2015: Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. PNAS, 112(39), 12122.
  659. Aumont, O., O. Maury, S. Lefort and L. Bopp, 2018: Evaluating the Potential Impacts of the Diurnal Vertical Migration by Marine Organisms on Marine Biogeochemistry. Global Biogeochem. Cy., 32(11), 1622–1643, doi:10.1029/2018GB005886.
  660. Gorgues, T., O. Aumont and L. Memery, 2019: Simulated Changes in the Particulate Carbon Export Efficiency due to Diel Vertical Migration of Zooplankton in the North Atlantic. Geophys. Res. Lett., 46(10); 5387-5395, doi:10.1029/2018GL081748.
  661. Proud, R., M.J. Cox and A.S. Brierley, 2017: Biogeography of the Global Ocean’s Mesopelagic Zone. Curr Biol, 27(1), 113–119, doi:10.1016/j.cub.2016.11.003.
  662. Gilly, W.F., J.M. Beman, S.Y. Litvin and B.H. Robison, 2013: Oceanographic and Biological Effects of Shoaling of the Oxygen Minimum Zone. Annu. Rev. Mar. Sci., 5(1), 393–420, doi:10.1146/annurev-marine-120710-100849.
  663. Netburn, A.N. and J. Anthony Koslow, 2015: Dissolved oxygen as a constraint on daytime deep scattering layer depth in the southern California current ecosystem. Deep-Sea Res. Pt. I, 104, 149–158, doi:10.1016/j.dsr.2015.06.006.
  664. Koslow, J.A., E.F. Miller and J.A. McGowan, 2015: Dramatic declines in coastal and oceanic fish communities off California. Mar. Ecol. Prog. Ser., 538, 221–227.
  665. Stewart, J.S. et al., 2014: Combined climate- and prey-mediated range expansion of Humboldt squid (Dosidicus gigas), a large marine predator in the California Current System. Global Change Biol., 20(6), 1832–1843, doi:10.1111/gcb.12502.
  666. Stramma, L. et al., 2011: Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change, 2, 33, doi:10.1038/nclimate1304.
  667. Brown, A. and S. Thatje, 2014: The effects of changing climate on faunal depth distributions determine winners and losers. Global Change Biol., 21(1), 173–180, doi:10.1111/gcb.12680.
  668. Rogers, A.D., 2015: Environmental Change in the Deep Ocean. Annu. Rev. Environ. Resourc., Vol 41, 40(1), 1–38, doi:10.1146/annurev-environ-102014-021415.
  669. Cavan, E.L., M. Trimmer, F. Shelley and R. Sanders, 2017: Remineralization of particulate organic carbon in an ocean oxygen minimum zone. Nat. Commun., 8, 14847, doi:10.1038/ncomms14847.
  670. Marsay, C.M. et al., 2015: Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. PNAS, 112(4), 1089.
  671. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  672. Levin, L.A. and M. Sibuet, 2012: Understanding Continental Margin Biodiversity: A New Imperative. Annu. Rev. Mar. Sci., 4(1), 79–112, doi:10.1146/annurev-marine-120709-142714.
  673. Boyd, P.W. et al., 2019: Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 568(7752), 327–335, doi:10.1038/s41586-019-1098-2.
  674. Tyler, P.A et al., (eds.), 2003: Ecosystems of the Deep Ocean. Elsevier Science, Amsterdam, 582 pp, eBook ISBN: 9780080494654.
  675. Frigstad, H. et al., 2015: Links between surface productivity and deep ocean particle flux at the Porcupine Abyssal Plain sustained observatory. Biogeosciences, 12(19), 5885–5897, doi:10.5194/bg-12-5885-2015.
  676. Thomas, N. et al., 2017: Distribution and drivers of global mangrove forest change, 1996–2010. PLoS One, 12(6), e0179302, doi:10.1371/journal.pone.0179302.
  677. Smith, K.L.J. et al., 2013: Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean. PNAS, 110(49), 19838–19841, doi:10.1073/pnas.1315447110.
  678. Hartman, S.E. et al., 2015: Biogeochemical variations at the Porcupine Abyssal Plain sustained Observatory in the northeast Atlantic Ocean, from weekly to inter-annual timescales. Biogeosciences, 12(3), 845–853, doi:10.5194/bg-12-845-2015.
  679. Soltwedel, T. et al., 2016: Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER site HAUSGARTEN. Ecol. Indic., 65, 89–102, doi:10.1016/j.ecolind.2015.10.001.
  680. Thomas, N. et al., 2017: Distribution and drivers of global mangrove forest change, 1996–2010. PLoS One, 12(6), e0179302, doi:10.1371/journal.pone.0179302.
  681. Mora, C. et al., 2013: The projected timing of climate departure from recent variability. Nature, 502(7470), 183–7, doi:10.1038/nature12540.
  682. Sweet, M.J. and M.T. Bulling, 2017: On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Front. Mar. Sci., 4(9), doi:10.3389/fmars.2017.00009.
  683. Smith, K.L. et al., 2018: Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. PNAS, 115(48), 12235, doi:10.1073/pnas.1814559115.
  684. Smith, C.R. et al., 2008: Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol., 23(9), 518–528, doi:10.1016/j.tree.2008.05.002.
  685. Thomas, N. et al., 2017: Distribution and drivers of global mangrove forest change, 1996–2010. PLoS One, 12(6), e0179302, doi:10.1371/journal.pone.0179302.
  686. Frischknecht, M., M. Münnich and N. Gruber, 2018: Origin, Transformation, and Fate: The Three-Dimensional Biological Pump in the California Current System. J. Geophys. Res-Oceans, 123(11), 7939–7962, doi:10.1029/2018JC013934.
  687. Smith, K.L.J. et al., 2013: Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean. PNAS, 110(49), 19838–19841, doi:10.1073/pnas.1315447110.
  688. Wei, C.-L. et al., 2011: Global Patterns and Predictions of Seafloor Biomass Using Random Forests. PLoS One, 5(12), e15323, doi:10.1371/journal.pone.0015323.
  689. Hartman, S.E. et al., 2015: Biogeochemical variations at the Porcupine Abyssal Plain sustained Observatory in the northeast Atlantic Ocean, from weekly to inter-annual timescales. Biogeosciences, 12(3), 845–853, doi:10.5194/bg-12-845-2015.
  690. Rowe, G.T., J. Morse, C. Nunnally and G.S. Boland, 2008: Sediment community oxygen consumption in the deep Gulf of Mexico. Deep-Sea Res. Pt. II, 55(24), 2686–2691, doi:10.1016/j.dsr2.2008.07.018.
  691. Smith, K.L., C.L. Huffard, A.D. Sherman and H. A. Ruhl, 2016a: Decadal Change in Sediment Community Oxygen Consumption in the Abyssal Northeast Pacific. Aquat. Geochem., 22(5), 401–417, doi:10.1007/s10498-016-9293-3.
  692. Dunlop, K.M. et al., 2016: Carbon cycling in the deep eastern North Pacific benthic food web: Investigating the effect of organic carbon input. Limnol. Oceanogr., 61(6), 1956–1968, doi:10.1002/lno.10345.
  693. Gage, J.D., 2003: Food inputs, utilization, carbon flow and energetics. In: Ecosystems of the Deep Sea [Tyler, P.A. (ed.)]. Elsevier, Amsterdam, Volume 28, 1st eddition, pp. 313–380. ISBN: 9780080494654
  694. Hoegh-Guldberg, O. et al., 2014: The Ocean. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1655–1731 pp., ISBN: 978-1-107-05807-1
  695. Gambi, C. et al., 2017: Functional response to food limitation can reduce the impact of global change in the deep‐sea benthos. Global Ecol. Biogeogr., 26(9), 1008–1021, doi:10.1111/geb.12608.
  696. Sweet, M.J. and M.T. Bulling, 2017: On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Front. Mar. Sci., 4(9), doi:10.3389/fmars.2017.00009.
  697. Jones, D.O. et al., 2014: Global reductions in seafloor biomass in response to climate change. Glob Chang Biol, 20(6), 1861–72, doi:10.1111/gcb.12480.
  698. Jones, D.O. et al., 2014: Global reductions in seafloor biomass in response to climate change. Glob Chang Biol, 20(6), 1861–72, doi:10.1111/gcb.12480.
  699. Brown, J.H. et al., 2004: Toward a Metabolic Theory of Ecology. Ecology, 85(7), 1771–1789, doi:10.1890/03-9000.
  700. Jones, D.O. et al., 2014: Global reductions in seafloor biomass in response to climate change. Glob Chang Biol, 20(6), 1861–72, doi:10.1111/gcb.12480.
  701. Jones, D.O. et al., 2014: Global reductions in seafloor biomass in response to climate change. Glob Chang Biol, 20(6), 1861–72, doi:10.1111/gcb.12480.
  702. Jones, D.O. et al., 2014: Global reductions in seafloor biomass in response to climate change. Glob Chang Biol, 20(6), 1861–72, doi:10.1111/gcb.12480.
  703. Smith, C.R. et al., 2008: Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol., 23(9), 518–528, doi:10.1016/j.tree.2008.05.002.
  704. Smith, K.L.J. et al., 2009: Climate, carbon cycling, and deep-ocean ecosystems. PNAS, 106(46), 19211–19218, doi:10.1073/pnas.0908322106.
  705. Tittensor, D.P. et al., 2011: Species-energy relationships in deep sea molluscs. Biol. Lett., 7(5), 718–722, doi:10.1098/rsbl.2010.1174.
  706. Yool, A. et al., 2013: Climate change and ocean acidification impacts on lower trophic levels and the export of organic carbon to the deep ocean. Biogeosciences, 10(9), 5831–5854, doi:10.5194/bg-10-5831-2013.
  707. Rogers, A.D., 2015: Environmental Change in the Deep Ocean. Annu. Rev. Environ. Resourc., Vol 41, 40(1), 1–38, doi:10.1146/annurev-environ-102014-021415.
  708. Sweet, M.J. and M.T. Bulling, 2017: On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Front. Mar. Sci., 4(9), doi:10.3389/fmars.2017.00009.
  709. Yool, A. et al., 2017: Big in the benthos: Future change of seafloor community biomass in a global, body size-resolved model. Global Change Biol., 23(9), 3554–3566, doi:10.1111/gcb.13680.
  710. FAO, 2019: Deep-ocean climate change impacts on habitat, fish and fisheries [Levin, L.A., M. Baker and A. Thompson (eds.)]. 638, FAO, Rome, 186 pp.
  711. Sweet, M.J. and M.T. Bulling, 2017: On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Front. Mar. Sci., 4(9), doi:10.3389/fmars.2017.00009.
  712. Sweet, M.J. and M.T. Bulling, 2017: On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Front. Mar. Sci., 4(9), doi:10.3389/fmars.2017.00009.
  713. Smith, C.R. et al., 2008: Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol., 23(9), 518–528, doi:10.1016/j.tree.2008.05.002.
  714. Harris, P.T., M. Macmillan-Lawler, J. Rupp and E.K. Baker, 2014: Geomorphology of the oceans. Mar. Geol., 352(Supplement C), 4–24.
  715. Rowden, A.A. et al., 2010: Paradigms in seamount ecology: fact, fiction and future. Mar. Ecol., 31(s1), 226–241, doi:10.1111/j.1439-0485.2010.00400.x.
  716. Levin, L.A. and M. Sibuet, 2012: Understanding Continental Margin Biodiversity: A New Imperative. Annu. Rev. Mar. Sci., 4(1), 79–112, doi:10.1146/annurev-marine-120709-142714.
  717. Fernandez-Arcaya, U. et al., 2017: Ecological Role of Submarine Canyons and Need for Canyon Conservation: A Review. Front. Mar. Sci., 4, 69, doi:10.3389/fmars.2017.00005.
  718. Levin, L.A. and M. Sibuet, 2012: Understanding Continental Margin Biodiversity: A New Imperative. Annu. Rev. Mar. Sci., 4(1), 79–112, doi:10.1146/annurev-marine-120709-142714.
  719. Levin, L.A., 2018: Manifestation, Drivers, and Emergence of Open Ocean Deoxygenation. Annu. Rev. Mar. Sci., 10(1), 229–260, doi:10.1146/annurev-marine-121916-063359.
  720. Goericke, R., S.J. Bograd and D.S. Grundle, 2015: Denitrification and flushing of the Santa Barbara Basin bottom waters. Deep Sea Res. Pt. II, 112, 53–60, doi:10.1016/j.dsr2.2014.07.012.
  721. Dickson, A.J., A.S. Cohen and A.L. Coe, 2012: Seawater oxygenation during the Paleocene-Eocene Thermal Maximum. Geology, 40(7), 639–642, doi:10.1130/G32977.1.
  722. Moffitt, S.E., T.M. Hill, P.D. Roopnarine and J. P. Kennett, 2015: Response of seafloor ecosystems to abrupt global climate change. PNAS, 112(15), 4684–4689, doi:10.1073/pnas.1417130112.
  723. Gallo, N.D. and L.A. Levin, 2016: Fish Ecol. Evol. in the World’s Oxygen Minimum Zones and Implications of Ocean Deoxygenation. Adv. Mar. Biol., Vol, 74, 117–198, doi:10.1016/bs.amb.2016.04.001.
  724. Levin, L.A., 2003: Oxygen minimum zone benthos: Adaptation and community response to hypoxia. Oceanogr. Mar. Biol., 41, 1–45.
  725. Gallo, N.D. and L.A. Levin, 2016: Fish Ecol. Evol. in the World’s Oxygen Minimum Zones and Implications of Ocean Deoxygenation. Adv. Mar. Biol., Vol, 74, 117–198, doi:10.1016/bs.amb.2016.04.001.
  726. Sperling, E.A., C.A. Frieder and L.A. Levin, 2016: Biodiversity response to natural gradients of multiple stressors on continental margins. Proc. Biol. Sci., 283(1829), doi:10.1098/rspb.2016.0637.
  727. Bernhard, J.M. and C.E. Reimers, 1991: Benthic foraminiferal population fluctuations related to anoxia: Santa Barbara Basin. Biogeochemistry, 15(2), 127–149, doi:10.1007/BF00003221.
  728. Gooday, A.J., J.M. Bernhard, L.A. Levin and S.B. Suhr, 2000: Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas. Deep Sea Res. Pt. II, 47(1), 25–54, doi:10.1016/S0967-0645(99)00099-5.
  729. Moffitt, S.E. et al., 2014: Vertical oxygen minimum zone oscillations since 20 ka in Santa Barbara Basin: A benthic foraminiferal community perspective. Paleoceanography, 29(1), 44–57, doi:10.1002/2013pa002483.
  730. Sato, K.N., L.A. Levin and K. Schiff, 2017: Habitat compression and expansion of sea urchins in response to changing climate conditions on the California continental shelf and slope (1994-2013). Deep Sea Res. Pt. II, 137, 377–389, doi:10.1016/j.dsr2.2016.08.012.
  731. Sato KN, Andersson AJ, Day JMD, Taylor JRA, Frank MB, Jung J-Y, McKittrick J and Levin LA (2018) Response of Sea Urchin Fitness Traits to Environmental Gradients Across the Southern California Oxygen Minimum Zone. Front. Mar. Sci. 5:258. doi: 10.3389/fmars.2018.00258
  732. Diaz, R.J. and R. Rosenberg, 1995: Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol., 33, 245–03.
  733. Levin, L.A., 2003: Oxygen minimum zone benthos: Adaptation and community response to hypoxia. Oceanogr. Mar. Biol., 41, 1–45.
  734. Middelburg, J.J. and L.A. Levin, 2009: Coastal hypoxia and sediment biogeochemistry. Biogeosciences, 6(7), 1273–1293, doi:10.5194/bg-6-1273-2009.
  735. Sturdivant, S.K., R.J. Díaz and G.R. Cutter, 2012: Bioturbation in a Declining Oxygen Environment, in situ Observations from Wormcam. PLoS One, 7(4), e34539, doi:10.1371/journal.pone.0034539.
  736. Sperling, E.A. et al., 2013: Oxygen, ecology, and the Cambrian radiation of animals. PNAS, 110(33), 13446–13451, doi:10.1073/pnas.1312778110.
  737. Woulds, C. et al., 2009: The short-term fate of organic carbon in marine sediments: Comparing the Pakistan margin to other regions. Deep Sea Res. Pt. II, 56(6–7), 393–402, doi:10.1016/j.dsr2.2008.10.008.
  738. Levin, L.A. et al., 2013: Macrofaunal colonization across the Indian margin oxygen minimum zone. Biogeosciences, 10(11), 7161–7177, doi:10.5194/bg-10-7161-2013.
  739. Smith, B., I. Burton, R. Klein and J. Wandel, 2000: An anatomy of adaptation to climate change and variability. Clim. Change, 45(1), 223–251, doi:10.1023/A:1005661622966.
  740. Levin, L.A. and P.K. Dayton, 2009: Ecological theory and continental margins: where shallow meets deep. Trends Ecol. Evol., 24(11), 606–617, doi:10.1016/j.tree.2009.04.012.
  741. Deutsch, C. et al., 2011: Climate-Forced Variability of Ocean Hypoxia. Science, 333(6040), 336.
  742. Taylor, J.R. et al., 2014: Physiological effects of environmental acidification in the deep sea urchin Strongylocentrotus fragilis. Biogeosciences, 11(5), 1413–1423, doi:10.5194/bg-11-1413-2014.
  743. Dissard, D., G. Nehrke, G. J. Reichart and J. Bijma, 2010: Impact of seawater CO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: results from culturing experiments with Ammonia tepida. Biogeosciences, 7(1), 81–93, doi:10.5194/bg-7-81-2010.
  744. Haynert, K. et al., 2011: Biometry and dissolution features of the benthic foraminifer Ammonia aomoriensis at high pCO2. Mar. Ecol. Prog. Ser., 432, 53–67.
  745. Keul, N., G. Langer, L.J. de Nooijer and J. Bijma, 2013: Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration. Biogeosciences, 10(10), 6185–6198, doi:10.5194/bg-10-6185-2013.
  746. McIntyre-Wressnig, A., J.M. Bernhard, J.C. Wit and D.C. McCorkle, 2014: Ocean acidification not likely to affect the survival and fitness of two temperate benthic foraminiferal species: results from culture experiments. J. Foramin. Res., 44(4), 341–351.
  747. Wit, J.C., M.M. Davis, D.C. McCorkle and J.M. Bernhard, 2016: A short-term survival experiment assessing impacts of ocean acidification and hypoxia on the benthic foraminifer Globobulimina turgida. J. Foramin. Res., 46(1), 25–33.
  748. Wit, J.C., M.M. Davis, D.C. McCorkle and J.M. Bernhard, 2016: A short-term survival experiment assessing impacts of ocean acidification and hypoxia on the benthic foraminifer Globobulimina turgida. J. Foramin. Res., 46(1), 25–33.
  749. Webster, N.S. et al., 2016: Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci. Rep., 6(1), doi:10.1038/srep19324.
  750. van Dijk, I. et al., 2017: Combined Impacts of Ocean Acidification and Dysoxia On Survival and Growth of Four Agglutinating Foraminifera. J. Foramin. Res., 47(3), 294–303.
  751. Taylor, J.R. et al., 2014: Physiological effects of environmental acidification in the deep sea urchin Strongylocentrotus fragilis. Biogeosciences, 11(5), 1413–1423, doi:10.5194/bg-11-1413-2014.
  752. Sato KN, Andersson AJ, Day JMD, Taylor JRA, Frank MB, Jung J-Y, McKittrick J and Levin LA (2018) Response of Sea Urchin Fitness Traits to Environmental Gradients Across the Southern California Oxygen Minimum Zone. Front. Mar. Sci. 5:258. doi: 10.3389/fmars.2018.00258
  753. Danovaro, R. et al., 2001: Deep sea ecosystem response to climate changes: the eastern Mediterranean case study. Trends Ecol. Evol., 16(9), 505–510, doi:10.1016/S0169-5347(01)02215-7.
  754. Danovaro, R., A. Dell’Anno and A. Pusceddu, 2004: Biodiversity response to climate change in a warm deep sea. Ecol. Lett., 7(9), 821–828, doi:10.1111/j.1461-0248.2004.00634.x.
  755. Yodnarasri, S. et al., 2008: Is there any seasonal variation in marine nematodes within the sediments of the intertidal zone? Mar. Pollut. Bull., 57(1), 149–154, doi:10.1016/j.marpolbul.2008.04.016.
  756. Barry, J.P. et al., 2004: Effects of Direct Ocean CO2 Injection on Deep sea Meiofauna. J. Oceanogr., 60(4), 759–766, doi:10.1007/s10872-004-5768-8.
  757. Fleeger, J.W. et al., 2006: Simulated sequestration of anthropogenic carbon dioxide at a deep sea site: Effects on nematode abundance and biovolume. Deep sea Res. Pt. I, 53(7), 1135–1147, doi:10.1016/j.dsr.2006.05.007.
  758. Fleeger, J.W. et al., 2010: The response of nematodes to deep sea CO2 sequestration: A quantile regression approach. Deep sea Res. Pt. I, 57(5), 696–707, doi:10.1016/j.dsr.2010.03.003.
  759. Gobler, C.J. and H. Baumann, 2016: Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol. Lett., 12(5), 20150976, doi:10.1098/rsbl.2015.0976.
  760. Yool, A. et al., 2017: Big in the benthos: Future change of seafloor community biomass in a global, body size-resolved model. Global Change Biol., 23(9), 3554–3566, doi:10.1111/gcb.13680.
  761. Wei, C.-L. et al., 2011: Global Patterns and Predictions of Seafloor Biomass Using Random Forests. PLoS One, 5(12), e15323, doi:10.1371/journal.pone.0015323.
  762. Wei, C.-L. et al., 2011: Global Patterns and Predictions of Seafloor Biomass Using Random Forests. PLoS One, 5(12), e15323, doi:10.1371/journal.pone.0015323.
  763. Jones, D.O. et al., 2014: Global reductions in seafloor biomass in response to climate change. Glob Chang Biol, 20(6), 1861–72, doi:10.1111/gcb.12480.
  764. Jones, D.O. et al., 2014: Global reductions in seafloor biomass in response to climate change. Glob Chang Biol, 20(6), 1861–72, doi:10.1111/gcb.12480.
  765. Gehlen, M. et al., 2014: Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk. Biogeosciences, 11(23), 6955–6967, doi:10.5194/bg-11-6955-2014.
  766. Canals, M. et al., 2006: Flushing submarine canyons. Nature, 444(7117), 354–357, doi:10.1038/nature05271.
  767. Pusceddu, A. et al., 2010: Ecosystem effects of dense water formation on deep Mediterranean Sea ecosystems: an overview. Adv. Oceanogr. Limnol., 1(1), 67–83, doi:10.1080/19475721003735765.
  768. Pruski, A.M. et al., 2017: Energy transfer in the Congo deep sea fan: From terrestrially-derived organic matter to chemosynthetic food webs. Deep Sea Res. Pt. II, 142, 197–218, doi:10.1016/j.dsr2.2017.05.011.
  769. Tittensor, D.P. et al., 2011: Species-energy relationships in deep sea molluscs. Biol. Lett., 7(5), 718–722, doi:10.1098/rsbl.2010.1174.
  770. Thresher, R.E., J.M. Guinotte, R.J. Matear and A.J. Hobday, 2015: Options for managing impacts of climate change on a deep sea community. Nat. Clim. Change, 5(7), 635–639, doi:10.1038/nclimate2611.
  771. Henry, L.A. et al., 2016: Seamount egg‐laying grounds of the deep‐water skate Bathyraja richardsoni. J. Fish Biol., 89(2), 1473–1481, doi:10.1111/jfb.13041.
  772. Fox, A.D., L.-A. Henry, D.W. Corne and J.M. Roberts, 2016: Sensitivity of marine protected area network connectivity to atmospheric variability. R. Soc. Open Sci., 3(11), 160494.
  773. Gehlen, M. et al., 2014: Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk. Biogeosciences, 11(23), 6955–6967, doi:10.5194/bg-11-6955-2014.
  774. NOAA, 2013: World Ocean Atlas 2013 version 2. [Available at: http://www.nodc.noaa.gov/OC5/woa13%5D. Accessed: 2019/09/30.
  775. Harris, P.T. and T. Whiteway, 2011: Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar. Geol., 285(1), 69–86, doi:10.1016/j.margeo.2011.05.008.
  776. Kim, T.-W. et al., 2011: Increasing N Abundance in the Northwestern Pacific Ocean Due to Atmospheric Nitrogen Deposition. Science, 334(6055), 505, doi:10.1126/science.1206583.
  777. Riou, V. et al., 2010: Mixotrophy in the deep sea: a dual endosymbiotic hydrothermal mytilid assimilates dissolved and particulate organic matter. Mar. Ecol. Prog. Ser., 405, 187–201.
  778. Riekenberg, P.M., R. Carney and B. Fry, 2016: Trophic plasticity of the methanotrophic mussel Bathymodiolus childressi in the Gulf of Mexico. Mar. Ecol. Prog. Ser., 547, 91–106.
  779. Demopoulos, A.W.J. et al., 2019: Examination of Bathymodiolus childressi nutritional sources, isotopic niches, and food-web linkages at two seeps in the US Atlantic margin using stable isotope analysis and mixing models. Deep sea Res. Pt. I, doi:10.1016/j.dsr.2019.04.002.
  780. Dixon, D.R. et al., 2006: Evidence of seasonal reproduction in the Atlantic vent mussel Bathymodiolus azoricus, and an apparent link with the timing of photosynthetic primary production. J. Mar. Biol. Assoc. U.K. , 86(6), 1363–1371, doi:10.1017/S0025315406014391.
  781. Tyler, P. et al., 2007: Gametogenic periodicity in the chemosynthetic cold-seep mussel “Bathymodiolus” childressi. Mar. Biol., 150(5), 829–840, doi:10.1007/s00227-006-0362-9.
  782. Dubilier, N., C. Bergin and C. Lott, 2008: Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat. Rev. Microbiol., 6, 725, doi:10.1038/nrmicro1992.
  783. Sweet, M.J. and M.T. Bulling, 2017: On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Front. Mar. Sci., 4(9), doi:10.3389/fmars.2017.00009.
  784. Stramma, L., G.C. Johnson, J. Sprintall and V. Mohrholz, 2008: Expanding Oxygen-Minimum Zones in the Tropical Oceans. Science, 320(5876), 655.
  785. Schmidtko, S., L. Stramma and M. Visbeck, 2017: Decline in global oceanic oxygen content during the past five decades. Nature, 542(7641), 335–339, doi:10.1038/nature21399.
  786. Phrampus, B.J. and M.J. Hornbach, 2012: Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. Nature, 490(7421), 527–+, doi:10.1038/nature11528.
  787. Boetius, A. and F. Wenzhoefer, 2013: Seafloor oxygen consumption fuelled by methane from cold seeps. Nat. Geosci., 6(9), 725–734, doi:10.1038/NGEO1926.
  788. Herring, P.J. and D.R. Dixon, 1998: Extensive deep sea dispersal of postlarval shrimp from a hydrothermal vent. Deep sea Res. Pt. I, 45(12), 2105–2118, doi:10.1016/S0967-0637(98)00050-8.
  789. Arellano, S.M. et al., 2014: Larvae from deep sea methane seeps disperse in surface waters. Proc. Roy. Soc. B. Biol., 281(1786), 20133276, doi:10.1098/rspb.2013.3276.
  790. Stramma, L., G.C. Johnson, J. Sprintall and V. Mohrholz, 2008: Expanding Oxygen-Minimum Zones in the Tropical Oceans. Science, 320(5876), 655.
  791. Fox, A.D., L.-A. Henry, D.W. Corne and J.M. Roberts, 2016: Sensitivity of marine protected area network connectivity to atmospheric variability. R. Soc. Open Sci., 3(11), 160494.
  792. Adams, C.A., J.E. Andrews and T. Jickells, 2012: Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Sci. Total Environ., 434, 240–251, doi:10.1016/j.scitotenv.2011.11.058.
  793. Cordes, E.E. et al., 2010: The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Mar. Ecol-Evol. Persp., 31(1), 51–65, doi:10.1111/j.1439-0485.2009.00334.x.
  794. Levin, L.A. et al., 2016: Hydrothermal Vents and Methane Seeps: Rethinking the Sphere of Influence. Front. Mar. Sci., 3, 72.
  795. Buhl-Mortensen, L. et al., 2010: Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol-Evol. Persp., 31(1), 21–50, doi:10.1111/j.1439-0485.2010.00359.x.
  796. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  797. Form, A.U. and U. Riebesell, 2011: Acclimation to ocean acidification during long-term CO2 exposure in the cold water coral Lophelia pertusa. Global Change Biol., 18(3), 843–853, doi:10.1111/j.1365-2486.2011.02583.x.
  798. Rodolfo-Metalpa, R. et al., 2015: Calcification is not the Achilles’ heel of cold water corals in an acidifying ocean. Global Change Biol., 21(6), 2238–2248, doi:10.1111/gcb.12867.
  799. Gori, A. et al., 2016: Physiological response of the cold water coral Desmophyllum dianthusto thermal stress and ocean acidification. Peerj, 4, e1606, doi:10.7717/peerj.1606.
  800. Addamo, A.M. et al., 2016: Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol. Biol., 16(1), 108.
  801. Georgian, S.E. et al., 2016: Biogeographic variability in the physiological response of the cold water coralLophelia pertusato ocean acidification. Mar. Ecol., 37(6), 1345–1359, doi:10.1111/maec.12373.
  802. Kurman, M.D. et al., 2017: Intra-Specific Variation Reveals Potential for Adaptation to Ocean Acidification in a Cold water Coral from the Gulf of Mexico. Front. Mar. Sci., 4, 111.
  803. Fillinger, L. and C. Richter, 2013: Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold water coral thriving at low pH. Peerj, 1, e194.
  804. Movilla, J. et al., 2014: Resistance of two Mediterranean cold water coral species to low-pH conditions. Water, 6(1), 59–67.
  805. Baco, A. R. et al., 2017: Defying dissolution: discovery of deep sea scleractinian coral reefs in the North Pacific. Sci. Rep., 7(1), 5436.
  806. Hennige, S.J. et al., 2015: Hidden impacts of ocean acidification to live and dead coral framework. Proc. Biol. Sci., 282(1813), doi:10.1098/rspb.2015.0990.
  807. Lunden, J.J. et al., 2014: Acute survivorship of the deep sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front. Mar. Sci., 1, 419, doi:10.3389/fmars.2014.00078.
  808. Hennige, S.J. et al., 2015: Hidden impacts of ocean acidification to live and dead coral framework. Proc. Biol. Sci., 282(1813), doi:10.1098/rspb.2015.0990.
  809. Büscher, J.V., A.U. Form and U. Riebesell, 2017: Interactive Effects of Ocean Acidification and Warming on Growth, Fitness and Survival of the Cold water Coral Lophelia pertusa under Different Food Availabilities. Front. Mar. Sci., 4, 119, doi:10.3389/fmars.2017.00101.
  810. Kurman, M.D. et al., 2017: Intra-Specific Variation Reveals Potential for Adaptation to Ocean Acidification in a Cold water Coral from the Gulf of Mexico. Front. Mar. Sci., 4, 111.
  811. Hennige, S.J. et al., 2015: Hidden impacts of ocean acidification to live and dead coral framework. Proc. Biol. Sci., 282(1813), doi:10.1098/rspb.2015.0990.
  812. Schönberg, C.H.L. et al., 2017: Bioerosion: the other ocean acidification problem. ICES J. Mar. Sci., 74(4), 895–925, doi:10.1093/icesjms/fsw254.
  813. Hennige, S.J. et al., 2015: Hidden impacts of ocean acidification to live and dead coral framework. Proc. Biol. Sci., 282(1813), doi:10.1098/rspb.2015.0990.
  814. Büscher, J.V., A.U. Form and U. Riebesell, 2017: Interactive Effects of Ocean Acidification and Warming on Growth, Fitness and Survival of the Cold water Coral Lophelia pertusa under Different Food Availabilities. Front. Mar. Sci., 4, 119, doi:10.3389/fmars.2017.00101.
  815. Brooke, S. et al., 2013: Temperature tolerance of the deep sea coral Lophelia pertusa from the southeastern United States. Deep sea Res. Pt. II, 92, 240–248.
  816. Lunden, J.J. et al., 2014: Acute survivorship of the deep sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front. Mar. Sci., 1, 419, doi:10.3389/fmars.2014.00078.
  817. Hanz, U. et al., 2019: Environmental factors influencing cold water coral ecosystems in the oxygen minimum zones on the Angolan and Namibian margins. Biogeosciences, (In review) 1–37.
  818. Lartaud, F. et al., 2014: Temporal changes in the growth of two Mediterranean cold water coral species, in situ and in aquaria. Deep Sea Res. Pt. II, 99, 64–70, doi:10.1016/j.dsr2.2013.06.024.
  819. Naumann, M.S., C. Orejas and C. Ferrier-Pagès, 2014: Species-specific physiological response by the cold water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep Sea Res. Pt. II, 99, 36–41.
  820. Baco, A. R. et al., 2017: Defying dissolution: discovery of deep sea scleractinian coral reefs in the North Pacific. Sci. Rep., 7(1), 5436.
  821. Schulz, K.G. et al., 2013: Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences (BG), 10, 161–180.
  822. Strand, R. et al., 2017: The response of a boreal deep sea sponge holobiont to acute thermal stress. Sci. Rep., 7(1), 1660, doi:10.1038/s41598-017-01091-x.
  823. Roberts, C.M. et al., 2017: Marine reserves can mitigate and promote adaptation to climate change. PNAS, 114(24), 6167–6175.
  824. Jones, D.O. et al., 2014: Global reductions in seafloor biomass in response to climate change. Glob Chang Biol, 20(6), 1861–72, doi:10.1111/gcb.12480.
  825. Höfer, J. et al., 2018: All you can eat: the functional response of the cold water coral Desmophyllum dianthus feeding on krill and copepods. Peerj, 6, e5872.
  826. Middelburg, J.J. et al., 2015: Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold water corals. Sci. Rep., 5, 17962.
  827. Thresher, R.E., J.M. Guinotte, R.J. Matear and A.J. Hobday, 2015: Options for managing impacts of climate change on a deep sea community. Nat. Clim. Change, 5(7), 635–639, doi:10.1038/nclimate2611.
  828. Guinotte, J.M. et al., 2006: Will human-induced changes in seawater chemistry alter the distribution of deep sea scleractinian corals? Front. Ecol. Environ., 4(3), 141–146, doi:10.1890/1540-9295(2006)004[0141:WHCISC]2.0.CO;2.
  829. Eyre, B.D., A.J. Andersson and T. Cyronak, 2014: Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change, 4, 969 EP -, doi:10.1038/nclimate2380.
  830. Fox, A.D., L.-A. Henry, D.W. Corne and J.M. Roberts, 2016: Sensitivity of marine protected area network connectivity to atmospheric variability. R. Soc. Open Sci., 3(11), 160494.
  831. Roberts, C.M. et al., 2017: Marine reserves can mitigate and promote adaptation to climate change. PNAS, 114(24), 6167–6175.
  832. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  833. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  834. Gattuso, J.-P. et al., 2015: OCEANOGRAPHY. Contrasting futures for ocean and society from different anthropogenic CO₂ emissions scenarios. Science, 349(6243), 1 -10, doi:10.1126/science.aac4722.
  835. Chen, C.-T. A., 2003: New vs. export production on the continental shelf. Deep Sea Res. Pt. II, 50(6), 1327–1333, doi:10.1016/S0967-0645(03)00026-2.
  836. Bauer, J.E. et al., 2013: The changing carbon cycle of the coastal ocean. Nature, 504(7478), 61–70, doi:10.1038/nature12857.
  837. Scales, K.L. et al., 2014: Review: On the Front Line: frontal zones as priority at-sea conservation areas for mobile marine vertebrates. J. Appl. Ecol., 51(6), 1575–1583, doi:10.1111/1365-2664.12330.
  838. McLeod, E. et al., 2011: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ., 9(10), 552–560, doi:10.1890/110004.
  839. Duarte, C.M. et al., 2013: Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuar. Coast., 36(2), 221–236.
  840. Kelleway, J.J. et al., 2017a: Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biol. 23(10), 3967-3983.
  841. Rilov, G., 2016: Multi-species collapses at the warm edge of a warming sea. Sci. Rep., 6, 36897, doi:10.1038/srep36897.
  842. Chefaoui, R. M., C. M. Duarte and E. A. Serrão, 2018: Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Global Change Biol., 24(10), 4919-4928, doi:10.1111/gcb.14401.
  843. Sharples, J., J.J. Middelburg, K. Fennel and T.D. Jickells, 2017: What proportion of riverine nutrients reaches the open ocean? Global Biogeochem. Cy., 31(1), 39–58.
  844. Chen, N. et al., 2018: Storm induced estuarine turbidity maxima and controls on nutrient fluxes across river-estuary-coast continuum. Sci. Total Environ., 628, 1108–1120.
  845. Laurent, A., K. Fennel, D.S. Ko and J. Lehrter, 2018: Climate change projected to exacerbate impacts of coastal eutrophication in the northern Gulf of Mexico. J. Geophys. Res-Oceans.123(5), 3408-3426.
  846. Zahid, A. et al., 2018: Model Impact of Climate Change on the Groundwater Flow and Salinity Encroachment in the Coastal Areas of Bangladesh. In: Groundwater of South Asia. Springer, pp. 545–568.
  847. Levin, L.A. and N. Le Bris, 2015: The deep ocean under climate change. Science, 350(6262), 766–768, doi:10.1126/science.aad0126.
  848. Diop, S. and P. Scheren, 2016: Sustainable oceans and coasts: Lessons learnt from Eastern and Western Africa. Estuar. Coast. Shelf Sci., 183, 327–339.
  849. Maavara, T., R. Lauerwald, P. Regnier and P. Van Cappellen, 2017: Global perturbation of organic carbon cycling by river damming. Nat. Commun., 8, 15347.
  850. Dunn, F.E. et al., 2018: Projections of historical and 21st century fluvial sediment delivery to the Ganges-Brahmaputra-Meghna, Mahanadi, and Volta deltas. Sci. Total Environ., 642, 105–116.
  851. Gattuso, J.-P. et al., 2015: OCEANOGRAPHY. Contrasting futures for ocean and society from different anthropogenic CO₂ emissions scenarios. Science, 349(6243), 1 -10, doi:10.1126/science.aac4722.
  852. Boyd, P.W. et al., 2018: Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Global Change Biol., 24(6), 2239–2261, doi:10.1111/gcb.14102.
  853. Hammond, M.L., C. Beaulieu, S.K. Sahu and S.A. Henson, 2017: Assessing trends and uncertainties in satellite-era ocean chlorophyll using space-time modeling. Global Biogeochem. Cy., 31(7), 1103–1117, doi:10.1002/2016gb005600.
  854. Reusch, T.B.H. et al., 2018: The Baltic Sea as a time machine for the future coastal ocean. Sci. Adv., 4(5), eaar8195, doi:10.1126/sciadv.aar8195.
  855. Wong, P.P., et al. 2014a: Coastal systems and low-lying areas. In: Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Field, C.B., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp. 361-409. ISBN: 978-1-107-05807-1
  856. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  857. Basset, A., M. Elliott, R.J. West and J.G. Wilson, 2013: Estuarine and lagoon biodiversity and their natural goods and services. Estuar. Coast. Shelf Sci., 132, 1–4, doi:10.1016/j.ecss.2013.05.018.
  858. Wong, P.P., et al. 2014a: Coastal systems and low-lying areas. In: Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Field, C.B., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp. 361-409. ISBN: 978-1-107-05807-1
  859. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  860. Ross, A.C. et al., 2015: Sea level rise and other influences on decadal-scale salinity variability in a coastal plain estuary. Estuar. Coast. Shelf Sci., 157, 79–92, doi:10.1016/j.ecss.2015.01.022.
  861. Cardoso-Mohedano, J.-G. et al., 2018: Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents. Estuar. Coast. Shelf Sci., 203, 72–79, doi:10.1016/j.ecss.2018.01.022.
  862. Hallett, C.S. et al., 2018: Observed and predicted impacts of climate change on the estuaries of south-western Australia, a Mediterranean climate region. Reg. Environ. Change, 18(5), 1357–1373, doi:10.1007/s10113-017-1264-8.
  863. Zahid, A. et al., 2018: Model Impact of Climate Change on the Groundwater Flow and Salinity Encroachment in the Coastal Areas of Bangladesh. In: Groundwater of South Asia. Springer, pp. 545–568.
  864. Robins, P.E. et al., 2016: Impact of climate change on UK estuaries: A review of past trends and potential projections. Estuar. Coast. Shelf Sci., 169, 119–135, doi:10.1016/j.ecss.2015.12.016.
  865. Raimonet, M. and J.E. Cloern, 2017: Estuary-ocean connectivity: fast physics, slow biology. Global Change Biol., 23(6), 2345–2357, doi:10.1111/gcb.13546.
  866. Hallett, C.S. et al., 2018: Observed and predicted impacts of climate change on the estuaries of south-western Australia, a Mediterranean climate region. Reg. Environ. Change, 18(5), 1357–1373, doi:10.1007/s10113-017-1264-8.
  867. Addino, M.S. et al., 2019: Growth changes of the stout razor clam Tagelus plebeius (Lightfoot, 1786) under different salinities in SW Atlantic estuaries. J. Sea Res., 146, 14–23, doi:10.1016/j.seares.2019.01.005.
  868. Little, S., P.J. Wood and M. Elliott, 2017: Quantifying salinity-induced changes on estuarine benthic fauna: The potential implications of climate change. Estuar. Coast. Shelf Sci., 198, 610–625, doi:10.1016/j.ecss.2016.07.020.
  869. Hudson, D.M. et al., 2018: Physiological and behavioral response of the Asian shore crab, Hemigrapsus sanguineus, to salinity: implications for estuarine distribution and invasion. Peerj, 6, e5446, doi:10.7717/peerj.5446.
  870. Addino, M.S. et al., 2019: Growth changes of the stout razor clam Tagelus plebeius (Lightfoot, 1786) under different salinities in SW Atlantic estuaries. J. Sea Res., 146, 14–23, doi:10.1016/j.seares.2019.01.005.
  871. Hallett, C.S. et al., 2018: Observed and predicted impacts of climate change on the estuaries of south-western Australia, a Mediterranean climate region. Reg. Environ. Change, 18(5), 1357–1373, doi:10.1007/s10113-017-1264-8.
  872. Maavara, T., R. Lauerwald, P. Regnier and P. Van Cappellen, 2017: Global perturbation of organic carbon cycling by river damming. Nat. Commun., 8, 15347.
  873. Maavara, T., R. Lauerwald, P. Regnier and P. Van Cappellen, 2017: Global perturbation of organic carbon cycling by river damming. Nat. Commun., 8, 15347.
  874. Chen, N. et al., 2018: Storm induced estuarine turbidity maxima and controls on nutrient fluxes across river-estuary-coast continuum. Sci. Total Environ., 628, 1108–1120.
  875. Fennel, K. and J.M. Testa, 2019: Biogeochemical Controls on Coastal Hypoxia. Annu. Rev. Mar. Sci., 11(1), 105–130, doi:10.1146/annurev-marine-010318-095138.
  876. Breitberg, D. et al., 2015: And on Top of All That… Coping with Ocean Acidification in the Midst of Many Stressors. Oceanography, 25(2), 48–61, doi:10.5670/oceanog.2015.31.
  877. Gobler, C.J. and H. Baumann, 2016: Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol. Lett., 12(5), 20150976, doi:10.1098/rsbl.2015.0976.
  878. Anderson, C.R. et al., 2015: Living with harmful algal blooms in a changing world: strategies for modeling and mitigating their effects in coastal marine ecosystems. In Castal and Marine Hazards, Risks, and Disasters [J. F. Shroder, J.T. Ellis, D.J. Sherman eds.] Elsevier BV, Amsterdam, pp. 495–561. ISBN: 978-0-12-396483-0.
  879. Paerl, H.W., T.G. Otten and R. Kudela, 2018: Mitigating the Expansion of Harmful Algal Blooms Across the Freshwater-to-Marine Continuum. Environ. Sci. Technol., 52(10), 5519–5529, doi:10.1021/acs.est.7b05950.
  880. Baker-Austin, C., J. Trinanes, N. Gonzalez-Escalona and J. Martinez-Urtaza, 2017: Non-Cholera Vibrios: The Microbial Barometer of Climate Change. Trends Microbiol., 25(1), 76–84, doi:10.1016/j.tim.2016.09.008.
  881. Kopprio, G.A. et al., 2017: Biogeochemical and hydrological drivers of the dynamics of Vibrio species in two Patagonian estuaries. Sci. Total Environ., 579, 646–656, doi:10.1016/j.scitotenv.2016.11.045.
  882. Jeppesen, R. et al., 2018: Effects of Hypoxia on Fish Survival and Oyster Growth in a Highly Eutrophic Estuary. Estuar. Coast., 41(1), 89–98, doi:10.1007/s12237-016-0169-y.
  883. Warwick, R.M., J.R. Tweedley and I.C. Potter, 2018: Microtidal estuaries warrant special management measures that recognise their critical vulnerability to pollution and climate change. Mar. Pollut. Bull., 135, 41–46, doi:10.1016/j.marpolbul.2018.06.062.
  884. Wang, G. and W. Cai, 2013: Climate-change impact on the 20th-century relationship between the Southern Annular Mode and global mean temperature. Sci. Rep., 3(1), 2039, doi:10.1038/srep02039.
  885. Delworth, T.L. and F. Zeng, 2016: The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic Meridional Overturning Circulation. J. Clim., 29(3), 941–962, doi:10.1175/JCLI-D-15-0396.1.
  886. García-Mendoza, E. et al., 2018: Mass Mortality of Cultivated Northern Bluefin Tuna Thunnus thynnus orientalis Associated With Chattonella Species in Baja California, Mexico. Front. Mar. Sci., 5(454), doi:10.3389/fmars.2018.00454.
  887. Tweedley, J.R. et al., 2016: The hypoxia that developed in a microtidal estuary following an extreme storm produced dramatic changes in the benthos. Mar. Freshw. Res., 67(3), 327–341.
  888. Arias-Ortiz, A. et al., 2018: A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change, 8, 338–344
  889. Chen, N. et al., 2018: Storm induced estuarine turbidity maxima and controls on nutrient fluxes across river-estuary-coast continuum. Sci. Total Environ., 628, 1108–1120.
  890. Thomas, C.J. et al., 2015: Connectivity between submerged and near-sea-surface coral reefs: can submerged reef populations act as refuges? Divers. Distrib., 21(10), 1254–1266, doi:10.1111/ddi.12360.
  891. Abreu, P.C., J. Marangoni and C. Odebrecht, 2017: So close, so far: differences in long-term chlorophyll a variability in three nearby estuarine-coastal stations. Mar. Biol. Res., 13(1), 9–21, doi:10.1080/17451000.2016.1189081.
  892. Marques, S.C. et al., 2017: Evidence for Changes in Estuarine Zooplankton Fostered by Increased Climate Variance. Ecosystems,21(1), 56-67, doi:10.1007/s10021-017-0134-z.
  893. Arias-Ortiz, A. et al., 2018: A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change, 8, 338–344
  894. López-Abbate, M.C. et al., 2019: Long-term changes on estuarine ciliates linked with modifications on wind patterns and water turbidity. Mar. Environ. Res., 144, 46–55, doi:10.1016/j.marenvres.2018.12.001.
  895. Stock, C.A., J.P. Dunne and J.G. John, 2014: Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences, 11(24), 7125.
  896. Zhou, X. et al., 2017: Prospective scenarios of the saltwater intrusion in an estuary under climate change context using Bayesian neural networks. Stochastic Environmental Research and Risk Assessment, 31(4), 981–991.
  897. Hallett, C.S. et al., 2018: Observed and predicted impacts of climate change on the estuaries of south-western Australia, a Mediterranean climate region. Reg. Environ. Change, 18(5), 1357–1373, doi:10.1007/s10113-017-1264-8.
  898. Zahid, A. et al., 2018: Model Impact of Climate Change on the Groundwater Flow and Salinity Encroachment in the Coastal Areas of Bangladesh. In: Groundwater of South Asia. Springer, pp. 545–568.
  899. Elliott, M., J.W. Day, R. Ramachandran and E. Wolanski, 2019: Chapter 1 – A Synthesis: What Is the Future for Coasts, Estuaries, Deltas and Other Transitional Habitats in 2050 and Beyond? In: Coasts and Estuaries [Wolanski, E., J.W. Day, M. Elliott and R. Ramachandran (eds.)]. Elsevier, pp. 1–28. ISBN: 9780128140031
  900. Brown, S. et al., 2018b: What are the implications of sea level rise for a 1.5, 2 and 3°C rise in global mean temperatures in the Ganges-Brahmaputra-Meghna and other vulnerable deltas? Reg. Environ. Change, 18(6), 1829–1842, doi:10.1007/s10113-018-1311-0.
  901. Schuerch, M. et al., 2018: Future response of global coastal wetlands to sea level rise. Nature, 561(7722), 231–234, doi:10.1038/s41586-018-0476-5.
  902. Breitburg, D. et al., 2018: Declining oxygen in the global ocean and coastal waters. Science, 359(6371).
  903. Laurent, A., K. Fennel, D.S. Ko and J. Lehrter, 2018: Climate change projected to exacerbate impacts of coastal eutrophication in the northern Gulf of Mexico. J. Geophys. Res-Oceans.123(5), 3408-3426.
  904. Sinha, P.R. et al., 2017: Evaluation of ground-based black carbon measurements by filter-based photometers at two Arctic sites. J. Geophys. Res-Atmos., 122(6), 3544–3572, doi:10.1002/2016JD025843.
  905. Du, J. et al., 2018: Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay. Sci. Total Environ., 630, 707–717, doi:10.1016/j.scitotenv.2018.02.265.
  906. Hallett, C.S. et al., 2018: Observed and predicted impacts of climate change on the estuaries of south-western Australia, a Mediterranean climate region. Reg. Environ. Change, 18(5), 1357–1373, doi:10.1007/s10113-017-1264-8.
  907. Warwick, R.M., J.R. Tweedley and I.C. Potter, 2018: Microtidal estuaries warrant special management measures that recognise their critical vulnerability to pollution and climate change. Mar. Pollut. Bull., 135, 41–46, doi:10.1016/j.marpolbul.2018.06.062.
  908. Altieri, A.H. and K.B. Gedan, 2015: Climate change and dead zones. Global Change Biol., 21(4), 1395–1406.
  909. Zhang, D. et al., 2016: Reviews of power supply and environmental energy conversions for artificial upwelling. Renew. Sustain. Energy Rev., 56, 659–668, doi:10.1016/j.rser.2015.11.041.
  910. Cai, W.-J. et al., 2017: Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay. Nat. Commun., 8(1), 369, doi:10.1038/s41467-017-00417-7.
  911. Laurent, A. et al., 2017: Eutrophication‐induced acidification of coastal waters in the northern Gulf of Mexico: Insights into origin and processes from a coupled physical‐biogeochemical model. Geophys. Res. Lett., 44(2), 946–956.
  912. Beck, M.W. et al., 2011: Oyster Reefs at Risk and Recommendations for Conservation, Restoration, and Management. BioScience, 61(2), 107–116, doi:10.1525/bio.2011.61.2.5.
  913. Duarte, C.M. et al., 2013: Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuar. Coast., 36(2), 221–236.
  914. Feely, R.A. et al., 2016: Chemical and biological impacts of ocean acidification along the west coast of North America. Estuar. Coast. Shelf Sci., 183, 260–270, doi:10.1016/j.ecss.2016.08.043.
  915. Carstensen, J., M. Chierici, B. G. Gustafsson and E. Gustafsson, 2018: Long-Term and Seasonal Trends in Estuarine and Coastal Carbonate Systems. Global Biogeochem. Cy., 32(3), 497–513, doi:10.1002/2017GB005781.
  916. Hallett, C.S. et al., 2018: Observed and predicted impacts of climate change on the estuaries of south-western Australia, a Mediterranean climate region. Reg. Environ. Change, 18(5), 1357–1373, doi:10.1007/s10113-017-1264-8.
  917. Elliott, M., J.W. Day, R. Ramachandran and E. Wolanski, 2019: Chapter 1 – A Synthesis: What Is the Future for Coasts, Estuaries, Deltas and Other Transitional Habitats in 2050 and Beyond? In: Coasts and Estuaries [Wolanski, E., J.W. Day, M. Elliott and R. Ramachandran (eds.)]. Elsevier, pp. 1–28. ISBN: 9780128140031
  918. Prandle, D. and A. Lane, 2015: Sensitivity of estuaries to sea level rise: Vulnerability indices. Estuar. Coast. Shelf Sci., 160, 60–68, doi:10.1016/j.ecss.2015.04.001.
  919. Warwick, R.M., J.R. Tweedley and I.C. Potter, 2018: Microtidal estuaries warrant special management measures that recognise their critical vulnerability to pollution and climate change. Mar. Pollut. Bull., 135, 41–46, doi:10.1016/j.marpolbul.2018.06.062.
  920. McLeod, E. et al., 2011: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ., 9(10), 552–560, doi:10.1890/110004.
  921. Wong, P.P. et al., 2014b: Coastal systems and low-lying areas. Clim. Change, 2104, 361–409.
  922. Wong, P.P. et al., 2014b: Coastal systems and low-lying areas. Clim. Change, 2104, 361–409.
  923. Li, X., R. Bellerby, C. Craft and S.E. Widney, 2018a: Coastal wetland loss, consequences, and challenges for restoration. Anthropocene Coasts, 1(0), 1–15.
  924. Adam, P., 2002: Saltmarshes in a time of change. Environ. Conserv., 29(1), 39–61.
  925. Wang, W., H. Liu, Y. Li and J. Su, 2014: Development and management of land reclamation in China. Ocean Coast. Manage., 102, 415–425.
  926. Kroeger, K.D., S. Crooks, S. Moseman-Valtierra and J. Tang, 2017: Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention. Sci. Rep., 7(1), 11914.
  927. Thomas, N. et al., 2017: Distribution and drivers of global mangrove forest change, 1996–2010. PLoS One, 12(6), e0179302, doi:10.1371/journal.pone.0179302.
  928. Li, X., R. Bellerby, C. Craft and S.E. Widney, 2018a: Coastal wetland loss, consequences, and challenges for restoration. Anthropocene Coasts, 1(0), 1–15.
  929. Sippo, J.Z. et al., 2018: Mangrove mortality in a changing climate: An overview. Estuar. Coast. Shelf Sci., 215, 241–249, doi:10.1016/j.ecss.2018.10.011.
  930. Sippo, J.Z. et al., 2018: Mangrove mortality in a changing climate: An overview. Estuar. Coast. Shelf Sci., 215, 241–249, doi:10.1016/j.ecss.2018.10.011.
  931. Carugati, L. et al., 2018: Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci. Rep., 8(1), 13298, doi:10.1038/s41598-018-31683-0.
  932. Saintilan, N. et al., 2018: Climate Change Impacts on the Coastal Wetlands of Australia. Wetlands, doi:10.1007/s13157-018-1016-7.
  933. Lovelock, C.E. et al., 2015: The vulnerability of Indo-Pacific mangrove forests to sea level rise. Nature, 526, 559, doi:10.1038/nature15538.
  934. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  935. El-Hacen, E.-H. M. et al., 2018: Evidence for ‘critical slowing down’ in seagrass: a stress gradient experiment at the southern limit of its range. Sci. Rep., 8(1), 17263, doi:10.1038/s41598-018-34977-5.
  936. Marbà, N., D. Krause-Jensen, P. Masqué and C.M. Duarte, 2018: Expanding Greenland seagrass meadows contribute new sediment carbon sinks. Sci. Rep., 8(1), 14024, doi:10.1038/s41598-018-32249-w.
  937. Vergés, A. et al., 2018: Latitudinal variation in seagrass herbivory: Global patterns and explanatory mechanisms. Global Ecol. Biogeogr., 27(9), 1068–1079, doi:10.1111/geb.12767.
  938. Beca-Carretero, P., B. Olesen, N. Marbà and D. Krause-Jensen, 2018: Response to experimental warming in northern eelgrass populations: comparison across a range of temperature adaptations. Mar. Ecol. Prog. Ser., 589, 59–72.
  939. Duarte, B. et al., 2018: Climate Change Impacts on Seagrass Meadows and Macroalgal Forests: An Integrative Perspective on Acclimation and Adaptation Potential. Front. Mar. Sci., 5, 190.
  940. Nowicki, R.J. et al., 2017: Predicting seagrass recovery times and their implications following an extreme climate event. Mar. Ecol. Prog. Ser., 567, 79–93.
  941. Arias-Ortiz, A. et al., 2018: A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change, 8, 338–344
  942. Lin, H.-J. et al., 2018: The effects of El Niño-Southern Oscillation events on intertidal seagrass beds over a long-term timescale. Global Change Biol., 0(0), doi:10.1111/gcb.14404.
  943. Arias-Ortiz, A. et al., 2018: A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change, 8, 338–344
  944. Saintilan, N. et al., 2014: Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biol., 20(1), 147–157, doi:10.1111/gcb.12341.
  945. Saintilan, N. et al., 2018: Climate Change Impacts on the Coastal Wetlands of Australia. Wetlands, doi:10.1007/s13157-018-1016-7.
  946. Armitage, A.R., W.E. Highfield, S.D. Brody and P. Louchouarn, 2015: The Contribution of Mangrove Expansion to Salt Marsh Loss on the Texas Gulf Coast. PLoS One, 10(5), e0125404, doi:10.1371/journal.pone.0125404.
  947. Kelleway, J.J. et al., 2017a: Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biol. 23(10), 3967-3983.
  948. Lin, H.-J. et al., 2018: The effects of El Niño-Southern Oscillation events on intertidal seagrass beds over a long-term timescale. Global Change Biol., 0(0), doi:10.1111/gcb.14404.
  949. Bouma, T.J. et al., 2016: Short-term mudflat dynamics drive long-term cyclic salt marsh dynamics. Limnol. Oceanogr., 61(6), 2261–2275, doi:10.1002/lno.10374.
  950. Carey, J. et al., 2017: The declining role of organic matter in New England salt marshes. Estuar. Coast., 40(3), 626–639.
  951. Watson, E.B. et al., 2017b: Wetland Loss Patterns and Inundation-Productivity Relationships Prognosticate Widespread Salt Marsh Loss for Southern New England. Estuar. Coast., 40(3), 662–681, doi:10.1007/s12237-016-0069-1.
  952. Watson, E.B. et al., 2017b: Wetland Loss Patterns and Inundation-Productivity Relationships Prognosticate Widespread Salt Marsh Loss for Southern New England. Estuar. Coast., 40(3), 662–681, doi:10.1007/s12237-016-0069-1.
  953. Janousek, C.N. et al., 2017: Inundation, vegetation, and sediment effects on litter decomposition in Pacific Coast tidal marshes. Ecosystems, 20(7), 1296–1310.
  954. Piovan, M.J. et al., 2019: Germination Response to Osmotic Potential, Osmotic Agents, and Temperature of Five Halophytes Occurring along a Salinity Gradient. Int. J. Plant Sci., 180(4), 345–355, doi:10.1086/702663.
  955. Pratchett, M.S., A.S. Hoey and S.K. Wilson, 2014: Reef degradation and the loss of critical ecosystem goods and services provided by coral reef fishes. Curr. Opin. Environ. Sustain., 7(Supplement C), 37–43, doi:10.1016/j.cosust.2013.11.022.
  956. Raposa, K.B., R.L. Weber, M.C. Ekberg and W. Ferguson, 2017: Vegetation dynamics in Rhode Island salt marshes during a period of accelerating sea level rise and extreme sea level events. Estuar. Coast., 40(3), 640–650.
  957. McLeod, E. et al., 2011: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ., 9(10), 552–560, doi:10.1890/110004.
  958. Watson, E.B. et al., 2017b: Wetland Loss Patterns and Inundation-Productivity Relationships Prognosticate Widespread Salt Marsh Loss for Southern New England. Estuar. Coast., 40(3), 662–681, doi:10.1007/s12237-016-0069-1.
  959. Poffenbarger, H.J., B.A. Needelman and J.P. Megonigal, 2011: Salinity influence on methane emissions from tidal marshes. Wetlands, 31(5), 831–842.
  960. Martin, R.M. and S. Moseman-Valtierra, 2015: Greenhouse gas fluxes vary between Phragmites australis and native vegetation zones in coastal wetlands along a salinity gradient. Wetlands, 35(6), 1021–1031.
  961. Kroeger, K.D., S. Crooks, S. Moseman-Valtierra and J. Tang, 2017: Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention. Sci. Rep., 7(1), 11914.
  962. Tong, C. et al., 2018: Changes in pore-water chemistry and methane emission following the invasion of Spartina alterniflora into an oliogohaline marsh. Limnol. Oceanogr., 63(1), 384–396, doi:10.1002/lno.10637.
  963. Crotty, S.M., C. Angelini and M.D. Bertness, 2017: Multiple stressors and the potential for synergistic loss of New England salt marshes. PLOS ONE, 12(8), e0183058.
  964. Legault II, R., G.P. Zogg and S.E. Travis, 2018: Competitive interactions between native Spartina alterniflora and non-native Phragmites australis depend on nutrient loading and temperature. PLoS One, 13(2), e0192234.
  965. Zhang, D. et al., 2016: Reviews of power supply and environmental energy conversions for artificial upwelling. Renew. Sustain. Energy Rev., 56, 659–668, doi:10.1016/j.rser.2015.11.041.
  966. Tomas, F., B. Martínez‐Crego, G. Hernán and R. Santos, 2015: Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Global Change Biol., 21(11), 4021–4030, doi:10.1111/gcb.13024.
  967. Pagès, J.F. et al., 2017: Contrasting effects of ocean warming on different components of plant-herbivore interactions. Mar. Pollut. Bull., 134, 55–65.doi:10.1016/j.marpolbul.2017.10.036.
  968. York, P.H. et al., 2017: Identifying knowledge gaps in seagrass research and management: An Australian perspective. Mar. Environ. Res., 127, 163–172, doi:10.1016/j.marenvres.2016.06.006.
  969. Hyndes, G.A. et al., 2016: Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows. BioScience, 66(11), 938–948, doi:10.1093/biosci/biw111.
  970. Vergés, A. et al., 2018: Latitudinal variation in seagrass herbivory: Global patterns and explanatory mechanisms. Global Ecol. Biogeogr., 27(9), 1068–1079, doi:10.1111/geb.12767.
  971. Olsen, J.L. et al., 2016b: The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 530, 331, doi:10.1038/nature16548.
  972. Hernán, G. et al., 2017: Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat‐forming species. Global Change Biol., 23(11), 4530–4543, doi:10.1111/gcb.13768.
  973. Scott, A.L. et al., 2018: The Role of Herbivory in Structuring Tropical Seagrass Ecosystem Service Delivery. Front. Plant Sci,, 9(127), doi:10.3389/fpls.2018.00127.
  974. Blankespoor, B., S. Dasgupta and B. Laplante, 2014: Sea level rise and coastal wetlands. Ambio, 43(8), 996–1005, doi:10.1007/s13280-014-0500-4.
  975. Crosby, S.C. et al., 2016: Salt marsh persistence is threatened by predicted sea level rise. Estuar. Coast. Shelf Sci., 181, 93–99, doi:10.1016/j.ecss.2016.08.018.
  976. Spencer, T. et al., 2016: Global coastal wetland change under sea level rise and related stresses: The DIVA Wetland Change Model. Global Planet. Change, 139, 15–30, doi:10.1016/j.gloplacha.2015.12.018.
  977. Brown, S. et al., 2018b: What are the implications of sea level rise for a 1.5, 2 and 3°C rise in global mean temperatures in the Ganges-Brahmaputra-Meghna and other vulnerable deltas? Reg. Environ. Change, 18(6), 1829–1842, doi:10.1007/s10113-018-1311-0.
  978. Schuerch, M. et al., 2018: Future response of global coastal wetlands to sea level rise. Nature, 561(7722), 231–234, doi:10.1038/s41586-018-0476-5.
  979. Watson, E.B. et al., 2017a: Anthropocene Survival of Southern New England’s Salt Marshes. Estuar. Coast., 40(3), 617–625, doi:10.1007/s12237-016-0166-1.
  980. Valiela, I. et al., 2018: Transient coastal landscapes: Rising sea level threatens salt marshes. Sci. Total Environ., 640–641, 1148–1156, doi:10.1016/j.scitotenv.2018.05.235.
  981. Ruiz-Frau, A. et al., 2017: Current state of seagrass ecosystem services: Research and policy integration. Ocean Coast. Manage., 149, 107–115, doi:10.1016/j.ocecoaman.2017.10.004.
  982. Camp, E.F. et al., 2018: The Future of Coral Reefs Subject to Rapid Climate Change: Lessons from Natural Extreme Environments. Front. Mar. Sci., 5, 4.
  983. Savva, I. et al., 2018: Thermal tolerance of Mediterranean marine macrophytes: Vulnerability to global warming. Ecol. Evol., 8(23), 12032–12043, doi:10.1002/ece3.4663.
  984. Chefaoui, R. M., C. M. Duarte and E. A. Serrão, 2018: Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Global Change Biol., 24(10), 4919-4928, doi:10.1111/gcb.14401.
  985. Ward, R.D., D.A. Friess, R.H. Day and R.A. MacKenzie, 2016: Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Health Sustain., 2(4), e01211, doi:10.1002/ehs2.1211.
  986. Sasmito, S.D., D. Murdiyarso, D.A. Friess and S. Kurnianto, 2016: Can mangroves keep pace with contemporary sea level rise? A global data review. Wetlands Ecol. Manage., 24(2), 263–278, doi:10.1007/s11273-015-9466-7.
  987. Enwright, N.M., K.T. Griffith and M.J. Osland, 2016: Barriers to and opportunities for landward migration of coastal wetlands with sea level rise. Front. Ecol. Environ., 14(6), 307–316, doi:10.1002/fee.1282.
  988. Borchert, S.M., M.J. Osland, N.M. Enwright and K. Griffith, 2018: Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze. J. Appl. Ecol., 55(6), 2876–2887, doi:10.1111/1365-2664.13169.
  989. Luijendijk, A. et al., 2018: The State of the World’s Beaches. Sci. Rep., 8(1), 6641, doi:10.1038/s41598-018-24630-6.
  990. Defeo, O. et al., 2009: Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci., 81(1), 1–12, doi:10.1016/j.ecss.2008.09.022.
  991. Drius, M. et al., 2019: Not just a sandy beach. The multi-service value of Mediterranean coastal dunes. Sci. Total Environ., 668, 1139–1155, doi:10.1016/j.scitotenv.2019.02.364.
  992. Schlacher, T.A. and L. Thompson, 2013: Spatial structure on ocean-exposed sandy beaches: faunal zonation metrics and their variability. Mar. Ecol. Prog. Ser., 478, 43–55.
  993. van Puijenbroek, M.E.B. et al., 2017: Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging. Biogeosciences, 14(23), 5533–5549, doi:10.5194/bg-14-5533-2017.
  994. Wong, P.P. et al., 2014b: Coastal systems and low-lying areas. Clim. Change, 2104, 361–409.
  995. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  996. Castelle, B., S. Bujan, S. Ferreira and G. Dodet, 2017: Foredune morphological changes and beach recovery from the extreme 2013/2014 winter at a high-energy sandy coast. Mar. Geol., 385, 41–55, doi:10.1016/j.margeo.2016.12.006.
  997. Delgado-Fernandez, I., N. O’Keeffe and R.G.D. Davidson-Arnott, 2019: Natural and human controls on dune vegetation cover and disturbance. Sci. Total Environ., 672, 643–656, doi:10.1016/j.scitotenv.2019.03.494.
  998. Zinnert, J. C. et al., 2019: Connectivity in coastal systems: barrier island vegetation influences upland migration in a changing climate. Global Change Biol., 25(7), 2419-2430. doi:10.1111/gcb.14635.
  999. Zinnert, J. C. et al., 2019: Connectivity in coastal systems: barrier island vegetation influences upland migration in a changing climate. Global Change Biol., 25(7), 2419-2430. doi:10.1111/gcb.14635.
  1000. Castelle, B., S. Bujan, S. Ferreira and G. Dodet, 2017: Foredune morphological changes and beach recovery from the extreme 2013/2014 winter at a high-energy sandy coast. Mar. Geol., 385, 41–55, doi:10.1016/j.margeo.2016.12.006.
  1001. Kuriyama, Y. and S. Yanagishima, 2018: Regime shifts in the multi-annual evolution of a sandy beach profile. Earth Surface Proc. Landf., 43(15), 3133–3141, doi:10.1002/esp.4475.
  1002. Carcedo, M.C., S.M. Fiori and C.S. Bremec, 2017: Zonation of macrobenthos across a mesotidal sandy beach: Variability based on physical factors. J. Sea Res., 121, 1–10.
  1003. Delgado-Fernandez, I., N. O’Keeffe and R.G.D. Davidson-Arnott, 2019: Natural and human controls on dune vegetation cover and disturbance. Sci. Total Environ., 672, 643–656, doi:10.1016/j.scitotenv.2019.03.494.
  1004. Orlando, L., L. Ortega and O. Defeo, 2019: Multi-decadal variability in sandy beach area and the role of climate forcing. Estuar. Coast. Shelf Sci., 218, 197–203, doi:10.1016/j.ecss.2018.12.015.
  1005. Schoeman, D.S. et al., 2015: Edging along a warming coast: a range extension for a common sandy beach crab. PLoS One, 10(11), e0141976.
  1006. Orlando, L., L. Ortega and O. Defeo, 2019: Multi-decadal variability in sandy beach area and the role of climate forcing. Estuar. Coast. Shelf Sci., 218, 197–203, doi:10.1016/j.ecss.2018.12.015.
  1007. Vázquez, N.G. et al., 2016: Mass Mortalities Affecting Populations of the Yellow Clam Amarilladesma mactroide Along Its Geographic Range. J. of Shellfish Research, 35(4), 739–745.
  1008. Turra, A. et al., 2016: Frequency, magnitude, and possible causes of stranding and mass-mortality events of the beach clam Tivela mactroides (Bivalvia: Veneridae). PLoS One, 11(1), e0146323.
  1009. Martínez, C. et al., 2017: Coastal erosion in central Chile: A new hazard? Ocean Coast. Manage.,156, 141-155. doi:10.1016/j.ocecoaman.2017.07.011.
  1010. Rêgo, J.C.L., A. Soares-Gomes and F S. da Silva, 2018: Loss of vegetation cover in a tropical island of the Amazon coastal zone (Maranhão Island, Brazil). Land Use Policy, 71, 593–601, doi:10.1016/j.landusepol.2017.10.055.
  1011. Delgado-Fernandez, I., N. O’Keeffe and R.G.D. Davidson-Arnott, 2019: Natural and human controls on dune vegetation cover and disturbance. Sci. Total Environ., 672, 643–656, doi:10.1016/j.scitotenv.2019.03.494.
  1012. Castelle, B., S. Bujan, S. Ferreira and G. Dodet, 2017: Foredune morphological changes and beach recovery from the extreme 2013/2014 winter at a high-energy sandy coast. Mar. Geol., 385, 41–55, doi:10.1016/j.margeo.2016.12.006.
  1013. Houser, C., P. Wernette and B.A. Weymer, 2018: Scale-dependent behavior of the foredune: Implications for barrier island response to storms and sea level rise. Geomorphology, 303, 362–374, doi:10.1016/j.geomorph.2017.12.011.
  1014. Kuriyama, Y. and S. Yanagishima, 2018: Regime shifts in the multi-annual evolution of a sandy beach profile. Earth Surface Proc. Landf., 43(15), 3133–3141, doi:10.1002/esp.4475.
  1015. Vitousek, S. et al., 2017: A model integrating longshore and cross‐shore processes for predicting long‐term shoreline response to climate change. J. Geophys. Res-Earth, 122(4), 782–806.
  1016. Martínez, C. et al., 2017: Coastal erosion in central Chile: A new hazard? Ocean Coast. Manage.,156, 141-155. doi:10.1016/j.ocecoaman.2017.07.011.
  1017. Hubbard, D., J. Dugan, N. Schooler and S. Viola, 2014: Local extirpations and regional declines of endemic upper beach invertebrates in southern California. Estuar. Coast. Shelf Sci., 150, 67–75.
  1018. Orlando, L., L. Ortega and O. Defeo, 2019: Multi-decadal variability in sandy beach area and the role of climate forcing. Estuar. Coast. Shelf Sci., 218, 197–203, doi:10.1016/j.ecss.2018.12.015.
  1019. Laloë, J.O. et al., 2017: Climate change and temperature‐linked hatchling mortality at a globally important sea turtle nesting site. Global Change Biol., 23(11), 4922–4931.
  1020. Patrício, A.R. et al., 2019: Climate change resilience of a globally important sea turtle nesting population. Global Change Biol., 25(2), 522–535, doi:10.1111/gcb.14520.
  1021. Patrício, A.R. et al., 2019: Climate change resilience of a globally important sea turtle nesting population. Global Change Biol., 25(2), 522–535, doi:10.1111/gcb.14520.
  1022. Varela, M.R. et al., 2019: Assessing climate change associated sea level rise impacts on sea turtle nesting beaches using drones, photogrammetry and a novel GPS system. Global Change Biol., 25(2), 753–762, doi:10.1111/gcb.14526.
  1023. Patrício, A.R. et al., 2019: Climate change resilience of a globally important sea turtle nesting population. Global Change Biol., 25(2), 522–535, doi:10.1111/gcb.14520.
  1024. Jaramillo, E. et al., 2017: Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects. PLoS One, 12(5), e0177116, doi:10.1371/journal.pone.0177116.
  1025. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1026. Kubicek, A., B. Breckling, O. Hoegh-Guldberg and H. Reuter, 2019: Climate change drives trait-shifts in coral reef communities. Sci. Rep., 9(1), 3721, doi:10.1038/s41598-019-38962-4.
  1027. Sully, S. et al., 2019: A global analysis of coral bleaching over the past two decades. Nat. Commun., 10(1), 1264, doi:10.1038/s41467-019-09238-2.
  1028. Kleypas, J.A.K.A., 2019: Climate change and tropical marine ecosystems: A review with an emphasis on coral reefs. UNED Research Journal, 11(1), 24–35.
  1029. Kao, K.-W. et al., 2018: Repeated and Prolonged Temperature Anomalies Negate Symbiodiniaceae Genera Shuffling in the Coral Platygyra verweyi (Scleractinia; Merulinidae). Zool. Stud., 57(55).
  1030. Jury, C.P. and R.J. Toonen, 2019: Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc. Roy. Soc. B., 286(1902), 20190614.
  1031. Jiang, L. et al., 2018: Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost. Coral Reefs, 37(1), 71–79.
  1032. Mollica, N.R. et al., 2018: Ocean acidification affects coral growth by reducing skeletal density. PNAS, 115(8), 1754, doi:10.1073/pnas.1712806115.
  1033. Bove, C.B. et al., 2019: Common Caribbean corals exhibit highly variable responses to future acidification and warming. Proc. Roy. Soc. B., 286(1900), 20182840.
  1034. Agostini, S. et al., 2018: Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical−temperate transition zone. Sci. Rep., 8(1), 11354, doi:10.1038/s41598-018-29251-7.
  1035. Brown, B.E., R.P. Dunne, N. Phongsuwan and P.J. Somerfield, 2011: Increased sea level promotes coral cover on shallow reef flats in the Andaman Sea, eastern Indian Ocean. Coral Reefs, 30(4), 867, doi:10.1007/s00338-011-0804-9.
  1036. Perry, C.T. et al., 2018: Loss of coral reef growth capacity to track future increases in sea level. Nature, 558(7710), 396–400, doi:10.1038/s41586-018-0194-z.
  1037. Lavender, S.L., R.K. Hoeke and D.J. Abbs, 2018: The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study. Nat. Hazards Earth Syst. Sci., 18(3), 795–805, doi:10.5194/nhess-18-795-2018.
  1038. Kleypas, J.A.K.A., 2019: Climate change and tropical marine ecosystems: A review with an emphasis on coral reefs. UNED Research Journal, 11(1), 24–35.
  1039. Hughes, T.P. et al., 2019a: Global warming impairs stock–recruitment dynamics of corals. Nature, 568(7752), 387–390, doi:10.1038/s41586-019-1081-y.
  1040. Ingeman, K.E., J.F. Samhouri and A.C. Stier, 2019: Ocean recoveries for tomorrow’s Earth: Hitting a moving target. Science, 363(6425), eaav1004, doi:10.1126/science.aav1004.
  1041. Fine, M. et al., 2019: Coral reefs of the Red Sea — Challenges and potential solutions. Reg. Stud. Mar. Sci., 25, 100498, doi:10.1016/j.rsma.2018.100498.
  1042. Kleypas, J.A.K.A., 2019: Climate change and tropical marine ecosystems: A review with an emphasis on coral reefs. UNED Research Journal, 11(1), 24–35.
  1043. Kubicek, A., B. Breckling, O. Hoegh-Guldberg and H. Reuter, 2019: Climate change drives trait-shifts in coral reef communities. Sci. Rep., 9(1), 3721, doi:10.1038/s41598-019-38962-4.
  1044. Rinkevich, B., 2019: Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. Global Change Biol., 25(4), 1198–1206, doi:10.1111/gcb.14576.
  1045. Gunderson, A.R., B. Tsukimura and J.H. Stillman, 2017: Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences. Integr. Comp. Biol., 57(1), 48–54, doi:10.1093/icb/icx056.
  1046. Fabricius, K.E., 2005: Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull., 50(2), 125–146, doi:10.1016/j.marpolbul.2004.11.028.
  1047. Duvat, V.K.E. et al., 2017: Trajectories of exposure and vulnerability of small islands to climate change. WiRes. Clim. Change, 8(6), e478 doi:10.1002/wcc.478.
  1048. Harborne, A.R. et al., 2017: Multiple Stressors and the Functioning of Coral Reefs. Annu. Rev. Mar. Sci., Vol 8, 9(1), 445–468, doi:10.1146/annurev-marine-010816-060551.
  1049. McCook, L.J., 1999: Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs, 18(4), 357–367, doi:10.1007/s003380050213.
  1050. Hughes, T.P. et al., 2010: Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol., 25(11), 633–642, doi:10.1016/j.tree.2010.07.011.
  1051. Graham, N.A.J. et al., 2013: Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ., 11(10), 541–548, doi:10.1890/120305.
  1052. Hughes, T.P. et al., 2018: Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 359(6371), 80, doi:10.1126/science.aan8048.
  1053. Kleypas, J.A.K.A., 2019: Climate change and tropical marine ecosystems: A review with an emphasis on coral reefs. UNED Research Journal, 11(1), 24–35.
  1054. Wernberg, T. et al., 2016: Climate-driven regime shift of a temperate marine ecosystem. Science, 353(6295), 169, doi:10.1126/science.aad8745.
  1055. Kleypas, J.A.K.A., 2019: Climate change and tropical marine ecosystems: A review with an emphasis on coral reefs. UNED Research Journal, 11(1), 24–35.
  1056. Cacciapaglia, C. and R. van Woesik, 2018: Marine species distribution modelling and the effects of genetic isolation under climate change. J. Biogeogr., 45(1), 154–163, doi:10.1111/jbi.13115.
  1057. Dietz, S. et al., 2018: The Economics of 1.5°C Climate Change. Annu. Rev. Environ. Resourc., 43(1), 455–480, doi:10.1146/annurev-environ-102017-025817.
  1058. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1059. DeBiasse, M.B. and M.W. Kelly, 2016: Plastic and Evolved Responses to Global Change: What Can We Learn from Comparative Transcriptomics? J. Hered., 107(1), 71–81, doi:10.1093/jhered/esv073.
  1060. Gibbin, E.M. et al., 2017: The evolution of phenotypic plasticity under global change. Sci. Rep., 7(1), 17253, doi:10.1038/s41598-017-17554-0.
  1061. Wall, C.B. et al., 2017: Elevated pCO(2) affects tissue biomass composition, but not calcification, in a reef coral under two light regimes. R. Soc. Open Sci., 4(11), 170683, doi:10.1098/rsos.170683.
  1062. Camp, E.F. et al., 2018: The Future of Coral Reefs Subject to Rapid Climate Change: Lessons from Natural Extreme Environments. Front. Mar. Sci., 5, 4.
  1063. Donelson, J.M., S. Salinas, P.L. Munday and L.N.S. Shama, 2018: Transgenerational plasticity and climate change experiments: Where do we go from here? Glob Chang Biol, 24(1), 13–34, doi:10.1111/gcb.13903.
  1064. Drake, J.L. et al., 2018: Molecular and geochemical perspectives on the influence of CO2 on calcification in coral cell cultures. Limnol. Oceanogr., 63(1), 107–121, doi:10.1002/lno.10617.
  1065. Veilleux, H.D. and J.M. Donelson, 2018: Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations. Conserv. Physiol., 6(1), cox077–cox077, doi:10.1093/conphys/cox077.
  1066. Hughes, T.P. et al., 2019b: Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change, 9(1), 40–43, doi:10.1038/s41558-018-0351-2.
  1067. Cornwall, C.E. et al., 2018: Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc. Roy. Soc. B. Biol., 285(1884). https://doi.org/10.1098/rspb.2018.1168
  1068. Gintert, B.E. et al., 2018: Marked annual coral bleaching resilience of an inshore patch reef in the Florida Keys: A nugget of hope, aberrance, or last man standing? Coral Reefs, 37(2), 533–547, doi:10.1007/s00338-018-1678-x.
  1069. Liew, Y.J. et al., 2017: Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum. PLOS Genetics, 13(2), e1006619, doi:10.1371/journal.pgen.1006619.
  1070. Torda, G. et al., 2017: Rapid adaptive responses to climate change in corals. Nat. Clim. Change, 7, 627, doi:10.1038/nclimate3374.
  1071. Li, Y. et al., 2018b: DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia. Sci. Adv., 4(8), eaat2142, doi:10.1126/sciadv.aat2142.
  1072. Liew, Y.J. et al., 2018: Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci. Adv., 4(6), eaar8028, doi:10.1126/sciadv.aar8028.
  1073. Ingeman, K.E., J.F. Samhouri and A.C. Stier, 2019: Ocean recoveries for tomorrow’s Earth: Hitting a moving target. Science, 363(6425), eaav1004, doi:10.1126/science.aav1004.
  1074. Kleypas, J.A.K.A., 2019: Climate change and tropical marine ecosystems: A review with an emphasis on coral reefs. UNED Research Journal, 11(1), 24–35.
  1075. Kubicek, A., B. Breckling, O. Hoegh-Guldberg and H. Reuter, 2019: Climate change drives trait-shifts in coral reef communities. Sci. Rep., 9(1), 3721, doi:10.1038/s41598-019-38962-4.
  1076. Sully, S. et al., 2019: A global analysis of coral bleaching over the past two decades. Nat. Commun., 10(1), 1264, doi:10.1038/s41467-019-09238-2.
  1077. Schulz, K.G. et al., 2013: Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences (BG), 10, 161–180.
  1078. McClanahan, T.R., N.A.J. Graham and E.S. Darling, 2014: Coral reefs in a crystal ball: predicting the future from the vulnerability of corals and reef fishes to multiple stressors. Curr. Opin. Environ. Sustain., 7, 59–64, doi:10.1016/j.cosust.2013.11.028.
  1079. Mumby, P.J. and R. van Woesik, 2014: Consequences of Ecological, Evolutionary and Biogeochemical Uncertainty for Coral Reef Responses to Climatic Stress. Curr. Biol., 24(10), R413–R423, doi:10.1016/j.cub.2014.04.029.
  1080. Pandolfi, J.M., 2015: Incorporating Uncertainty in Predicting the Future Response of Coral Reefs to Climate Change. Annu. Rev. Ecol. Evol. Syst.,46(1), 281–303, doi:10.1146/annurev-ecolsys-120213-091811.
  1081. Folkersen, M.V., 2018: Ecosystem valuation: Changing discourse in a time of climate change. Ecosyst. Serv., 29, 1–12, doi:10.1016/j.ecoser.2017.11.008.
  1082. Bridge, T.C.L. et al., 2013: Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery. F1000Research, 2, 187, doi:10.12688/f1000research.2-187.v3.
  1083. Thomas, C.J. et al., 2015: Connectivity between submerged and near-sea-surface coral reefs: can submerged reef populations act as refuges? Divers. Distrib., 21(10), 1254–1266, doi:10.1111/ddi.12360.
  1084. Lindfield, S.J., E.S. Harvey, A.R. Halford and J.L. McIlwain, 2016: Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs, 35(1), 125–137, doi:10.1007/s00338-015-1386-8.
  1085. Smith, T.B. et al., 2016b: Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Global Change Biol., 22(8), 2756–2765, doi:10.1111/gcb.13175.
  1086. Bongaerts, P. et al., 2017: Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv., 3(2), e1602373, doi:10.1126/sciadv.1602373.
  1087. Tkachenko, K.S. and K. Soong, 2017: Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea. Mar. Environ. Res., 127, 112–125, doi:10.1016/j.marenvres.2017.04.003.
  1088. Rocha, L.A. et al., 2018: Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science, 361(6399), 281, doi:10.1126/science.aaq1614.
  1089. Smith, T.B., J.L. Maté and J. Gyory, 2017: Thermal Refuges and Refugia for Stony Corals in the Eastern Tropical Pacific. In: Coral Reefs of the Eastern Tropical Pacific [Glynn, P.W., D.P. Manzello and I.C. Enochs (eds.)]. Springer Netherlands, Dordrecht, pp. 501–515. ISBN 978-94-017-7498-7.
  1090. Chollett, I. and P.J. Mumby, 2013: Reefs of last resort: Locating and assessing thermal refugia in the wider Caribbean. Biol. Conserv., 167, 179–186, doi:10.1016/j.biocon.2013.08.010.
  1091. Fine, M., H. Gildor and A. Genin, 2013: A coral reef refuge in the Red Sea. Global Change Biol., 19(12), 3640–3647, doi:10.1111/gcb.12356.
  1092. Osman, E.O. et al., 2017: Thermal refugia against coral bleaching throughout the northern Red Sea. Global Change Biol., 52, 716, doi:10.1111/gcb.13895.
  1093. Coles, S.L. and B.M. Riegl, 2013: Thermal tolerances of reef corals in the Gulf: A review of the potential for increasing coral survival and adaptation to climate change through assisted translocation. Mar. Pollut. Bull., 72(2), 323–332, doi:10.1016/j.marpolbul.2012.09.006.
  1094. Hughes, T.P. et al., 2010: Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol., 25(11), 633–642, doi:10.1016/j.tree.2010.07.011.
  1095. Morgan, K.M., C.T. Perry, J.A. Johnson and S.G. Smithers, 2017: Nearshore Turbid-Zone Corals Exhibit High Bleaching Tolerance on the Great Barrier Reef Following the 2016 Ocean Warming Event. Front. Mar. Sci., 4, 224, doi:10.3389/fmars.2017.00224.
  1096. van Hooidonk, R., J.A. Maynard and S. Planes, 2013: Temporary refugia for coral reefs in a warming world. Nat. Clim. Change, 3(5), 508–511, doi:10.1038/NCLIMATE1829.
  1097. Heron, S.F., J.A. Maynard, R. van Hooidonk and C.M. Eakin, 2016: Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985–2012. Sci. Rep., 6(1), doi:10.1038/srep38402.
  1098. Langlais, C.E. et al., 2017: Coral bleaching pathways under the control of regional temperature variability. Nat. Clim. Change, 7(11), nclimate3399-844, doi:10.1038/nclimate3399.
  1099. McClenachan, L. et al., 2017: Ghost reefs: Nautical charts document large spatial scale of coral reef loss over 240 years. Sci. Adv., 3(9) e1603155, doi:10.1126/sciadv.1603155.
  1100. van Hooidonk, R. et al., 2016: Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep., 6, 39666, doi:10.1038/srep39666.
  1101. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1102. Kleypas, J.A.K.A., 2019: Climate change and tropical marine ecosystems: A review with an emphasis on coral reefs. UNED Research Journal, 11(1), 24–35.
  1103. Kubicek, A., B. Breckling, O. Hoegh-Guldberg and H. Reuter, 2019: Climate change drives trait-shifts in coral reef communities. Sci. Rep., 9(1), 3721, doi:10.1038/s41598-019-38962-4.
  1104. Sully, S. et al., 2019: A global analysis of coral bleaching over the past two decades. Nat. Commun., 10(1), 1264, doi:10.1038/s41467-019-09238-2.
  1105. Hawkins, S. et al., 2016: Impacts and effects of ocean warming on intertidal rocky habitats in Explaining ocean warming: Cause, scale, effects and consequences. Full report. [D. Laffoley and J.M. Baxeter eds.] IUCN, 147-176, Gland, CH, ISBN: 978-2-8317-1806-4
  1106. Wong, P.P., et al. 2014a: Coastal systems and low-lying areas. In: Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Field, C.B., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp. 361-409. ISBN: 978-1-107-05807-1
  1107. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1108. Agostini, S. et al., 2018: Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical−temperate transition zone. Sci. Rep., 8(1), 11354, doi:10.1038/s41598-018-29251-7.
  1109. Duarte, B. et al., 2018: Climate Change Impacts on Seagrass Meadows and Macroalgal Forests: An Integrative Perspective on Acclimation and Adaptation Potential. Front. Mar. Sci., 5, 190.
  1110. Ullah, H., I. Nagelkerken, S.U. Goldenberg and D.A. Fordham, 2018: Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biology, 16(1), e2003446.
  1111. Milazzo, M. et al., 2019: Biogenic habitat shifts under long-term ocean acidification show nonlinear community responses and unbalanced functions of associated invertebrates. Sci. Total Environ., 667, 41–48, doi:10.1016/j.scitotenv.2019.02.391.
  1112. Hawkins, S. et al., 2016: Impacts and effects of ocean warming on intertidal rocky habitats in Explaining ocean warming: Cause, scale, effects and consequences. Full report. [D. Laffoley and J.M. Baxeter eds.] IUCN, 147-176, Gland, CH, ISBN: 978-2-8317-1806-4
  1113. Zamir, R., P. Alpert and G. Rilov, 2018: Increase in Weather Patterns Generating Extreme Desiccation Events: Implications for Mediterranean Rocky Shore Ecosystems. Estuar. Coast., 41(7), 1868–1884, doi:10.1007/s12237-018-0408-5.
  1114. Hawkins, S. et al., 2016: Impacts and effects of ocean warming on intertidal rocky habitats in Explaining ocean warming: Cause, scale, effects and consequences. Full report. [D. Laffoley and J.M. Baxeter eds.] IUCN, 147-176, Gland, CH, ISBN: 978-2-8317-1806-4
  1115. Harley, C.D.G., 2011: Climate change, keystone predation, and biodiversity loss. Science, 334(6059), 1124–1127, doi:10.1126/science.1210199.
  1116. Sanford, E., 1999: Regulation of keystone predation by small changes in ocean temperature. Science, 283(5410), 2095–2097, doi:10.1126/science.283.5410.2095.
  1117. Duarte, C.M. et al., 2013: Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuar. Coast., 36(2), 221–236.
  1118. Nicastro, K.R. et al., 2013: Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biology, 11(1), 6, doi:10.1186/1741-7007-11-6.
  1119. Barry, J.P., C.H. Baxter, R.D. Sagarin and S.E. Gilman, 1995: Climate-related, long-term faunal changes in a california rocky intertidal community. Science, 267(5198), 672–675, doi:10.1126/science.267.5198.672.
  1120. Mieszkowska, N. et al., 2006: Changes in the range of some common rocky shore species in Britain—a response to climate change? Hydrobiologia, 555, 241–251.
  1121. Lima, F.P. et al., 2007: Do distributional shifts of northern and southern species of algae match the warming pattern? Global Change Biol., 13(12), 2592–2604, doi:10.1111/j.1365-2486.2007.01451.x.
  1122. Yeruham, E., G. Rilov, M. Shpigel and A. Abelson, 2015: Collapse of the echinoid Paracentrotus lividus populations in the Eastern Mediterranean—result of climate change? Sci. Rep., 5, 13479.
  1123. Sorte, C.J. et al., 2017: Long‐term declines in an intertidal foundation species parallel shifts in community composition. Global Change Biol., 23(1), 341–352.
  1124. Gazeau, F. et al., 2014: Impact of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis). Front. Mar. Sci., 1, 62, doi:10.3389/fmars.2014.00062.
  1125. Jurgens, L.J. et al., 2015: Patterns of mass mortality among rocky shore invertebrates across 100 km of northeastern Pacific coastline. PLoS One, 10(6), e0126280.
  1126. Gatti, G. et al., 2017: Observational information on a temperate reef community helps understanding the marine climate and ecosystem shift of the 1980–90s. Mar. Pollut. Bull., 114(1), 528–538.
  1127. Sorte, C.J. et al., 2017: Long‐term declines in an intertidal foundation species parallel shifts in community composition. Global Change Biol., 23(1), 341–352.
  1128. Sunday, J.M. et al., 2017: Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change, 7(1), 81.
  1129. Kružić, P., P. Rodić, A. Popijač and M. Sertić, 2016: Impacts of temperature anomalies on mortality of benthic organisms in the Adriatic Sea. Mar. Ecol., 37(6), 1190–1209, doi:10.1111/maec.12293.
  1130. Lima, F.P. et al., 2016: Loss of thermal refugia near equatorial range limits. Global Change Biol., 22(1), 254–263.
  1131. Nannini, M., L. De Marchi, C. Lombardi and F. Ragazzola, 2015: Effects of thermal stress on the growth of an intertidal population of Ellisolandia elongata (Rhodophyta) from N–W Mediterranean Sea. Mar. Environ. Res., 112, 11–19, doi:10.1016/j.marenvres.2015.05.005.
  1132. Kroeker, K.J. et al., 2013: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biol., 19(6), 1884–1896.
  1133. Kwiatkowski, L. et al., 2016: Nighttime dissolution in a temperate coastal ocean ecosystem under acidification. Sci. Rep., 6(1), 22984, doi:10.1038/srep22984.
  1134. Duarte, B. et al., 2018: Climate Change Impacts on Seagrass Meadows and Macroalgal Forests: An Integrative Perspective on Acclimation and Adaptation Potential. Front. Mar. Sci., 5, 190.
  1135. Ciais, P. et al., 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 465–570.
  1136. Ramajo, L. et al., 2016: Food supply confers calcifiers resistance to ocean acidification. Sci. Rep., 6(1), 19374. doi:10.1038/srep19374.
  1137. Kroeger, K.D., S. Crooks, S. Moseman-Valtierra and J. Tang, 2017: Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention. Sci. Rep., 7(1), 11914.
  1138. Hewitt, J.E., J.I. Ellis and S.F. Thrush, 2016: Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Global Change Biol., 22(8), 2665–2675.
  1139. Kroeker, K.J. et al., 2013: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biol., 19(6), 1884–1896.
  1140. Linares, C. et al., 2015: Persistent natural acidification drives major distribution shifts in marine benthic ecosystems. Proc. Roy. Soc. B. Biol., 282(1818) 20150587.
  1141. Hall-Spencer, J.M. et al., 2008: Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature, 454, 96, doi:10.1038/nature07051.
  1142. Agostini, S. et al., 2018: Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical−temperate transition zone. Sci. Rep., 8(1), 11354, doi:10.1038/s41598-018-29251-7.
  1143. Baggini, C., Y. Issaris, M. Salomidi and J. Hall-Spencer, 2015: Herbivore diversity improves benthic community resilience to ocean acidification. J. Exp. Mar. Biol. Ecol., 469, 98–104, doi:10.1016/j.jembe.2015.04.019.
  1144. Kroeker, K.J., F. Micheli, M.C. Gambi and T.R. Martz, 2011: Divergent ecosystem responses within a benthic marine community to ocean acidification. PNAS, 108(35), 14515–14520, doi:10.1073/pnas.1107789108.
  1145. Goldenberg, S.U. et al., 2017: Boosted food web productivity through ocean acidification collapses under warming. Global Change Biol., 23(10), 4177–4184.
  1146. Goldenberg, S.U. et al., 2017: Boosted food web productivity through ocean acidification collapses under warming. Global Change Biol., 23(10), 4177–4184.
  1147. Kordas, R.L., I. Donohue and C.D. Harley, 2017: Herbivory enables marine communities to resist warming. Sci. Adv., 3(10), e1701349.
  1148. Ghedini, G., B.D. Russell and S.D. Connell, 2015: Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol. Lett., 18(2), 182–187.
  1149. Ullah, H., I. Nagelkerken, S.U. Goldenberg and D.A. Fordham, 2018: Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biology, 16(1), e2003446.
  1150. Krause-Jensen, D. and C.M. Duarte, 2016: Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci., 9(10), 737–742, doi:10.1038/ngeo2790.
  1151. Filbee-Dexter, K., C.J. Feehan and R.E. Scheibling, 2016: Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Mar. Ecol. Prog. Ser., 543, 141–152, doi:10.3354/meps11554.
  1152. Steneck, R.S. et al., 2003: Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv., 29(04), 436–459, doi:10.1017/S0376892902000322.
  1153. Pessarrodona, A., A. Foggo and D.A. Smale, 2019: Can ecosystem functioning be maintained despite climate-driven shifts in species composition? Insights from novel marine forests. J. Ecol., 107(1), 91–104, doi:10.1111/1365-2745.13053.
  1154. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1155. Wernberg, T., K. Krumhansl, K. Filbee-Dexter and M.F. Pedersen, 2019: Status and trends for the world’s kelp forests. In: World Seas: An Environmental Evaluation. [Sheppard, C. (ed.)]. Elsevier, New York. pp. 57–78. ISBN: 978-0-12-805052-1
  1156. Filbee-Dexter, K. and T. Wernberg, 2018: Rise of turfs: A new battlefront for globally declining kelp forests. BioScience, 68(2), 64–76.
  1157. Andersen, G.S., M.F. Pedersen and S.L. Nielsen, 2013: Temperature Acclimation and Heat Tolerance of Photosynthesis in Norwegian Saccharina Latissima ( Laminariales, Phaeophyceae). J. Phycol., 49(4), 689–700, doi:10.1111/jpy.12077.
  1158. Filbee-Dexter, K. and T. Wernberg, 2018: Rise of turfs: A new battlefront for globally declining kelp forests. BioScience, 68(2), 64–76.
  1159. Araujo, R.M. et al., 2016: Status, trends and drivers of kelp forests in Europe: an expert assessment. Biodivers. Conserv., 25(7), 1319–1348, doi:10.1007/s10531-016-1141-7.
  1160. Krumhans, K.A. et al., 2016: Global patterns of kelp forest change over the past half-century. PNAS, 113(48), 13785–13790, doi:10.1073/pnas.1606102113.
  1161. Poloczanska, E.S. et al., 2016: Responses of Marine Organisms to Climate Change across Oceans. Front. Mar. Sci., 3(28), 515, doi:10.3389/fmars.2016.00062.
  1162. Krumhans, K.A. et al., 2016: Global patterns of kelp forest change over the past half-century. PNAS, 113(48), 13785–13790, doi:10.1073/pnas.1606102113.
  1163. Reed, D. et al., 2016: Extreme warming challenges sentinel status of kelp forests as indicators of climate change. Nat. Commun., 7, 13757, doi:10.1038/ncomms13757.
  1164. Wernberg, T. et al., 2018: Genetic diversity and kelp forest vulnerability to climatic stress. Sci. Rep., 8(1), 1851, doi:10.1038/s41598-018-20009-9.
  1165. Bell, T.W., J.G. Allen, K.C. Cavanaugh and D.A. Siegel, 2018c: Three decades of variability in California’s giant kelp forests from the Landsat satellites. Remote Sens. Environ., doi:10.1016/j.rse.2018.06.039.
  1166. Poloczanska, E.S. et al., 2016: Responses of Marine Organisms to Climate Change across Oceans. Front. Mar. Sci., 3(28), 515, doi:10.3389/fmars.2016.00062.
  1167. Filbee-Dexter, K. and T. Wernberg, 2018: Rise of turfs: A new battlefront for globally declining kelp forests. BioScience, 68(2), 64–76.
  1168. Pérez-Matus, A. et al., 2017: Exploring the effects of fishing pressure and upwelling intensity over subtidal kelp forest communities in Central Chile. Ecosphere, 8(5), e01808, doi:10.1002/ecs2.1808.
  1169. Franco, J.N. et al., 2018b: The ‘golden kelp’ Laminaria ochroleuca under global change: Integrating multiple eco-physiological responses with species distribution models. J. Ecol., 106(1), 47–58, doi:10.1111/1365-2745.12810.
  1170. Casado-Amezúa, P. et al., 2019: Distributional shifts of canopy-forming seaweeds from the Atlantic coast of Southern Europe. Biodivers. Conserv., 28(5), 1151–1172, doi:10.1007/s10531-019-01716-9.
  1171. Pessarrodona, A., A. Foggo and D.A. Smale, 2019: Can ecosystem functioning be maintained despite climate-driven shifts in species composition? Insights from novel marine forests. J. Ecol., 107(1), 91–104, doi:10.1111/1365-2745.13053.
  1172. Barton, A.D., A.J. Irwin, Z.V. Finkel and C.A. Stock, 2016: Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. PNAS, 113(11), 2964–2969, doi:10.1073/pnas.1519080113.
  1173. Paar, M. et al., 2016: Temporal shift in biomass and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years. Polar Biol., 39(11), 2065–2076, doi:10.1007/s00300-015-1760-6.
  1174. Filbee-Dexter, K. and T. Wernberg, 2018: Rise of turfs: A new battlefront for globally declining kelp forests. BioScience, 68(2), 64–76.
  1175. Teagle, H. and D.A. Smale, 2018: Climate-driven substitution of habitat-forming species leads to reduced biodiversity within a temperate marine community. Divers. Distrib., 24(10), 1367–1380, doi:10.1111/ddi.12775.
  1176. Pessarrodona, A., A. Foggo and D.A. Smale, 2019: Can ecosystem functioning be maintained despite climate-driven shifts in species composition? Insights from novel marine forests. J. Ecol., 107(1), 91–104, doi:10.1111/1365-2745.13053.
  1177. Teagle, H. and D.A. Smale, 2018: Climate-driven substitution of habitat-forming species leads to reduced biodiversity within a temperate marine community. Divers. Distrib., 24(10), 1367–1380, doi:10.1111/ddi.12775.
  1178. Pessarrodona, A., A. Foggo and D.A. Smale, 2019: Can ecosystem functioning be maintained despite climate-driven shifts in species composition? Insights from novel marine forests. J. Ecol., 107(1), 91–104, doi:10.1111/1365-2745.13053.
  1179. Franco, J.N. et al., 2018b: The ‘golden kelp’ Laminaria ochroleuca under global change: Integrating multiple eco-physiological responses with species distribution models. J. Ecol., 106(1), 47–58, doi:10.1111/1365-2745.12810.
  1180. Wernberg, T. et al., 2018: Genetic diversity and kelp forest vulnerability to climatic stress. Sci. Rep., 8(1), 1851, doi:10.1038/s41598-018-20009-9.
  1181. Qiu, Z. et al., 2019: Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proc. Roy. Soc. B., 286(1896), 20181887.
  1182. Vergés, A. et al., 2016: Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. PNAS, 113(48), 13791, doi:10.1073/pnas.1610725113.
  1183. Miranda, R.J. et al., 2019: Invasion-mediated effects on marine trophic interactions in a changing climate: positive feedbacks favour kelp persistence. Proc. Roy. Soc. B., 286(1899), 20182866.
  1184. Pereira, T.R. et al., 2017: Population dynamics of temperate kelp forests near their low-latitude limit. Aquat. Bot., 139, 8–18, doi:10.1016/j.aquabot.2017.02.006.
  1185. Wilson, K.L., M.A. Skinner and H.K. Lotze, 2019: Projected 21st-century distribution of canopy-forming seaweeds in the Northwest Atlantic with climate change. Divers. Distrib., 25(4), 582–602, doi:10.1111/ddi.12897.
  1186. Wilson, K.L., M.A. Skinner and H.K. Lotze, 2019: Projected 21st-century distribution of canopy-forming seaweeds in the Northwest Atlantic with climate change. Divers. Distrib., 25(4), 582–602, doi:10.1111/ddi.12897.
  1187. Raybaud, V. et al., 2013: Decline in Kelp in West Europe and Climate. PLoS One, 8(6), e66044, doi:10.1371/journal.pone.0066044.
  1188. Assis, J., A.V. Lucas, I. Barbara and E.A. Serrao, 2016: Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea. Mar. Environ. Res., 113, 174–182, doi:10.1016/j.marenvres.2015.11.005.
  1189. Assis, J., M.B. Araújo and E.A. Serrão, 2018: Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Global Change Biol., 24(1), e55–e66, doi:10.1111/gcb.13818.
  1190. Wilson, K.L., M.A. Skinner and H.K. Lotze, 2019: Projected 21st-century distribution of canopy-forming seaweeds in the Northwest Atlantic with climate change. Divers. Distrib., 25(4), 582–602, doi:10.1111/ddi.12897.
  1191. Oppenheimer, M. et al., 2015: Emergent risks and key vulnerabilities. In: Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects. [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1039–1100. ISBN: ISBN 978-1-107-05807-1.
  1192. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1193. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1194. Tallis, H. et al., 2010: The many faces of ecosystem-based management: Making the process work today in real places. Mar. Policy, 34(2), 340-348.
  1195. Costanza, R. et al., 2014: Changes in the global value of ecosystem services. Global Environ. Change, 26, 152–158, doi:10.1016/j.gloenvcha.2014.04.002.
  1196. Armstrong, C.W., N.S. Foley, R. Tinch and S. van den Hove, 2012: Services from the deep: Steps towards valuation of deep sea goods and services. Ecosyst. Serv., 2, 2–13, doi:10.1016/j.ecoser.2012.07.001.
  1197. Thurber, A.R. et al., 2014: Ecosystem function and services provided by the deep sea. Biogeosciences, 11(14), 3941–3963, doi:10.5194/bg-11-3941-2014.
  1198. Leadley, P. et al., 2014: Interacting regional-scale regime shifts for biodiversity and ecosystem services. BioScience, biu093.
  1199. Sandifer, P.A. and A.E. Sutton-Grier, 2014: Connecting stressors, ocean ecosystem services, and human health. Natural Resources Forum, 38(3), 157–167, doi:10.1111/1477-8947.12047.
  1200. Díaz, S. et al., 2018: Assessing nature’s contributions to people. Science, 359(6373), 270.
  1201. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  1202. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1203. FAO, 2018: The State of World Fisheries and Aquaculture 2018 – Meeting the sustainable development goals. FAO, Rome, pp 1-227. ISBN: 978-92-5-1305562-1
  1204. Pauly, D. and D. Zeller, 2016: Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun., 7, 10244 EP 1–9, doi:10.1038/ncomms10244.
  1205. Sumaila, U.R. et al., 2015: Winners and losers in a world where the high seas is closed to fishing. Sci. Rep., 5, 8481, doi:10.1038/srep08481.
  1206. Sumaila, U.R. et al., 2015: Winners and losers in a world where the high seas is closed to fishing. Sci. Rep., 5, 8481, doi:10.1038/srep08481.
  1207. UNEP, 2017: The Emissions Gap Report. United Natoins Environment Programme, Nairobi [Available at: http://www.worldcat.org/title/emissions-gap-report-2017-a-un-environment-synthesis-report/oclc/1009432397%5D. Accessed: 2019/09/30.
  1208. Mcowen, C.J. et al., 2017: A global map of saltmarshes. Biodiversity data journal,(5), e11764.
  1209. Spalding, M., 2010: World atlas of mangroves. Routledge. Earthscan, London, UK. p. 319.ISBN: 978-1844076574.
  1210. UNEP-WCMC, W. C. and T. WRI, 2010: Global distributin of warm water coral reefs, compiled from multiple sources including the Millennium Coral Reef Mapping Project.–Version 1.3.
  1211. Gallo, N.D., D.G. Victor and L.A. Levin, 2017: Ocean commitments under the Paris Agreement. Nat. Clim. Change, 7(11), 833-838, doi:10.1038/NCLIMATE3422.
  1212. Cheung, W.W.L. et al., 2008: Application of macroecological theory to predict effects of climate change on global fisheries potential. Mar. Ecol. Prog. Ser., 365, 187–197.
  1213. Britten, G.L., M. Dowd and B. Worm, 2016: Changing recruitment capacity in global fish stocks. PNAS, 113(1), 134–139, doi:10.1073/pnas.1504709112.
  1214. Stock, C.A. et al., 2017: Reconciling fisheries catch and ocean productivity. PNAS, 114(8), E1441–E1449, doi:10.1073/pnas.1610238114.
  1215. Stock, C.A. et al., 2017: Reconciling fisheries catch and ocean productivity. PNAS, 114(8), E1441–E1449, doi:10.1073/pnas.1610238114.
  1216. Cheung, W.W.L., J. Bruggeman and M. Butenschön, 2018a: Projected changes in global and national potential marine fisheries catch under climate change scenarios in the twenty-first century. In: Impacts of climate change on fisheries and aquaculture [Barange, M., Bahri, T., Beveridge, M.C.M., Cochrane, K.L., Funge-Smith, S. & Poulain, F. (eds.)]. FAO Fisheries and Aquaculture Technical Paper T, FAO, Rome, Italy. 63-86. ISBN: 978-92-5-130607-9
  1217. Barange, M., 2019: Avoiding misinterpretation of climate change projections of fish catches. ICES J. Mar. Sci., doi:10.1093/icesjms/fsz061.
  1218. Britten, G.L., M. Dowd and B. Worm, 2016: Changing recruitment capacity in global fish stocks. PNAS, 113(1), 134–139, doi:10.1073/pnas.1504709112.
  1219. Britten, G.L., M. Dowd and B. Worm, 2016: Changing recruitment capacity in global fish stocks. PNAS, 113(1), 134–139, doi:10.1073/pnas.1504709112.
  1220. Free, C.M. et al., 2019: Impacts of historical warming on marine fisheries production. Science, 363(6430), 979, doi:10.1126/science.aau1758.
  1221. Monllor-Hurtado, A., M.G. Pennino and J.L. Sanchez-Lizaso, 2017: Shift in tuna catches due to ocean warming. PLoS One, 12(6), e0178196, doi:10.1371/journal.pone.0178196.
  1222. Free, C.M. et al., 2019: Impacts of historical warming on marine fisheries production. Science, 363(6430), 979, doi:10.1126/science.aau1758.
  1223. Cheung, W.W.L., J. Bruggeman and M. Butenschön, 2018a: Projected changes in global and national potential marine fisheries catch under climate change scenarios in the twenty-first century. In: Impacts of climate change on fisheries and aquaculture [Barange, M., Bahri, T., Beveridge, M.C.M., Cochrane, K.L., Funge-Smith, S. & Poulain, F. (eds.)]. FAO Fisheries and Aquaculture Technical Paper T, FAO, Rome, Italy. 63-86. ISBN: 978-92-5-130607-9
  1224. Cheung, W.W.L. et al., 2016a: Transform high seas management to build climate resilience in marine seafood supply. Fish Fish., 18(2), 254–263, doi:10.1111/faf.12177.
  1225. Essington, T.E. et al., 2015: Fishing amplifies forage fish population collapses. PNAS, 112(21), 6648.
  1226. Britten, G.L., M. Dowd and B. Worm, 2016: Changing recruitment capacity in global fish stocks. PNAS, 113(1), 134–139, doi:10.1073/pnas.1504709112.
  1227. Free, C.M. et al., 2019: Impacts of historical warming on marine fisheries production. Science, 363(6430), 979, doi:10.1126/science.aau1758.
  1228. Cheung, W.W.L., R. Watson and D. Pauly, 2013: Signature of ocean warming in global fisheries catch. Nature, 497, 365, doi:10.1038/nature121.
  1229. Keskin, C. and D. Pauly, 2014: Changes in the ‘Mean Temperature of the Catch’: application of a new concept to the North-eastern Aegean Sea. Acta Adriatica: international journal of Marine Sciences, 55(2), 213–218.
  1230. Tsikliras, A.C. et al., 2014: Shift in trophic level of Mediterranean mariculture species. Conserv Biol, 28(4), 1124–8, doi:10.1111/cobi.12276.
  1231. Maharaj, R.R., V.W.Y. Lam, D. Pauly and W.W.L. Cheung, 2018: Regional variability in the sensitivity of Caribbean reef fish assemblages to ocean warming. Mar. Ecol. Prog. Ser., 590, 201–209.
  1232. Blanchard, J.L. et al., 2017: Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol., 1(9), 1240–1249, doi:10.1038/s41559-017-0258-8.
  1233. Lotze, H.K. et al., 2018: Ensemble projections of global ocean animal biomass with climate change. bioRxiv, 467175, doi:10.1101/467175.
  1234. Cheung, W.W.L., G. Reygondeau and T.L. Frolicher, 2016b: Large benefits to marine fisheries of meeting the 1.5°C global warming target. Science, 354(6319), 1591–1594, doi:10.1126/science.aag2331.
  1235. Stock, C.A. et al., 2017: Reconciling fisheries catch and ocean productivity. PNAS, 114(8), E1441–E1449, doi:10.1073/pnas.1610238114.
  1236. Tittensor, D.P. et al., 2018: A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev., 11(4), 1421–1442, doi:10.5194/gmd-11-1421-2018.
  1237. Blanchard, J.L. et al., 2017: Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol., 1(9), 1240–1249, doi:10.1038/s41559-017-0258-8.
  1238. Asch, R.G., W.W.L. Cheung and G. Reygondeau, 2018: Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change. Mar. Policy, 88, 285–294, doi:10.1016/j.marpol.2017.08.015.
  1239. Asch, R.G., W.W.L. Cheung and G. Reygondeau, 2018: Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change. Mar. Policy, 88, 285–294, doi:10.1016/j.marpol.2017.08.015.
  1240. Lehodey, P. et al., 2013: Modelling the impact of climate change on Pacific skipjack tuna population and fisheries. Clim. Change, 119(1), 95–109, doi:10.1007/s10584-012-0595-1.
  1241. Dueri, S., L. Bopp and O. Maury, 2014: Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution. Global Change Biol., 20(3), 742–753, doi:10.1111/gcb.12460.
  1242. Erauskin-Extramiana, M. et al., 2019: Large-scale distribution of tuna species in a warming ocean. Global Change Biol., 25(6), 2043–2060, doi:10.1111/gcb.14630.
  1243. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  1244. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1245. Cheung, W.W.L. et al., 2016a: Transform high seas management to build climate resilience in marine seafood supply. Fish Fish., 18(2), 254–263, doi:10.1111/faf.12177.
  1246. Blanchard, J.L. et al., 2017: Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol., 1(9), 1240–1249, doi:10.1038/s41559-017-0258-8.
  1247. Keller, A.A. et al., 2010: Demersal fish and invertebrate biomass in relation to an offshore hypoxic zone along the US West Coast. Fish. Oceanogr., 19(1), 76–87, doi:10.1111/j.1365-2419.2009.00529.x.
  1248. Banse, K., 1968: Hydrography of the Arabian Sea Shelf of India and Pakistan and effects on demersal fishes. Deep Sea Res. Pt. I, 15(1), 45–79, doi:10.1016/0011-7471(68)90028-4.
  1249. Rosenberg, R. et al., 1983: Benthos biomass and oxygen deficiency in the upwelling system off Peru. J. Mar. Res., 41(2), 263–279, doi:10.1357/002224083788520153.
  1250. Keller, A.A. et al., 2015: Occurrence of demersal fishes in relation to near-bottom oxygen levels within the California Current large marine ecosystem. Fish. Oceanogr., 24(2), 162–176, doi:10.1111/fog.12100.
  1251. Arntz, W.E. et al., 2006: El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems. Adv. Geosci., 6, 243–265, doi:10.5194/adgeo-6-243-2006.
  1252. Prince, E.D. et al., 2010: Ocean scale hypoxia-based habitat compression of Atlantic istiophorid billfishes. Fish. Oceanogr., 19(6), 448–462, doi:10.1111/j.1365-2419.2010.00556.x.
  1253. Stramma, L. et al., 2011: Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change, 2, 33, doi:10.1038/nclimate1304.
  1254. Gilly, W.F., J.M. Beman, S.Y. Litvin and B.H. Robison, 2013: Oceanographic and Biological Effects of Shoaling of the Oxygen Minimum Zone. Annu. Rev. Mar. Sci., 5(1), 393–420, doi:10.1146/annurev-marine-120710-100849.
  1255. Gallo, N.D. and L.A. Levin, 2016: Fish Ecol. Evol. in the World’s Oxygen Minimum Zones and Implications of Ocean Deoxygenation. Adv. Mar. Biol., Vol, 74, 117–198, doi:10.1016/bs.amb.2016.04.001.
  1256. Breitburg, D. et al., 2018: Declining oxygen in the global ocean and coastal waters. Science, 359(6371).
  1257. Froehlich, H.E. et al., 2018: Comparative terrestrial feed and land use of an aquaculture-dominant world. PNAS, 115(20), 5295, doi:10.1073/pnas.1801692115.
  1258. Klinger, D.H., S.A. Levin and J.R. Watson, 2017: The growth of finfish in global open-ocean aquaculture under climate change. Proc. Roy. Soc. B. Biol., 284(1864).
  1259. Kämpf, J. and P. Chapman, 2016: Upwelling Systems of the World.Springer International Publishing Switzerland. ISBN 978-3-319-42522-1
  1260. García Molinos, J. et al., 2015: Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change, 6, 83, doi:10.1038/nclimate2769.
  1261. Levin, L.A. and N. Le Bris, 2015: The deep ocean under climate change. Science, 350(6262), 766–768, doi:10.1126/science.aad0126.
  1262. Pauly, D. and D. Zeller, 2016: Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun., 7, 10244 EP 1–9, doi:10.1038/ncomms10244.
  1263. Black, B.A. et al., 2014: Six centuries of variability and extremes in a coupled marine-terrestrial ecosystem. Science, 345(6203), 1498.
  1264. Kämpf, J. and P. Chapman, 2016: Upwelling Systems of the World.Springer International Publishing Switzerland. ISBN 978-3-319-42522-1
  1265. Blasiak, R. et al., 2017: Climate change and marine fisheries: Least developed countries top global index of vulnerability. PLoS One, 12(6), e0179632, doi:10.1371/journal.pone.0179632.
  1266. Sydeman, W.J. et al., 2014: Climate change and wind intensification in coastal upwelling ecosystems. Science, 345(6192), 77–80, doi:10.1126/science.1251635.
  1267. García Molinos, J. et al., 2015: Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change, 6, 83, doi:10.1038/nclimate2769.
  1268. Rykaczewski, R.R. et al., 2015: Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett., 42(15), 6424–6431, doi:10.1002/2015GL064694.
  1269. Varela, R. et al., 2015: Has upwelling strengthened along worldwide coasts over 1982-2010? Sci. Rep., 5, 10016, doi:10.1038/srep10016.
  1270. Belmadani, A. et al., 2014: What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile? Clim. Dyn., 43(7), 1893–1914, doi:10.1007/s00382-013-2015-2.
  1271. Rykaczewski, R.R. et al., 2015: Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett., 42(15), 6424–6431, doi:10.1002/2015GL064694.
  1272. Sousa, M.C. et al., 2017: Why coastal upwelling is expected to increase along the western Iberian Peninsula over the next century? Sci. Total Environ., 592, 243–251, doi:10.1016/j.scitotenv.2017.03.046.
  1273. García Molinos, J. et al., 2015: Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change, 6, 83, doi:10.1038/nclimate2769.
  1274. Wang, D., T.C. Gouhier, B.A. Menge and A.R. Ganguly, 2015a: Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518(7539), 390–394, doi:10.1038/nature14235.
  1275. Oyarzún, D. and C.M. Brierley, 2018: The future of coastal upwelling in the Humboldt current from model projections. Clim. Dyn., 52, 599–615. doi:10.1007/s00382-018-4158-7.
  1276. Xiu, P., F. Chai, E.N. Curchitser and F.S. Castruccio, 2018: Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System. Sci. Rep., 8(1), 2866, doi:10.1038/s41598-018-21247-7.
  1277. Renault, L. et al., 2016: Partial decoupling of primary productivity from upwelling in the California Current system. Nat. Geosci., 9(7), 505–508, doi:10.1038/ngeo2722.
  1278. Xiu, P., F. Chai, E.N. Curchitser and F.S. Castruccio, 2018: Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System. Sci. Rep., 8(1), 2866, doi:10.1038/s41598-018-21247-7.
  1279. García Molinos, J. et al., 2015: Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change, 6, 83, doi:10.1038/nclimate2769.
  1280. Gruber, N. et al., 2012: Rapid Progression of Ocean Acidification in the California Current System. Science, 337(6091), 220.
  1281. Franco, A.C., N. Gruber, T.L. Frölicher and L. Kropuenske Artman, 2018a: Contrasting Impact of Future CO2 Emission Scenarios on the Extent of CaCO3 Mineral Undersaturation in the Humboldt Current System. J. Geophys. Res-Oceans, 123(3), 2018–2036, doi:10.1002/2018JC013857.
  1282. Levin, L.A., 2018: Manifestation, Drivers, and Emergence of Open Ocean Deoxygenation. Annu. Rev. Mar. Sci., 10(1), 229–260, doi:10.1146/annurev-marine-121916-063359.
  1283. Alin, S.R. et al., 2012: Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005–2011). J. Geophys. Res-Oceans, 117(C5), doi:10.1029/2011JC007511.
  1284. Bednaršek, N., R. A. Feely, J. C. P. Reum, B. Peterson, J. Menkel, S. R. Alin, and B. Hales. “Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem.” Proceedings of the Royal Society B: Biological Sciences 281, no. 1785 (2014): 20140123.
  1285. Breitburg, D. et al., 2018: Declining oxygen in the global ocean and coastal waters. Science, 359(6371).
  1286. Levin, L.A., 2018: Manifestation, Drivers, and Emergence of Open Ocean Deoxygenation. Annu. Rev. Mar. Sci., 10(1), 229–260, doi:10.1146/annurev-marine-121916-063359.
  1287. Gruber, N. et al., 2012: Rapid Progression of Ocean Acidification in the California Current System. Science, 337(6091), 220.
  1288. García Molinos, J. et al., 2015: Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change, 6, 83, doi:10.1038/nclimate2769.
  1289. Marshall, K.N. et al., 2017: Risks of ocean acidification in the California Current food web and fisheries: ecosystem model projections. Global Change Biol., 23(4), 1525–1539, doi:10.1111/gcb.13594.
  1290. Hodgson, E.E. et al., 2018: Consequences of spatially variable ocean acidification in the California Current: Lower pH drives strongest declines in benthic species in southern regions while greatest economic impacts occur in northern regions. Ecol. Modell., 383, 106–117, doi:10.1016/j.ecolmodel.2018.05.018.
  1291. Franco, A.C., N. Gruber, T.L. Frölicher and L. Kropuenske Artman, 2018a: Contrasting Impact of Future CO2 Emission Scenarios on the Extent of CaCO3 Mineral Undersaturation in the Humboldt Current System. J. Geophys. Res-Oceans, 123(3), 2018–2036, doi:10.1002/2018JC013857.
  1292. Lachkar, Z., 2014: Effects of upwelling increase on ocean acidification in the California and Canary Current systems. Geophys. Res. Lett., 41(1), 90–95, doi:10.1002/2013GL058726.
  1293. García Molinos, J. et al., 2015: Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change, 6, 83, doi:10.1038/nclimate2769.
  1294. Gutiérrez, M.T., P. Jorge Castillo, B. Laura Naranjo and M.J. Akester, 2017: Current state of goods, services and governance of the Humboldt Current Large Marine Ecosystem in the context of climate change. Environ. Dev., 22, 175–190, doi:10.1016/j.envdev.2017.02.006.
  1295. Merino, G., M. Barange and C. Mullon, 2010: Climate variability and change scenarios for a marine commodity: Modelling small pelagic fish, fisheries and fishmeal in a globalized market. J. Mar. Syst., 81(1), 196–205, doi:10.1016/j.jmarsys.2009.12.010.
  1296. Carlson, A.K., W.W. Taylor, J. Liu and I. Orlic, 2017: The telecoupling framework: an integrative tool for enhancing fisheries management. Fisheries, 42(8), 395–397.
  1297. Golden, C.D. et al., 2016: Nutrition: Fall in fish catch threatens human health. Nature, 534(7607), 317–320, doi:10.1038/534317a.
  1298. Guevara-Carrasco, R. and J. Lleonart, 2008: Dynamics and fishery of the Peruvian hake: Between nature and man. J. Mar. Syst., 71(3), 249–259, doi:10.1016/j.jmarsys.2007.02.030.
  1299. Essington, T.E. et al., 2015: Fishing amplifies forage fish population collapses. PNAS, 112(21), 6648.
  1300. Brady, R.X., M.A. Alexander, N.S. Lovenduski and R.R. Rykaczewski, 2017: Emergent anthropogenic trends in California Current upwelling. Geophys. Res. Lett., 44(10), 5044–5052, doi:10.1002/2017GL072945.
  1301. Belhabib, D., V.W.Y. Lam and W.W.L. Cheung, 2016: Overview of West African fisheries under climate change: Impacts, vulnerabilities and adaptive responses of the artisanal and industrial sectors. Mar. Policy, 71(Supplement C), 15–28, doi:10.1016/j.marpol.2016.05.009.
  1302. Blasiak, R. et al., 2017: Climate change and marine fisheries: Least developed countries top global index of vulnerability. PLoS One, 12(6), e0179632, doi:10.1371/journal.pone.0179632.
  1303. Costanza, R. et al., 2017: Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv., 28, 1–16.
  1304. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  1305. Rogers, A.D., 2015: Environmental Change in the Deep Ocean. Annu. Rev. Environ. Resourc., Vol 41, 40(1), 1–38, doi:10.1146/annurev-environ-102014-021415.
  1306. Armstrong, C.W., N. Foley, R. Tinch and S. van den Hove, 2010: Ecosystem goods and services of the deep sea. Deliverable D6, Universititet i Tromsø, Tromsø, 68 pp. https://www.pik-potsdam.de/news/public-events/archiv/alter-net/former-ss/2010/13.09.2010/van_den_hove/d6-2-final.pdf
  1307. Armstrong, C.W., N. Foley, R. Tinch and S. van den Hove, 2010: Ecosystem goods and services of the deep sea. Deliverable D6, Universititet i Tromsø, Tromsø, 68 pp. https://www.pik-potsdam.de/news/public-events/archiv/alter-net/former-ss/2010/13.09.2010/van_den_hove/d6-2-final.pdf
  1308. Marlow, J.J. et al., 2014: Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nat. Commun., 5, 5094, doi:10.1038/ncomms6094.
  1309. Thurber, A.R. et al., 2014: Ecosystem function and services provided by the deep sea. Biogeosciences, 11(14), 3941–3963, doi:10.5194/bg-11-3941-2014.
  1310. Najjar, R. et al., 2018: Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America. Global Biogeochem. Cy.,32(3), 389-416.
  1311. Pendleton, L. et al., 2012: Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS One, 7(9), e43542, doi:10.1371/journal.pone.0043542.
  1312. Lovenduski, N.S. et al., 2016: Partitioning uncertainty in ocean carbon uptake projections: Internal variability, emission scenario, and model structure. Global Biogeochem. Cy., 30(9), 1276–1287, doi:10.1002/2016gb005426.
  1313. Boyd, P.W. et al., 2019: Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 568(7752), 327–335, doi:10.1038/s41586-019-1098-2.
  1314. Barange, M. et al., 2017: The Cost of Reducing the North Atlantic Ocean Biological Carbon Pump. Front. Mar. Sci., 3, 290.
  1315. Martin, S.L., L.T. Ballance and T. Groves, 2016b: An Ecosystem Services Perspective for the Oceanic Eastern Tropical Pacific: Commercial Fisheries, Carbon Storage, Recreational Fishing, and Biodiversity. Front. Mar. Sci., 3, 50.
  1316. Melaku Canu, D. et al., 2015: Estimating the value of carbon sequestration ecosystem services in the Mediterranean Sea: An Ecol. Econ. approach. Global Environ. Change, 32(Supplement C), 87–95, doi:10.1016/j.gloenvcha.2015.02.008.
  1317. Megonigal, J.P. et al., 2016: 3.4 Impacts and effects of ocean warming on tidal marsh and tidal freshwater forest ecosystems. In: Laffoley, D., & Baxter, J.M. (editors). 2016. Explaining ocean warming: Causes, scale, effects and consequences. Full report. Gland, Switzerland: IUCN,105-210. ISBN: 978-2-1806-4
  1318. Gonneea, M.E. et al., 2019: Salt marsh ecosystem restructuring enhances elevation resilience and carbon storage during accelerating relative sea level rise. Estuar. Coast. Shelf Sci., 217, 56–68, doi:10.1016/j.ecss.2018.11.003.
  1319. Orth, R.J. et al., 2006: A Global Crisis for Seagrass Ecosystems. BioScience, 56(12), 987–996, doi:10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2.
  1320. Ferrario, F. et al., 2014: The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun., 5, 3794, doi:10.1038/ncomms4794.
  1321. Rao, N.S., A. Ghermandi, R. Portela and X. Wang, 2015: Global values of coastal ecosystem services: A spatial economic analysis of shoreline protection values. Ecosyst. Serv., 11, 95–105, doi:10.1016/j.ecoser.2014.11.011.
  1322. Perry, C.T. et al., 2018: Loss of coral reef growth capacity to track future increases in sea level. Nature, 558(7710), 396–400, doi:10.1038/s41586-018-0194-z.
  1323. Rao, N.S., A. Ghermandi, R. Portela and X. Wang, 2015: Global values of coastal ecosystem services: A spatial economic analysis of shoreline protection values. Ecosyst. Serv., 11, 95–105, doi:10.1016/j.ecoser.2014.11.011.
  1324. Kelleway, J.J. et al., 2017b: Geochemical analyses reveal the importance of environmental history for blue carbon sequestration. J. Geophys. Res-Biogeo., 122(7), 1789–1805, doi:10.1002/2017JG003775.
  1325. Sheng, Y.P. and R. Zou, 2017: Assessing the role of mangrove forest in reducing coastal inundation during major hurricanes. Hydrobiologia, 803(1), 87–103, doi:10.1007/s10750-017-3201-8.
  1326. Costanza, R. et al., 2017: Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv., 28, 1–16.
  1327. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  1328. Costanza, R. et al., 2014: Changes in the global value of ecosystem services. Global Environ. Change, 26, 152–158, doi:10.1016/j.gloenvcha.2014.04.002.
  1329. Pratchett, M.S., A.S. Hoey and S.K. Wilson, 2014: Reef degradation and the loss of critical ecosystem goods and services provided by coral reef fishes. Curr. Opin. Environ. Sustain., 7(Supplement C), 37–43, doi:10.1016/j.cosust.2013.11.022.
  1330. Carrasquilla-Henao, M. and F. Juanes, 2017: Mangroves enhance local fisheries catches: a global meta-analysis. Fish Fish., 18(1), 79–93, doi:10.1111/faf.12168.
  1331. Maharaj, R.R., V.W.Y. Lam, D. Pauly and W.W.L. Cheung, 2018: Regional variability in the sensitivity of Caribbean reef fish assemblages to ocean warming. Mar. Ecol. Prog. Ser., 590, 201–209.
  1332. Chan, K.M., T. Satterfield and J. Goldstein, 2012: Rethinking ecosystem services to better address and navigate cultural values. Ecol. Econ., 74, 8–18.
  1333. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1334. Hilmi, N. et al., 2015: Bridging the gap between ocean acidification impacts and economic valuation: regional impacts of ocean acidification on fisheries and aquaculture. Brochure of The Third International Monaco Workshop on Economics of Ocean Acidification, Monaco.
  1335. Hoegh-Guldberg, O., 2015: Reviving the Ocean Economy: the case for action-2015. WWF International. Gland, Switzerland, Geneva.
  1336. Spalding, M.J., 2016: The new blue economy: the future of sustainability. J. Ocean Coast. Econ., 2(2), 8.
  1337. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  1338. Kirk, M.D. et al., 2015: World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS medicine, 12(12), e1001921.
  1339. Vezzulli, L. et al., 2016: Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. PNAS, 113(34), E5062-E5071.
  1340. Baker-Austin, C. et al., 2013: Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Change, 3(1), 73–77, doi:10.1038/NCLIMATE1628.
  1341. Baker-Austin, C., J. Trinanes, N. Gonzalez-Escalona and J. Martinez-Urtaza, 2017: Non-Cholera Vibrios: The Microbial Barometer of Climate Change. Trends Microbiol., 25(1), 76–84, doi:10.1016/j.tim.2016.09.008.
  1342. Baker-Austin, C., J. Trinanes, N. Gonzalez-Escalona and J. Martinez-Urtaza, 2017: Non-Cholera Vibrios: The Microbial Barometer of Climate Change. Trends Microbiol., 25(1), 76–84, doi:10.1016/j.tim.2016.09.008.
  1343. Escobar, L.E. et al., 2015: A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Trop., 149(Supplement C), 202–211, doi:10.1016/j.actatropica.2015.05.028.
  1344. Semenza, J.C. et al., 2017: Environmental Suitability of Vibrio Infections in a Warming Climate: An Early Warning System. Environ. Health. Perspect., 125(10), 107004. doi:papers3://publication/doi/10.1289/EHP2198.
  1345. Ashbolt, N.J., 2019: Flood and Infectious Disease Risk Assessment. In: Health in Ecological Perspectives in the Anthropocene [t. Watanabe, C. Watanabe eds].. Springer, Singapore. pp. 145–159. ISBN: 978-981-13-2525-0
  1346. Lloyd, S.J. et al., 2016: Modelling the influences of climate change-associated sea level rise and socioeconomic development on future storm surge mortality. Clim. Change, 134(3), 441–455, doi:10.1007/s10584-015-1376-4.
  1347. Hallegraeff, G.M., 2010: Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge1. J. Phycol., 46(2), 220–235.
  1348. Quillien, N. et al., 2015: Effects of macroalgal accumulations on the variability in zoobenthos of high-energy macrotidal sandy beaches. Mar. Ecol. Prog. Ser., 522, 97–114.
  1349. Amaya, O. et al., 2018: Large-Scale sea turtle mortality events in El Salvador attributed to paralytic shellfish toxin-producing algae blooms. Front. Mar. Sci., 5(411), doi:10.3389/fmars.2018.00411.
  1350. García-Mendoza, E. et al., 2018: Mass Mortality of Cultivated Northern Bluefin Tuna Thunnus thynnus orientalis Associated With Chattonella Species in Baja California, Mexico. Front. Mar. Sci., 5(454), doi:10.3389/fmars.2018.00454.
  1351. Álvarez, G. et al., 2019: Paralytic Shellfish Toxins in Surf Clams Mesodesma donacium during a Large Bloom of Alexandrium catenella Dinoflagellates Associated to an Intense Shellfish Mass Mortality. Toxins, 11(4), 188. doi:10.3390/toxins11040188.
  1352. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  1353. Wong, P.P. et al., 2014b: Coastal systems and low-lying areas. Clim. Change, 2104, 361–409.
  1354. Anderson, C.R. et al., 2015: Living with harmful algal blooms in a changing world: strategies for modeling and mitigating their effects in coastal marine ecosystems. In Castal and Marine Hazards, Risks, and Disasters [J. F. Shroder, J.T. Ellis, D.J. Sherman eds.] Elsevier BV, Amsterdam, pp. 495–561. ISBN: 978-0-12-396483-0.
  1355. Berdalet, E. et al., 2017: GlobalHAB: a new program to promote international research, observations, and modeling of harmful algal blooms in aquatic systems. Oceanography, 30(1), 70–81.
  1356. García-Mendoza, E. et al., 2018: Mass Mortality of Cultivated Northern Bluefin Tuna Thunnus thynnus orientalis Associated With Chattonella Species in Baja California, Mexico. Front. Mar. Sci., 5(454), doi:10.3389/fmars.2018.00454.
  1357. Díaz, P.A. et al., 2019: Impacts of harmful algal blooms on the aquaculture industry: Chile as a case study. Perspect. Phycol., 6, 1-2. doi: 10.1127/pip/2019/0081
  1358. Kohli, G.S. et al., 2014: High abundance of the potentially maitotoxic dinoflagellate Gambierdiscus carpenteri in temperate waters of New South Wales, Australia. Harmful Algae, 39, 134–145, doi:10.1016/j.hal.2014.07.007.
  1359. Bravo, J., F. Suárez, A. Ramírez and F. Acosta, 2015: Ciguatera, an emerging human poisoning in Europe. J. Aquac. Mar. Biol, 3, 00053.
  1360. Sparrow, L., P. Momigliano, G.R. Russ and K. Heimann, 2017: Effects of temperature, salinity and composition of the dinoflagellate assemblage on the growth of Gambierdiscus carpenteri isolated from the Great Barrier Reef. Harmful Algae, 65, 52–60, doi:10.1016/j.hal.2017.04.006.
  1361. Tester, P.A. et al., 2010: Ciguatera fish poisoning and sea surface temperatures in the Caribbean Sea and the West Indies. Toxicon, 56(5), 698–710.
  1362. Rodríguez, F. et al., 2017: Canary Islands (NE Atlantic) as a biodiversity ‘hotspot’of Gambierdiscus: Implications for future trends of ciguatera in the area. Harmful Algae, 67, 131–143.
  1363. Akselman, R. et al., 2015: Protoceratium reticulatum (Dinophyceae) in the austral Southwestern Atlantic and the first report on YTX-production in shelf waters of Argentina. Harmful Algae, 45, 40–52.
  1364. Guinder, V.A. et al., 2018: Plankton multiproxy analyses in the Northern Patagonian Shelf, Argentina: community structure, phycotoxins and characterization of Alexandrium strains. Front. Mar. Sci., 5, 394.
  1365. Paredes, J. et al., 2019: Population Genetic Structure at the Northern Edge of the Distribution of Alexandrium catenella in the Patagonian Fjords and Its Expansion Along the Open Pacific Ocean Coast. Front. Mar. Sci., 5(532), 1–13. doi:10.3389/fmars.2018.00532.
  1366. Tillmann, U. et al., 2019: High abundance of Amphidomataceae (Dinophyceae) during the 2015 spring bloom of the Argentinean Shelf and a new, non-toxigenic ribotype of Azadinium spinosum. Harmful Algae, 84, 244–260, doi:10.1016/j.hal.2019.01.008.
  1367. McKibben, S.M. et al., 2017: Climatic regulation of the neurotoxin domoic acid. PNAS, 114(2), 239–244.
  1368. Díaz, P.A. et al., 2019: Impacts of harmful algal blooms on the aquaculture industry: Chile as a case study. Perspect. Phycol., 6, 1-2. doi: 10.1127/pip/2019/0081
  1369. Gobler, C.J. et al., 2017: Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. PNAS, 114(19): 4975-4980, doi: 10.1073/pnas.1619575114.
  1370. McKibben, S.M. et al., 2017: Climatic regulation of the neurotoxin domoic acid. PNAS, 114(2), 239–244.
  1371. McCabe, R.M. et al., 2016: An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett., 43(19).
  1372. Ritzman, J. et al., 2018: Economic and sociocultural impacts of fisheries closures in two fishing-dependent communities following the massive 2015 U.S. West Coast harmful algal bloom. Harmful Algae, 80, 35–45, doi:10.1016/j.hal.2018.09.002.
  1373. Hallegraeff, G.M., 2010: Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge1. J. Phycol., 46(2), 220–235.
  1374. Hallegraeff, G.M., 2016: Impacts and effects of ocean warming on marine phytoplankton and harmful algal blooms. in Explaining ocean warming: Causes, scale, effects and consequences. Full Report. [D. Laffoley and J.M. Baxter eds.], 456 pp, IUCN, Gland, Switzerland, ISBN: 978-8317-1806-4
  1375. Glibert, P.M. et al., 2018: Key Questions and Recent Research Advances on Harmful Algal Blooms in Relation to Nutrients and Eutrophication. In: Global Ecology and Oceanography of Harmful Algal Blooms [Glibert, P.M., E. Berdalet, M.A. Burford, G.C. Pitcher and M. Zhou (eds.)]. Springer International Publishing, Cham, pp. 229–259, ISBN: 978-3-319-70069-4.
  1376. Paerl, H.W., T.G. Otten and R. Kudela, 2018: Mitigating the Expansion of Harmful Algal Blooms Across the Freshwater-to-Marine Continuum. Environ. Sci. Technol., 52(10), 5519–5529, doi:10.1021/acs.est.7b05950.
  1377. Tammilehto, A. et al., 2015: Induction of domoic acid production in the toxic diatom Pseudo-nitzschia seriata by calanoid copepods. Aquatic Toxicology, 159, 52–61.
  1378. Xu, J. and T. Kiørboe, 2018: Toxic dinoflagellates produce true grazer deterrents. Ecology.
  1379. Brunson, J.K. et al., 2018: Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom. Science, 361(6409), 1356–1358.
  1380. Brunson, J.K. et al., 2018: Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom. Science, 361(6409), 1356–1358.
  1381. Zhu, Z. et al., 2017: Understanding the blob bloom: Warming increases toxicity and abundance of the harmful bloom diatom Pseudo-nitzschia in California coastal waters. Harmful Algae, 67, 36–43, doi:10.1016/j.hal.2017.06.004.
  1382. Riebesell, U. et al., 2018: Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. Nat. Clim. Change, 8(12), 1082–1086, doi:10.1038/s41558-018-0344-1.
  1383. Ou, G., H. Wang, R. Si and W. Guan, 2017: The dinoflagellate Akashiwo sanguinea will benefit from future climate change: The interactive effects of ocean acidification, warming and high irradiance on photophysiology and hemolytic activity. Harmful Algae, 68, 118–127, doi:10.1016/j.hal.2017.08.003.
  1384. Gobler, C.J. et al., 2017: Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. PNAS, 114(19): 4975-4980, doi: 10.1073/pnas.1619575114.
  1385. Townhill, B.L. et al., 2018: Harmful algal blooms and climate change: exploring future distribution changes. ICES J. Mar. Sci., 75(6), 1882–1893, doi:10.1093/icesjms/fsy113.
  1386. Gobler, C.J. and H. Baumann, 2016: Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol. Lett., 12(5), 20150976, doi:10.1098/rsbl.2015.0976.
  1387. Paredes, J. et al., 2019: Population Genetic Structure at the Northern Edge of the Distribution of Alexandrium catenella in the Patagonian Fjords and Its Expansion Along the Open Pacific Ocean Coast. Front. Mar. Sci., 5(532), 1–13. doi:10.3389/fmars.2018.00532.
  1388. Anderson, C.R. et al., 2015: Living with harmful algal blooms in a changing world: strategies for modeling and mitigating their effects in coastal marine ecosystems. In Castal and Marine Hazards, Risks, and Disasters [J. F. Shroder, J.T. Ellis, D.J. Sherman eds.] Elsevier BV, Amsterdam, pp. 495–561. ISBN: 978-0-12-396483-0.
  1389. Wells, M.L. et al., 2015: Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae, 49, 68–93, doi:10.1016/j.hal.2015.07.009.
  1390. Glibert, P.M. et al., 2014: Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Global Change Biol., 20(12), 3845–3858.
  1391. Martin, T., W. Park and M. Latif, 2015: Southern Ocean forcing of the North Atlantic at multi-centennial time scales in the Kiel Climate Model. Deep Sea Res. Pt. II, 114(Supplement C), 39–48, doi:10.1016/j.dsr2.2014.01.018.
  1392. McCabe, R.M. et al., 2016: An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett., 43(19).
  1393. Paerl, H.W. et al., 2016: Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae, 54, 213–222, doi:10.1016/j.hal.2015.09.009.
  1394. Gobler, C.J. et al., 2017: Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. PNAS, 114(19): 4975-4980, doi: 10.1073/pnas.1619575114.
  1395. McKibben, S.M. et al., 2017: Climatic regulation of the neurotoxin domoic acid. PNAS, 114(2), 239–244.
  1396. Rodríguez, F. et al., 2017: Canary Islands (NE Atlantic) as a biodiversity ‘hotspot’of Gambierdiscus: Implications for future trends of ciguatera in the area. Harmful Algae, 67, 131–143.
  1397. Paerl, H.W., T.G. Otten and R. Kudela, 2018: Mitigating the Expansion of Harmful Algal Blooms Across the Freshwater-to-Marine Continuum. Environ. Sci. Technol., 52(10), 5519–5529, doi:10.1021/acs.est.7b05950.
  1398. Riebesell, U. et al., 2018: Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. Nat. Clim. Change, 8(12), 1082–1086, doi:10.1038/s41558-018-0344-1.
  1399. Townhill, B.L. et al., 2018: Harmful algal blooms and climate change: exploring future distribution changes. ICES J. Mar. Sci., 75(6), 1882–1893, doi:10.1093/icesjms/fsy113.
  1400. Borbor-Córdova, M.J. et al., 2018: Risk Perception of Coastal Communities and Authorities on Harmful Algal Blooms in Ecuador. Front. Mar. Sci., 5(365), doi:10.3389/fmars.2018.00365.
  1401. Cuellar-Martinez, T. et al., 2018: Addressing the Problem of Harmful Algal Blooms in Latin America and the Caribbean- A Regional Network for Early Warning and Response. Front. Mar. Sci., 5(409), doi:10.3389/fmars.2018.00409.
  1402. Boxall, A.B.A. et al., 2009: Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ. Health. Perspect., 117(4), 508–514, doi:10.1289/ehp.0800084.
  1403. Alava, J.J., A.M. Cisneros-Montemayor, U.R. Sumaila and W.W.L. Cheung, 2018: Projected amplification of food web bioaccumulation of MeHg and PCBs under climate change in the Northeastern Pacific. Sci. Rep., 8(1), 13460, doi:10.1038/s41598-018-31824-5.
  1404. Alava, J.J., W.W.L. Cheung, P.S. Ross and U.R. Sumaila, 2017: Climate change-contaminant interactions in marine food webs: Toward a conceptual framework. Global Change Biol., 23(10), 3984–4001, doi:10.1111/gcb.13667.
  1405. Alava, J.J., W.W.L. Cheung, P.S. Ross and U.R. Sumaila, 2017: Climate change-contaminant interactions in marine food webs: Toward a conceptual framework. Global Change Biol., 23(10), 3984–4001, doi:10.1111/gcb.13667.
  1406. Desforges, J.-P. et al., 2017: Effects of Polar Bear and Killer Whale Derived Contaminant Cocktails on Marine Mammal Immunity. Environ. Sci. Technol., 51(19), 11431–11439, doi:10.1021/acs.est.7b03532.
  1407. Desforges, J.-P. et al., 2018: Predicting global killer whale population collapse from PCB pollution. Science, 361(6409), 1373, doi:10.1126/science.aat1953.
  1408. Ishikawa, T. and Y. Ikegaki, 1980: Control of Mercury Pollution in Japan and the Minamata Bay Cleanup. J.Water Pollut. Contro Fed., 52(5), 1013–1018.
  1409. UNEP, 2013: Minamata convention on Mercury. [Available at: http://www.mercuryconvention.org/Convention%5D. Accessed: 2019/09/30.
  1410. Fort, J. et al., 2015: Mercury in wintering seabirds, an aggravating factor to winter wrecks? Sci. Total Environ., 527–528(Supplement C), 448–454, doi:10.1016/j.scitotenv.2015.05.018.
  1411. Scheuhammer, A. et al., 2015: Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci. Total Environ., 509, 91–103.
  1412. Scheuhammer, A.M., 1991: Effects of acidification on the availability of toxic metals and calcium to wild birds and mammals. Environ. Pollut., 71(2), 329–375, doi:10.1016/0269-7491(91)90036-V.
  1413. Celo, V., D.R.S. Lean and S.L. Scott, 2006: Abiotic methylation of mercury in the aquatic environment. Sci. Total Environ., 368(1), 126–137, doi:10.1016/j.scitotenv.2005.09.043.
  1414. López, I.R., J. Kalman, C. Vale and J. Blasco, 2010: Influence of sediment acidification on the bioaccumulation of metals in Ruditapes philippinarum. Environ. Sci. Pollut. Res., 17(9), 1519–1528, doi:10.1007/s11356-010-0338-7.
  1415. Macdonald, R.W. and L.L. Loseto, 2010: Are Arctic Ocean ecosystems exceptionally vulnerable to global emissions of mercury? A call for emphasised research on methylation and the consequences of climate change. Environ. Chem., 7(2), 133–138.
  1416. Riget, F., K. Vorkamp and D. Muir, 2010: Temporal trends of contaminants in Arctic char (Salvelinus alpinus) from a small lake, southwest Greenland during a warming climate. J. Environ. Monit., 12(12), 2252–2258, doi:10.1039/C0EM00154F.
  1417. Corbitt, E.S. et al., 2011: Global Source–Receptor Relationships for Mercury Deposition Under Present-Day and 2050 Emissions Scenarios. Environ. Sci. Technol., 45(24), 10477–10484, doi:10.1021/es202496y.
  1418. Krabbenhoft, D.P. and E.M. Sunderland, 2013: Global Change and Mercury. Science, 341(6153), 1457.
  1419. Roberts, D.A. et al., 2013: Ocean acidification increases the toxicity of contaminated sediments. Global Change Biol., 19(2), 340–351, doi:10.1111/gcb.12048.
  1420. McKinney, M.A. et al., 2015: A review of ecological impacts of global climate change on persistent organic pollutant and mercury pathways and exposures in arctic marine ecosystems. Curr. Zool., 61(4), 617–628, doi:10.1093/czoolo/61.4.617.
  1421. Morrissey, C.A., L.I. Bendell-Young and J.E. Elliott, 2005: Identifying Sources and Biomagnification of Persistent Organic Contaminants in Biota from Mountain Streams of Southwestern British Columbia, Canada. Environ. Sci. Technol., 39(20), 8090–8098, doi:10.1021/es050431n.
  1422. Booth, S. and D. Zeller, 2005: Mercury, food webs, and marine mammals: Implications of diet and climate change for human health. Environ. Health. Perspect., 113(5), 521–526, doi:10.1289/ehp.7603.
  1423. Alava, J.J., A.M. Cisneros-Montemayor, U.R. Sumaila and W.W.L. Cheung, 2018: Projected amplification of food web bioaccumulation of MeHg and PCBs under climate change in the Northeastern Pacific. Sci. Rep., 8(1), 13460, doi:10.1038/s41598-018-31824-5.
  1424. Marques, A., M.L. Nunes, S.K. Moore and M.S. Strom, 2010: Climate change and seafood safety: Human health implications. Food Res. Int., 43(7), 1766–1779, doi:10.1016/j.foodres.2010.02.010.
  1425. Tirado, M.C. et al., 2010: Climate change and food safety: A review. Food Res. Int., 43(7), 1745–1765, doi:10.1016/j.foodres.2010.07.003.
  1426. Alava, J.J., W.W.L. Cheung, P.S. Ross and U.R. Sumaila, 2017: Climate change-contaminant interactions in marine food webs: Toward a conceptual framework. Global Change Biol., 23(10), 3984–4001, doi:10.1111/gcb.13667.
  1427. Cisneros-Montemayor, A.M., D. Pauly, L.V. Weatherdon and Y. Ota, 2016: A Global Estimate of Seafood Consumption by Coastal Indigenous Peoples. PLoS One, 11(12), doi:10.1371/journal.pone.0166681.
  1428. Marques, A., M.L. Nunes, S.K. Moore and M.S. Strom, 2010: Climate change and seafood safety: Human health implications. Food Res. Int., 43(7), 1766–1779, doi:10.1016/j.foodres.2010.02.010.
  1429. Tirado, M.C. et al., 2010: Climate change and food safety: A review. Food Res. Int., 43(7), 1745–1765, doi:10.1016/j.foodres.2010.07.003.
  1430. Alava, J.J., W.W.L. Cheung, P.S. Ross and U.R. Sumaila, 2017: Climate change-contaminant interactions in marine food webs: Toward a conceptual framework. Global Change Biol., 23(10), 3984–4001, doi:10.1111/gcb.13667.
  1431. Woodall, L.C. et al., 2014: The deep sea is a major sink for microplastic debris. R. Soc. Open Sci., 1(4), 140317, doi:doi:10.1098/rsos.140317.
  1432. GESAMP, 2015: Sources, fate and effects of microplastics in the marine environment: a global assessment. [Kershaw, P.J. (ed.)]. International Maritime Organization, 96 pp., London, UK, ISSN: 1020-4873
  1433. van Sebille, E. et al., 2015: A global inventory of small floating plastic debris. Environ. Res. Lett., 10(12), 124006, doi:10.1088/1748-9326/10/12/124006.
  1434. Wall, C.B. et al., 2017: Elevated pCO(2) affects tissue biomass composition, but not calcification, in a reef coral under two light regimes. R. Soc. Open Sci., 4(11), 170683, doi:10.1098/rsos.170683.
  1435. Wall, C.B. et al., 2017: Elevated pCO(2) affects tissue biomass composition, but not calcification, in a reef coral under two light regimes. R. Soc. Open Sci., 4(11), 170683, doi:10.1098/rsos.170683.
  1436. Golden, C.D. et al., 2016: Nutrition: Fall in fish catch threatens human health. Nature, 534(7607), 317–320, doi:10.1038/534317a.
  1437. Béné, C. et al., 2015: Feeding 9 billion by 2050 – Putting fish back on the menu. Food Secur., 7(2), 261–274, doi:10.1007/s12571-015-0427-z.
  1438. Golden, C.D. et al., 2016: Nutrition: Fall in fish catch threatens human health. Nature, 534(7607), 317–320, doi:10.1038/534317a.
  1439. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1440. Golden, C.D. et al., 2016: Nutrition: Fall in fish catch threatens human health. Nature, 534(7607), 317–320, doi:10.1038/534317a.
  1441. Hilmi, N. et al., 2017: Ocean acidification in the Middle East and North African region. Region et Developpement, 46, 43–57 pp, LEADm Universite du Sud – Toulon Var.
  1442. Blanchard, J.L. et al., 2017: Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol., 1(9), 1240–1249, doi:10.1038/s41559-017-0258-8.
  1443. Golden, C.D. et al., 2016: Nutrition: Fall in fish catch threatens human health. Nature, 534(7607), 317–320, doi:10.1038/534317a.
  1444. Gephart, J.A. et al., 2016: Vulnerability to shocks in the global seafood trade network. Environ. Res. Lett., 11(3), 035008.
  1445. Tate, R.D., K. Benkendorff, R. Ab Lah and B.P. Kelaher, 2017: Ocean acidification and warming impacts the nutritional properties of the predatory whelk, Dicathais orbita. J. Exp. Mar. Biol. Ecol., 493, 7–13, doi:10.1016/j.jembe.2017.03.006.
  1446. Lemasson, A.J., J.M. Hall-Spencer, V. Kuri and A.M. Knights, 2019: Changes in the biochemical and nutrient composition of seafood due to ocean acidification and warming. Mar. Environ. Res., 143, 82–92, doi:10.1016/j.marenvres.2018.11.006.
  1447. Golden, C.D. et al., 2016: Nutrition: Fall in fish catch threatens human health. Nature, 534(7607), 317–320, doi:10.1038/534317a.
  1448. Golden, C.D. et al., 2016: Nutrition: Fall in fish catch threatens human health. Nature, 534(7607), 317–320, doi:10.1038/534317a.
  1449. Kuhnlein, H.V. and O. Receveur, 1996: Dietary Change and Traditional Food Systems of Indigenous Peoples. Annu. Rev. Nutr., 16(1), 417–442, doi:10.1146/annurev.nu.16.070196.002221.
  1450. Shannon, C., 2002: Acculturation: Aboriginal and Torres Strait Islander nutrition. Asia Pacific Journal of Clinical Nutrition, 11, S576–S578, doi:10.1046/j.0964-7058.2002.00352.x.
  1451. Charlton, K.E. et al., 2016: Fish, food security and health in Pacific Island countries and territories: a systematic literature review. BMC Public Health, 16(1), 285, doi:10.1186/s12889-016-2953-9.
  1452. Batal, M. et al., 2017: Quantifying associations of the dietary share of ultra-processed foods with overall diet quality in First Nations peoples in the Canadian provinces of British Columbia, Alberta, Manitoba and Ontario. Public Health Nutr., 21(1), 103-113. doi:10.1017/S1368980017001677.
  1453. Thaman, R.R., 1982: Deterioration of traditional food systems, increasing malnutrition and food dependency in the Pacific Islands. J. Food. Nutr., 39(3) 109-121.
  1454. Quinn, R.W., G.M. Spreitzer and C.F. Lam, 2012: Building a Sustainable Model of Human Energy in Organizations: Exploring the Critical Role of Resources. Acad. Manag., 6(1), 337–396, doi:10.1080/19416520.2012.676762.
  1455. Luick, B., A. Bersamin and J.S. Stern, 2014: Locally harvested foods support serum 25-hydroxyvitamin D sufficiency in an indigenous population of Western Alaska. Int. J. Circumpolar Health, 73(1), 22732, doi:10.3402/ijch.v73.22732.
  1456. Gracey, M.S., 2007: Nutrition-related disorders in Indigenous Australians: how things have changed. Med, J. Aust., 186(1), 15.
  1457. Sheikh, N., G.M. Egeland, L. Johnson-Down and H.V. Kuhnlein, 2011: Changing dietary patterns and body mass index over time in Canadian Inuit communities. Int. J. Circumpolar Health, 70(5), 511–519, doi:10.3402/ijch.v70i5.17863.
  1458. Adger, W.N. et al., 2012: Cultural dimensions of climate change impacts and adaptation. Nat. Clim. Change, 3, 112, doi:10.1038/nclimate1666.
  1459. Marshall, N.A. et al., 2018: Measuring What Matters in the Great Barrier Reef. Front. Ecol. Environ, 16(5), 271-27.
  1460. Cisneros-Montemayor, A.M., D. Pauly, L.V. Weatherdon and Y. Ota, 2016: A Global Estimate of Seafood Consumption by Coastal Indigenous Peoples. PLoS One, 11(12), doi:10.1371/journal.pone.0166681.
  1461. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  1462. Roué, M., 2012: History and Epistemology of Local and Indigenous Knowledge : from Tradition to Trend. Revue d’ethnoécologie, (1), doi:10.4000/ethnoecologie.813.
  1463. Alderson-Day, B., S. McCarthy-Jones and C. Fernyhough, 2015: Hearing voices in the resting brain: A review of intrinsic functional connectivity research on auditory verbal hallucinations. Neurosci. Biobehav. Rev., 55(Supplement C), 78–87, doi:10.1016/j.neubiorev.2015.04.016.
  1464. Camus, V.G., 2017: Le cas de l’atoll de Tabiteuea, république de Kiribati. In: Les atolls du Pacifique face au changement climatique. Une comparaison Tuamotu-Kiribati, Karthala [T. Bambridge and J.-P. Latouche (eds.)], Karthala, Chavannes de Bogis, Switzerland,122 pp. ISBN: 978-2811117399
  1465. Kench, P.S., M.R. Ford and S.D. Owen, 2018: Patterns of island change and persistence offer alternate adaptation pathways for atoll nations. Nat. Commun., 9(1), 605, doi:10.1038/s41467-018-02954-1.
  1466. Camus, V.G., 2017: Le cas de l’atoll de Tabiteuea, république de Kiribati. In: Les atolls du Pacifique face au changement climatique. Une comparaison Tuamotu-Kiribati, Karthala [T. Bambridge and J.-P. Latouche (eds.)], Karthala, Chavannes de Bogis, Switzerland,122 pp. ISBN: 978-2811117399
  1467. Bambridge, T. and P.Y. Le Meur, 2018: Savoirs locaux et biodiversité aux îles Marquises: don, pouvoir et perte. Revue d’anthropologie et des connaissances, 12(1), 29-55.
  1468. Borthwick, A.G.L., 2016: Marine Renewable Energy Seascape. Engineering, 2(1), 69–78, doi:10.1016/J.ENG.2016.01.011.
  1469. Lynn, K. et al., 2013: The impacts of climate change on tribal traditional foods. Clim. Change, 120(3), 545–556, doi:10.1007/s10584-013-0736-1.
  1470. Larsen, J.N. et al., 2014: Polar regions. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field and D.J. Dokken (eds.)]. World Meteorological Organization, Geneva, Switzerland, 1567-1612.
  1471. Weatherdon, L.V. et al., 2016: Observed and Projected Impacts of Climate Change on Marine Fisheries, Aquaculture, Coastal Tourism, and Human Health: An Update. Front. Mar. Sci., 3(36), 473, doi:10.3389/fmars.2016.00048.
  1472. Davis, R., 2015: ‘All in’: Snow crab, capitalization, and the future of small-scale fisheries in Newfoundland. Mar. Policy, 61, 323–330, doi:10.1016/j.marpol.2015.04.008.
  1473. Paolisso, M. et al., 2012: Climate Change, Justice, and Adaptation among African American Communities in the Chesapeake Bay Region. Weather, Clim. Soc., 4(1), 34–47, doi:10.1175/WCAS-D-11-00039.1.
  1474. Ruiz, J., L. Prieto and D. Astorga, 2012: A model for temperature control of jellyfish (Cotylorhiza tuberculata) outbreaks: A causal analysis in a Mediterranean coastal lagoon. Ecol. Model., 233, 59–69, doi:10.1016/j.ecolmodel.2012.03.019.
  1475. Metcalf, S.J. et al., 2015: Measuring the vulnerability of marine social-ecological systems: a prerequisite for the identification of climate change adaptations. Ecol. Soc., 20(2): 35, doi:10.5751/ES-07509-200235.
  1476. Meadows, P.S., 2011: Ecosystem Sustainability, Climate Change, and Rural Communities. J. Anim. Plant Sci., 21, 317–332.
  1477. Wynveen, C.J. and S.G. Sutton, 2015: Engaging the public in climate change-related pro-environmental behaviors to protect coral reefs: The role of public trust in the management agency. Mar. Policy, 53, 131–140, doi:10.1016/j.marpol.2014.10.030.
  1478. Bennett, N.J. et al., 2018: Environmental Stewardship: A Conceptual Review and Analytical Framework. Environ. Manage., 61(4), 597–614, doi:10.1007/s00267-017-0993-2.
  1479. Wynveen, C.J. and S.G. Sutton, 2015: Engaging the public in climate change-related pro-environmental behaviors to protect coral reefs: The role of public trust in the management agency. Mar. Policy, 53, 131–140, doi:10.1016/j.marpol.2014.10.030.
  1480. Malone, K., 2016: Reconsidering children’s encounters with nature and place using posthumanism. Aust. J. Environ. Educ., 32(1), 42–56.
  1481. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  1482. Pescaroli, G. and M. Magni, 2015: Flood warnings in coastal areas: how do experience and information influence responses to alert services? Nat. Hazards Earth Syst. Sci., 15(4), 703–714, doi:10.5194/nhess-15-703-2015.
  1483. Marshall, N.A. et al., 2018: Measuring What Matters in the Great Barrier Reef. Front. Ecol. Environ, 16(5), 271-27.
  1484. Marshall, N.A. et al., 2018: Measuring What Matters in the Great Barrier Reef. Front. Ecol. Environ, 16(5), 271-27.
  1485. Marshall, N. et al., 2019: Reef Grief: investigating the relationship between place meanings and place change on the Great Barrier Reef, Australia. Sustain. Sci., 14(3), 579–587, doi:10.1007/s11625-019-00666-z.
  1486. Marshall, N. et al., 2019: Reef Grief: investigating the relationship between place meanings and place change on the Great Barrier Reef, Australia. Sustain. Sci., 14(3), 579–587, doi:10.1007/s11625-019-00666-z.
  1487. Fisher, J. A. and K. Brown, 2015: Reprint of” Ecosystem services concepts and approaches in conservation: Just a rhetorical tool?”. Ecol. Econ., 117, 261–269.
  1488. Cinner, J.E. et al., 2018: Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change, 8(2), 117–123, doi:10.1038/s41558-017-0065-x.
  1489. Marshall, N.A. et al., 2012: Transformational capacity and the influence of place and identity. Environ. Res. Lett., 7(3), 034022.
  1490. Tidball, K., 2012: Urgent biophilia: human-nature interactions and biological attractions in disaster resilience. Ecol. Soc., . 17(2): 5, http://dx.doi.org/10.5751/ES-04596-170205.
  1491. Turner, N. et al., 2008: From Invisibility to Transparency: Identifying the Implications. Ecol. Soc., 13(2): 7. [online] URL: http://www.ecologyandsociety.org/vol13/iss2/art7/.
  1492. Adger, W.N. et al., 2012: Cultural dimensions of climate change impacts and adaptation. Nat. Clim. Change, 3, 112, doi:10.1038/nclimate1666.
  1493. Miller, K.I. and G.R. Russ, 2014: Studies of no-take marine reserves: Methods for differentiating reserve and habitat effects. Ocean Coast. Manage., 96(Supplement C), 51–60.
  1494. Pinsky, M.L. et al., 2018: Preparing ocean governance for species on the move. Science, 360(6394), 1189.
  1495. Spijkers, J. and W.J. Boonstra, 2017: Environmental change and social conflict: the northeast Atlantic mackerel dispute. Reg. Environ. Change, 17(6), 1835–1851, doi:10.1007/s10113-017-1150-4.
  1496. Miller, K.I. and G.R. Russ, 2014: Studies of no-take marine reserves: Methods for differentiating reserve and habitat effects. Ocean Coast. Manage., 96(Supplement C), 51–60.
  1497. Pinsky, M.L. et al., 2018: Preparing ocean governance for species on the move. Science, 360(6394), 1189.
  1498. Belhabib, D., V.W.Y. Lam and W.W.L. Cheung, 2016: Overview of West African fisheries under climate change: Impacts, vulnerabilities and adaptive responses of the artisanal and industrial sectors. Mar. Policy, 71(Supplement C), 15–28, doi:10.1016/j.marpol.2016.05.009.
  1499. Pomeroy, R., J. Parks, K.L. Mrakovcich and C. LaMonica, 2016: Drivers and impacts of fisheries scarcity, competition, and conflict on maritime security. Mar. Policy, 67(Supplement C), 94–104, doi:10.1016/j.marpol.2016.01.005.
  1500. Blasiak, R. et al., 2017: Climate change and marine fisheries: Least developed countries top global index of vulnerability. PLoS One, 12(6), e0179632, doi:10.1371/journal.pone.0179632.
  1501. Pinsky, M.L. et al., 2018: Preparing ocean governance for species on the move. Science, 360(6394), 1189.
  1502. Pinsky, M.L. et al., 2018: Preparing ocean governance for species on the move. Science, 360(6394), 1189.
  1503. Belhabib, D. et al., 2018: Impacts of anthropogenic and natural “extreme events” on global fisheries. Fish Fish., doi:10.1111/faf.12314.
  1504. Pinsky, M.L. et al., 2018: Preparing ocean governance for species on the move. Science, 360(6394), 1189.
  1505. Ndhlovu, N., O. Saito, R. Djalante and N. Yagi, 2017: Assessing the Sensitivity of Small-Scale Fishery Groups to Climate Change in Lake Kariba, Zimbabwe. Sustainability, 9(12), 2209.
  1506. Shaffiril, H.A.M., A.A. Samah and J. Lawrence, 2017: Adapting towards climate change impacts: Strategies for small-scale fishermen in Malaysia. Mar. Policy, 81, 196–201.
  1507. Spijkers, J. and W.J. Boonstra, 2017: Environmental change and social conflict: the northeast Atlantic mackerel dispute. Reg. Environ. Change, 17(6), 1835–1851, doi:10.1007/s10113-017-1150-4.
  1508. Swartz, W., R. Sumaila and R. Watson, 2013: Global Ex-vessel Fish Price Database Revisited: A New Approach for Estimating ‘Missing’ Prices. Environ. Resour. Econ., 56(4), 467–480.
  1509. Tai, T.C. et al., 2017: Ex-vessel Fish Price Database: Disaggregating Prices for Low-Priced Species from Reduction Fisheries. Front. Mar. Sci., 4(363), doi:10.3389/fmars.2017.00363.
  1510. Teh, L.C.L. and U.R. Sumaila, 2013: Contribution of marine fisheries to worldwide employment. Fish Fish., 14(1), 77–88, doi:10.1111/j.1467-2979.2011.00450.x.
  1511. Chuenpagdee, R., 2011: World small-scale fisheries: contemporary visions. EburonAcademic Publishers, Delft, The Netherlands. 400 pp. ISBN: 978-90-5972-539-3
  1512. Pörtner, H.O. et al., 2014: Ocean systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea and L L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 411–484.
  1513. Ekstrom, J.A. et al., 2015: Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change, 5, 207, doi:10.1038/nclimate2508.
  1514. Lam, V.W.Y., W.W.L. Cheung, G. Reygondeau and U. R. Sumaila, 2016: Projected change in global fisheries revenues under climate change. Sci. Rep., 6, 32607 EP –, doi:10.1038/srep32607.
  1515. Lam, V.W.Y., W.W.L. Cheung, G. Reygondeau and U. R. Sumaila, 2016: Projected change in global fisheries revenues under climate change. Sci. Rep., 6, 32607 EP –, doi:10.1038/srep32607.
  1516. Sumaila, U.R. et al., 2019: Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv., 5(2), eaau3855, doi:10.1126/sciadv.aau3855.
  1517. Sumaila, U.R. et al., 2019: Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv., 5(2), eaau3855, doi:10.1126/sciadv.aau3855.
  1518. Sumaila, U.R. et al., 2019: Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv., 5(2), eaau3855, doi:10.1126/sciadv.aau3855.
  1519. Barange, M., 2019: Avoiding misinterpretation of climate change projections of fish catches. ICES J. Mar. Sci., doi:10.1093/icesjms/fsz061.
  1520. Gaines, S.D. et al., 2018: Improved fisheries management could offset many negative effects of climate change. Sci. Adv., 4(8), eaao1378, doi:10.1126/sciadv.aao1378.
  1521. Hilmi, N. et al., 2015: Bridging the gap between ocean acidification impacts and economic valuation: regional impacts of ocean acidification on fisheries and aquaculture. Brochure of The Third International Monaco Workshop on Economics of Ocean Acidification, Monaco.
  1522. Barbier, E.B., 2015: Climate change impacts on rural poverty in low-elevation coastal zones. Estuar. Coast. Shelf Sci., 165, A1–A13, doi:10.1016/j.ecss.2015.05.035.
  1523. Lam, V.W.Y., W.W.L. Cheung, G. Reygondeau and U. R. Sumaila, 2016: Projected change in global fisheries revenues under climate change. Sci. Rep., 6, 32607 EP –, doi:10.1038/srep32607.
  1524. Allison, E.H. et al., 2009: Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish., 10(2), 173–196, doi:10.1111/j.1467-2979.2008.00310.x.
  1525. Srinivasan, U.T., W.W.L. Cheung, R. Watson and U. R. Sumaila, 2010: Food security implications of global marine catch losses due to overfishing. Journal of Bioeconomics, 12(3), 183–200.
  1526. Golden, C.D. et al., 2016: Nutrition: Fall in fish catch threatens human health. Nature, 534(7607), 317–320, doi:10.1038/534317a.
  1527. Blasiak, R. et al., 2017: Climate change and marine fisheries: Least developed countries top global index of vulnerability. PLoS One, 12(6), e0179632, doi:10.1371/journal.pone.0179632.
  1528. Bell, J. et al., 2018a: Climate change impacts, vulnerabilities and adaptations: Western and Central Pacific Ocean marine fisheries. In: Impacts of climate change on fisheries and aquaculture [Barange, M., Bahri, T., Beveridge, M.C.M., Cochrane, K.L., Funge-Smith, S. & Poulain, F. (eds.)]. FAO Fisheries and Aquaculture Technical Paper T, FAO, Rome, Italy. 305-324. ISBN: 978-92-5-130607-9
  1529. Cinner, J.E. et al., 2016: A framework for understanding climate change impacts on coral reef social–ecological systems. Reg. Environ. Change, 16(4), 1133–1146, doi:10.1007/s10113-015-0832-z.
  1530. Hallegatte, S. et al., 2015: Shock waves: managing the impacts of climate change on poverty. The World Bank.
  1531. Lacoue-Labarthe, T. et al., 2016: Impacts of ocean acidification in a warming Mediterranean Sea: An overview. Reg. Stud. Mar. Sci., 5, 1–11, doi:10.1016/j.rsma.2015.12.005.
  1532. Haynie, A.C. and L. Pfeiffer, 2012: Why economics matters for understanding the effects of climate change on fisheries. ICES J. Mar. Sci., 69(7), 1160–1167, doi:10.1093/icesjms/fss021.
  1533. Galbraith, E.D., D.A. Carozza and D. Bianchi, 2017: A coupled human-Earth model perspective on long-term trends in the global marine fishery. Nat. Commun., 8, 14884 EP -, doi:10.1038/ncomms14884.
  1534. Galbraith, E.D., D.A. Carozza and D. Bianchi, 2017: A coupled human-Earth model perspective on long-term trends in the global marine fishery. Nat. Commun., 8, 14884 EP -, doi:10.1038/ncomms14884.
  1535. UNCTAD, 2018: Economic Development in Africa Report 2018. United Nations, UNCTAD/ALDC/AFRICA/2018 ISBN: 978-92-1-112924-3.
  1536. Cisneros-Montemayor, A.M. et al., 2013: Global economic value of shark ecotourism: implications for conservation. Oryx, 47(3), 381–388.
  1537. O’Malley, M.P., K. Lee-Brooks and H.B. Medd, 2013: The global economic impact of manta ray watching tourism. PLoS One, 8(5), e65051.
  1538. Spalding, M. et al., 2017: Mapping the global value and distribution of coral reef tourism. Mar. Policy, 82(Supplement C), 104–113, doi:10.1016/j.marpol.2017.05.014.
  1539. Giorgio, A. et al., 2018: Coastal Tourism Importance and Beach Users’ Preferences: The “Big Fives” Criterions and Related Management Aspects. J. Tourism Hospit., 7(347), 2167–0269.1000347.
  1540. UNWTO, 2018: Tourism in Small Island Developing States. World Tourism Organization, Madrid, Spain. 5p. http://cf.cdn.unwto.org/sites/all/files/docpdf/tourisminsids.pdf
  1541. Cisneros-Montemayor, A.M. and U.R. Sumaila, 2010: A global estimate of benefits from ecosystem-based marine recreation: potential impacts and implications for management. Journal of Bioeconomics, 12(3), 245–268.
  1542. Jiang, M. and T. DeLacy, 2014: 14 A climate change adaptation framework for Pacific Island tourism. In T. DeLacy, M. Jiang, G. Lipman and S. Vorster (Eds), Green Growth and Travelism: Concept, Policy and Practice for Sustainable Tourism, Routledge, 225.
  1543. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1544. Weatherdon, L.V. et al., 2016: Observed and Projected Impacts of Climate Change on Marine Fisheries, Aquaculture, Coastal Tourism, and Human Health: An Update. Front. Mar. Sci., 3(36), 473, doi:10.3389/fmars.2016.00048.
  1545. Chen, P.-Y., C.-C. Chen, L. Chu and B. McCarl, 2015: Evaluating the economic damage of climate change on global coral reefs. Global Environ. Change, 30(Supplement C), 12–20, doi:10.1016/j.gloenvcha.2014.10.011.
  1546. Swann, T. and R. Campbell, 2016: Great Barrier Bleached: Coral bleaching, the Great Barrier Reef and potential impacts on tourism. Australia Institute, Canberra, 41.
  1547. Lithgow, D. et al., 2019: Exploring the co-occurrence between coastal squeeze and coastal tourism in a changing climate and its consequences. Tourism Manage., 74, 43–54, doi:10.1016/j.tourman.2019.02.005.
  1548. Pearce, T., R. Currenti, A. Mateiwai and B. Doran, 2018: Adaptation to climate change and freshwater resources in Vusama village, Viti Levu, Fiji. Reg. Environ. Change, 18(2), 501–510, doi:10.1007/s10113-017-1222-5.
  1549. Wabnitz, C.C.C., A.M. Cisneros-Montemayor, Q. Hanich and Y. Ota, 2017: Ecotourism, climate change and reef fish consumption in Palau: Benefits, trade-offs and adaptation strategies. Mar. Policy, 88, 323-332. doi:10.1016/j.marpol.2017.07.022.
  1550. UNDP, 2017: Regional overview: Impact of hurricanes Irma and Maria. Conference supporting document. Report prepared with support of ACAPS, OCHOA and UNDP. 39pp.
  1551. Klint, L., T. DeLacy and S. Filep, 2015: A Focus on the South Pacific. In: Small Islands and Tourism: Current Issues and Future Challenges. Tourism in Pacific Islands: Current Issues and Future Challenges. [Pratt, S., D. Harrison. (ed.)]. Routledge, London. ISBN: 978-1-315-77382-7.
  1552. Lenzen, M. et al., 2018: The carbon footprint of global tourism. Nat. Clim. Change, 8(6), 522–528, doi:10.1038/s41558-018-0141-x.
  1553. DiSegni, D.M. and M. Shechter, 2013: Socioeconomic Aspects: Human Migrations, Tourism and Fisheries. In: The Mediterranean Sea. Springer Netherlands, Dordrecht, pp. 571–575.
  1554. Dundas, S.J. and R.H. von Haefen, 2015: Weather effects on the demand for coastal recreational fishing: Implications for a changing climate. CEnREP Working Paper No. 15-015, 63 pp. doi: 10.22004/ag.econ.264980
  1555. Santos, R., J.S. Rehage, R. Boucek and J. Osborne, 2016: Shift in recreational fishing catches as a function of an extreme cold event. Ecosphere, 7(6), e01335.
  1556. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1557. World Bank, 2017: Pacific Possible : long-term economic opportunities and challenges for Pacific Island Countries (English). Pacific possible series. The World Bank, Washington, DC. 130 p. http://documents.worldbank.org/curated/en/168951503668157320/pdf/ACS22308-PUBLIC-P154324-ADD-SERIES-PPFullReportFINALscreen.pdf
  1558. UNCTAD, 2017: Climate change impacts on coastal transport infrastructure in the Caribbean: enhancing the adaptive capacity of Small Island Developing States (SIDS), JAMAICA: A case study., UNDA project 1415O.
  1559. Monioudi, I.Ν. et al., 2018: Climate change impacts on critical international transportation assets of Caribbean Small Island Developing States (SIDS): the case of Jamaica and Saint Lucia. Reg. Environ. Change, 18(8), 2211–2225.
  1560. World Bank, 2017: Pacific Possible : long-term economic opportunities and challenges for Pacific Island Countries (English). Pacific possible series. The World Bank, Washington, DC. 130 p. http://documents.worldbank.org/curated/en/168951503668157320/pdf/ACS22308-PUBLIC-P154324-ADD-SERIES-PPFullReportFINALscreen.pdf
  1561. McNamara, D.E. and A. Keeler, 2013: A coupled physical and economic model of the response of coastal real estate to climate risk. Nat. Clim. Change, 3(6), 559–562, doi:10.1038/nclimate1826.
  1562. Putra, H.C., H. Zhang and C. Andrews, 2015: Modeling Real Estate Market Responses to Climate Change in the Coastal Zone. JASSS J. Artific. Soc. S., 18(2), doi:10.18564/jasss.2577.
  1563. Bunten, D. and M. Kahn, 2014: The Impact of Emerging Climate Risks on Urban Real Estate Price Dynamics. National Bureau of Economic Research, Cambridge, MA [Available at: http://www.nber.org/papers/w20018.pdf%5D. Accessed: 2019/09/30.
  1564. World Bank, 2017: Pacific Possible : long-term economic opportunities and challenges for Pacific Island Countries (English). Pacific possible series. The World Bank, Washington, DC. 130 p. http://documents.worldbank.org/curated/en/168951503668157320/pdf/ACS22308-PUBLIC-P154324-ADD-SERIES-PPFullReportFINALscreen.pdf
  1565. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1566. Blasiak, R. et al., 2017: Climate change and marine fisheries: Least developed countries top global index of vulnerability. PLoS One, 12(6), e0179632, doi:10.1371/journal.pone.0179632.
  1567. Brierley, A.S. and M.J. Kingsford, 2009: Impacts of Climate Change on Marine Organisms and Ecosystems. Curr. Biol., 19(14), R602–R614, doi:10.1016/j.cub.2009.05.046.
  1568. Davis, R., 2015: ‘All in’: Snow crab, capitalization, and the future of small-scale fisheries in Newfoundland. Mar. Policy, 61, 323–330, doi:10.1016/j.marpol.2015.04.008.
  1569. Pelletier, J.F. and E. Guy, 2012: Évaluation des activités de transport maritime en arctique canadien. Cahiers Scientifiques Du Transport, (61), 3–33.
  1570. George, R., 2013: Ninety percent of everything: inside shipping, the invisible industry that puts clothes on your back, gas in your car, and food on your plate. Macmillan-Picador, 1st eddition, 304 pp, USA, ISBN: 9781250058294.
  1571. Cordes, E.E. et al., 2016: Environmental Impacts of the Deep-Water Oil and Gas Industry: A Review to Guide Management Strategies. Front. Environ. Sci., 4, 58.
  1572. Koetse, M.J. and P. Rietveld, 2009: The impact of climate change and weather on transport: An overview of empirical findings. Transport. Res. D. Tr. E., 14(3), 205–221, doi:10.1016/j.trd.2008.12.004.
  1573. Ng, A.K.Y. et al., 2018: Implications of climate change for shipping: Opening the Arctic seas. WiRes. Clim. Change, 9(2), e507, doi:10.1002/wcc.507.
  1574. Guy, E. and F. Lasserre, 2016: Commercial shipping in the Arctic: new perspectives, challenges and regulations. Polar Record, 52(3), 294–304, doi:10.1017/S0032247415001011.
  1575. Prowse, T.D. et al., 2009: Implications of Climate Change for Economic Development in Northern Canada: Energy, Resource, and Transportation Sectors. Ambio, 38(5), 272–281, doi:10.1579/0044-7447-38.5.272.
  1576. Wassmann, P., M. Duarte Carlos, S. AgustÍ and K. Sejr Mikael, 2010: Footprints of climate change in the Arctic marine ecosystem. Global Change Biol., 17(2), 1235–1249, doi:10.1111/j.1365-2486.2010.02311.x.
  1577. Pelletier, J.F. and E. Guy, 2012: Évaluation des activités de transport maritime en arctique canadien. Cahiers Scientifiques Du Transport, (61), 3–33.
  1578. George, R., 2013: Ninety percent of everything: inside shipping, the invisible industry that puts clothes on your back, gas in your car, and food on your plate. Macmillan-Picador, 1st eddition, 304 pp, USA, ISBN: 9781250058294.
  1579. Hodgson, J., W. Russell and M. Megannety, 2016: Exploring plausible futures for marine transportation in the Canadian arctic, a scenarios based approach. Prepared for Transport Canada. Hodgson and Associates, Vancouver, Canada, 120 pp.
  1580. Pizzolato, L. et al., 2016: The influence of declining sea ice on shipping activity in the Canadian Arctic. Geophys. Res. Lett., 43(23).
  1581. Dawson, J., 2017: Climate Change Adaptation Strategies and Policy Options for Arctic Shipping. Transport Canada. Ottawa, Canada. 154 pp. http://hdl.handle.net/10393/36016
  1582. Wan, Z., M. Zhu, S. Chen and D. Sperling, 2016: Pollution: Three steps to a green shipping industry.
  1583. Harrison, G.P. and A.R. Wallace, 2005: Climate sensitivity of marine energy. Renew. Energ., 30(12), 1801–1817, doi:10.1016/j.renene.2004.12.006.
  1584. Koetse, M.J. and P. Rietveld, 2009: The impact of climate change and weather on transport: An overview of empirical findings. Transport. Res. D. Tr. E., 14(3), 205–221, doi:10.1016/j.trd.2008.12.004.
  1585. Bae, Y.H., K.O. Kim and B.H. Choi, 2010: Lake Sihwa tidal power plant project. Ocean Eng., 37(5), 454–463, doi:10.1016/j.oceaneng.2010.01.015.
  1586. Jaroszweski, D., L. Chapman and J. Petts, 2010: Assessing the potential impact of climate change on transportation: the need for an interdisciplinary approach. J. Transport. Geogr., 18(2), 331–335, doi:10.1016/j.jtrangeo.2009.07.005.
  1587. O Rourke, F., F. Boyle and A. Reynolds, 2010: Tidal energy update 2009. Appl. Energy, 87(2), 398–409, doi:10.1016/j.apenergy.2009.08.014.
  1588. Hooper, T. and M. Austen, 2013: Tidal barrages in the UK: Ecological and social impacts, potential mitigation, and tools to support barrage planning. Renew. Sustain. Energ. Rev., 23, 289–298, doi:10.1016/j.rser.2013.03.001.
  1589. Kempener, R. and F. Neumann, 2014b: Tidal Energy: Technology Brief. International Renewable Energy Agency (IRENA). Abu Dhabi.
  1590. Kempener, R. and F. Neumann, 2014a: Salinity gradient energy—technology brief. IRENA Ocean Energy Technology, 4.
  1591. Abanades, J., D. Greaves and G. Iglesias, 2015: Coastal defence using wave farms: The role of farm-to-coast distance. Renew. Energ., 75, 572–582, doi:10.1016/j.renene.2014.10.048.
  1592. Astariz, S., C. Perez-Collazo, J. Abanades and G. Iglesias, 2015: Towards the optimal design of a co-located wind-wave farm. Energy, 84, 15–24, doi:10.1016/j.energy.2015.01.114.
  1593. Borthwick, A.G.L., 2016: Marine Renewable Energy Seascape. Engineering, 2(1), 69–78, doi:10.1016/J.ENG.2016.01.011.
  1594. Foteinis, S. and T. Tsoutsos, 2017: Strategies to improve sustainability and offset the initial high capital expenditure of wave energy converters (WECs). Renew. Sustain. Energ. Rev., 70, 775–785, doi:10.1016/j.rser.2016.11.258.
  1595. Manasseh, R. et al., 2017: Integration of wave energy and other marine renewable energy sources with the needs of coastal societies. The International Journal of Ocean and Climate Systems, 8(1), 19–36, doi:10.1177/1759313116683962.
  1596. Beck, M.W. et al., 2018: The global flood protection savings provided by coral reefs. Nat. Commun., 9(1), 2186, doi:10.1038/s41467-018-04568-z.
  1597. Gattuso, J.-P. et al., 2018: Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. Front. Mar. Sci., 5(337), doi:10.3389/fmars.2018.00337.
  1598. Hemer, M.A. et al., 2018: Perspectives on a way forward for ocean renewable energy in Australia. Renew. Energ., 127, 733–745, doi:10.1016/j.renene.2018.05.036.
  1599. Dinh, V.N. and E. McKeogh, 2019b: Offshore Wind Energy: Technology Opportunities and Challenges. In: Proceedings of the 1st Vietnam Symposium on Advances in Offshore Engineering. Energy and Geotechnics [Marco di Prisco, S.-H. C., Giovanni Solari, Ioannis Vayas (ed.)][Randolph, M.F., D.H. Doan, A.M. Tang, M. Bui and V.N. Dinh (eds.)]. Springer, Singapore, 3–22.
  1600. Dinh, V.N. and E. McKeogh, 2019a: Offshore Wind Energy: Technology Opportunities and Challenges. In: Proceedings of the 1st Vietnam Symposium on Advances in Offshore Engineering, [Randolph, M.F., D.H. Doan, A.M. Tang, M. Bui and V.N. Dinh (eds.)], Springer Singapore, pp. 3–22.
  1601. Greene, C., B. Monger and M. Huntley, 2010: Geoengineering: The inescapable truth of getting to 350. Solutions, 1(5), 57–66.
  1602. Greene, C.H. et al., 2016: Marine microalgae: Climate, energy, and food security from the sea. Oceanography, 29(4), 10–15.
  1603. Harrison, G.P. and A.R. Wallace, 2005: Climate sensitivity of marine energy. Renew. Energ., 30(12), 1801–1817, doi:10.1016/j.renene.2004.12.006.
  1604. Singh, G.G. et al., 2019: Climate impacts on the ocean are making the Sustainable Development Goals a moving target travelling away from us. People and Nature, 1(3), 317–330. doi:10.1002/pan3.26.
  1605. Singh, G.G. et al., 2019: Climate impacts on the ocean are making the Sustainable Development Goals a moving target travelling away from us. People and Nature, 1(3), 317–330. doi:10.1002/pan3.26.
  1606. Carvalho, B., E. Rangel and M. Vale, 2017: Evaluation of the impacts of climate change on disease vectors through ecological niche modelling. Bulletin of entomological research, 107(4), 419–430.
  1607. Castelle, B., S. Bujan, S. Ferreira and G. Dodet, 2017: Foredune morphological changes and beach recovery from the extreme 2013/2014 winter at a high-energy sandy coast. Mar. Geol., 385, 41–55, doi:10.1016/j.margeo.2016.12.006.
  1608. Pearse, R., 2017: Gender and climate change. WiRes. Clim. Change, 8(2), 1–16, e451. doi: 10.1002/wcc.451.
  1609. Wouters, H. et al., 2017: Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region. Geophys. Res. Lett., 44(17), 8997–9007.
  1610. Linares, O.F., 2009: From past to future agricultural expertise in Africa: Jola women of Senegal expand market-gardening. PNAS, 106(50), 21074.
  1611. Dennis, K.C., I. Niang-Diop and R.J. Nicholls, 1995: Sea level Rise and Senegal: Potential Impacts and Consequences. J. Coast. Res., 243–261.
  1612. Azad, A.K., K.M. Hossain and M. Nasreen, 2013: Flood-induced vulnerabilities and problems encountered by women in northern Bangladesh. Int. J. Disast. Risk Sci., 4(4), 190–199, doi:10.1007/s13753-013-0020-z.
  1613. Salehyan, I., 2008: From climate change to conflict? No consensus yet. J. Peace Res., 45(3), 315–326.
  1614. Singh, G.G. et al., 2017: A rapid assessment of co-benefits and trade-offs among Sustainable Development Goals. Mar. Policy, 93, 223–231.
  1615. UNEP, 2017: The Emissions Gap Report. United Natoins Environment Programme, Nairobi [Available at: http://www.worldcat.org/title/emissions-gap-report-2017-a-un-environment-synthesis-report/oclc/1009432397%5D. Accessed: 2019/09/30.
  1616. IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 630
  1617. Griscom, B.W. et al., 2017: Natural climate solutions. PNAS, 114(44), 11645.
  1618. Grassi, G. et al., 2017: The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change, 7, 220, doi:10.1038/nclimate3227.
  1619. Arévalo-Martínez, D.L. et al., 2015: Massive nitrous oxide emissions from the tropical South Pacific Ocean. Nat. Geosci., 8, 530, doi:10.1038/ngeo2469.
  1620. Borges, A.V. et al., 2016: Massive marine methane emissions from near-shore shallow coastal areas. Sci. Rep., 6, 27908, doi:10.1038/srep27908.
  1621. Hamdan, L.J. and K.P. Wickland, 2016: Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate. Limnol. Oceanogr., 61(S1), S3–S12, doi:10.1002/lno.10449.
  1622. Nellemann, C. et al., 2009: Blue carbon: the role of healthy oceans in binding carbon: a rapid response assessment. UNEP/Earthprint, Arendal, Norway, 78 p. ISBN: 978-82-7701-060-1
  1623. McLeod, E. et al., 2011: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ., 9(10), 552–560, doi:10.1890/110004.
  1624. Pendleton, L. et al., 2012: Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS One, 7(9), e43542, doi:10.1371/journal.pone.0043542.
  1625. Thomas, S., 2014: Blue carbon: Knowledge gaps, critical issues, and novel approaches. Ecol. Econ., 107(Supplement C), 22–38.
  1626. Macreadie, P.I. et al., 2017a: Can we manage coastal ecosystems to sequester more blue carbon? Front. Ecol. Environ., 15(4), 206–213, doi:10.1002/fee.1484.
  1627. Alongi, D.M., 2018: Blue Carbon: Coastal Sequestration for Climate Change Mitigation. Springer, Cham, Switzerland. ISBN: 978-3-319-91697-2
  1628. Windham-Myers, L., S. Crooks and T.G. Troxler, 2019: A blue carbon primer: the state of coastal wetland carbon science, practice and policy. CRC Press, Boca Raton, Florida. 481 pp. ISBN: 978-1-4987-6909-9.
  1629. Lovelock, C.E. and C.M. Duarte, 2019: Dimensions of Blue Carbon and emerging perspectives. Biol. Lett., 15(3), 20180781.
  1630. Nahlik, A.M. and M.S. Fennessy, 2016: Carbon storage in US wetlands. Nat. Commun., 7, 13835, doi:10.1038/ncomms13835.
  1631. Vázquez-González, C. et al., 2017: Mangrove and Freshwater Wetland Conservation Through Carbon Offsets: A Cost-Benefit Analysis for Establishing Environmental Policies. Environ. Manage., 59(2), 274–290, doi:10.1007/s00267-016-0790-3.
  1632. Krause-Jensen, D. and C.M. Duarte, 2016: Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci., 9(10), 737–742, doi:10.1038/ngeo2790.
  1633. Krause-Jensen, D. et al., 2018: Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biol. Lett., 14(6), 20180236, doi:10.1098/rsbl.2018.0236.
  1634. Raven, J., 2018: Blue carbon: past, present and future, with emphasis on macroalgae. Biol. Lett., 14(10), 20180336.
  1635. Henson, S.A. et al., 2010: Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7(2), 621–640, doi:10.5194/bg-7-621-2010.
  1636. DeVries, T., M. Holzer and F. Primeau, 2017: Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542(7640), 215.
  1637. Boyd, P.W. et al., 2019: Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 568(7752), 327–335, doi:10.1038/s41586-019-1098-2.
  1638. Cartapanis, O., E.D. Galbraith, D. Bianchi and S. L. Jaccard, 2018: Carbon burial in deep sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. Clim. Past, 14(11), 1819–1850, doi:10.5194/cp-14-1819-2018.
  1639. Jiao, N. et al., 2010: Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol., 8(8), 593–599, doi:10.1038/Nrmicro2386.
  1640. Jiao, N. et al., 2014b: Mechanisms of microbial carbon sequestration in the ocean – future research directions. Biogeosciences, 11(19), 5285–5306, doi:10.5194/bg-11-5285-2014.
  1641. Jiao, N. et al., 2010: Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol., 8(8), 593–599, doi:10.1038/Nrmicro2386.
  1642. Jiao, N. et al., 2014a: Presence of Prochlorococcus in the aphotic waters of the western Pacific Ocean. Biogeosciences, 11(8), 2391–2400, doi:10.5194/bg-11-2391-2014.
  1643. Legendre, L. et al., 2015: The microbial carbon pump concept: Potential biogeochemical significance in the globally changing ocean. Progr. Oceanogr., 134, 432–450, doi:10.1016/j.pocean.2015.01.008.
  1644. Jiao, N. et al., 2018a: Unveiling the enigma of refractory carbon in the ocean. Natl. Sci. Rev., 5(4), 459-463. , doi:10.1093/nsr/nwy020.
  1645. Ciais, P. et al., 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 465–570.
  1646. Gattuso, J.-P. et al., 2018: Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. Front. Mar. Sci., 5(337), doi:10.3389/fmars.2018.00337.
  1647. Regnier, P. et al., 2013: Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci., 6(8), 597–607, doi:10.1038/ngeo1830.
  1648. Cloern, J.E. et al., 2016: Human activities and climate variability drive fast‐paced change across the world’s estuarine–coastal ecosystems. Global Change Biol., 22(2), 513–529.
  1649. Day, J.W. and J.M. Rybczyk, 2019: Global Change Impacts on the Future of Coastal Systems: Perverse Interactions Among Climate Change, Ecosystem Degradation, Energy Scarcity, and Population. In: Coasts and Estuaries. Elsevier, 621–639.
  1650. Ramesh, R. et al., 2015: Land–Ocean Interactions in the Coastal Zone: Past, present & future. Anthropocene, 12, 85–98, doi:10.1016/j.ancene.2016.01.005.
  1651. Li, X., R. Bellerby, C. Craft and S.E. Widney, 2018a: Coastal wetland loss, consequences, and challenges for restoration. Anthropocene Coasts, 1(0), 1–15.
  1652. Jiao, N., K. Tang, H. Cai and Y. Mao, 2011: Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nat. Rev. Microbiol., 9(1), doi:10.1038/nrmicro2386-c2.
  1653. Regnier, P. et al., 2013: Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci., 6(8), 597–607, doi:10.1038/ngeo1830.
  1654. Bauer, J.E. et al., 2013: The changing carbon cycle of the coastal ocean. Nature, 504(7478), 61–70, doi:10.1038/nature12857.
  1655. Barragán, J.M. and M. de Andrés, 2015: Analysis and trends of the world’s coastal cities and agglomerations. Ocean Coast. Manage., 114, 11–20, doi:10.1016/j.ocecoaman.2015.06.004.
  1656. Crooks, S. et al., 2011: Mitigating climate change through restoration and management of coastal wetlands and near-shore marine ecosystems: challenges and opportunities. Environment Department Paper 121, World Bank, Washington, D.C. 59 p.
  1657. Hejnowicz, A.P., H. Kennedy, M.A. Rudd and M.R. Huxham, 2015: Harnessing the climate mitigation, conservation and poverty alleviation potential of seagrasses: prospects for developing blue carbon initiatives and payment for ecosystem service programmes. Front. Mar. Sci., 2, 32.
  1658. Needelman, B.A. et al., 2018: The Science and Policy of the Verified Carbon Standard Methodology for Tidal Wetland and Seagrass Restoration. Estuar. Coast., 41(8), 2159–2171, doi:10.1007/s12237-018-0429-0.
  1659. Troxler, T.G., H.A. Kennedy, S. Crooks and A.E. Sutton-Grier, 2018: Introduction of Coastal Wetlands into the IPCC Greenhouse Gas Inventory Methodological Guidance. Editors: Windham-Myers, Crooks, Troxler, In: A Blue Carbon Primer. CRC Press, Boca Raton,, pp. 217–234, eBook ISBN9780429435362, https://doi.org/10.1201/9780429435362.
  1660. Needelman, B.A., I.M. Emmer, M.P. Oreska and J.P. Megonigal, 2019: Blue carbon accounting for carbon markets. In: A Blue Carbon Primer . [Windham-Myers, L., Crooks, S. and Troxler, T. G. (eds.)]. CRC Press, Boca Raton, FL, pp. 283–292, ISBN: 978-1-4987-6909-9.
  1661. Crooks, S. et al., 2011: Mitigating climate change through restoration and management of coastal wetlands and near-shore marine ecosystems: challenges and opportunities. Environment Department Paper 121, World Bank, Washington, D.C. 59 p.
  1662. Hejnowicz, A.P., H. Kennedy, M.A. Rudd and M.R. Huxham, 2015: Harnessing the climate mitigation, conservation and poverty alleviation potential of seagrasses: prospects for developing blue carbon initiatives and payment for ecosystem service programmes. Front. Mar. Sci., 2, 32.
  1663. Ahmed, N. and M. Glaser, 2016b: Coastal aquaculture, mangrove deforestation and blue carbon emissions: Is REDD+ a solution? Mar. Policy, 66, 58–66, doi:10.1016/j.marpol.2016.01.011.
  1664. Aziz, A.A., S. Thomas, P. Dargusch and S. Phinn, 2016: Assessing the potential of REDD+ in a production mangrove forest in Malaysia using stakeholder analysis and ecosystem services mapping. Mar. Policy, 74, 6–17, doi:10.1016/j.marpol.2016.09.013.
  1665. Krause-Jensen, D. and C.M. Duarte, 2016: Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci., 9(10), 737–742, doi:10.1038/ngeo2790.
  1666. Zhang, Y. et al., 2017: Carbon sequestration processes and mechanisms in coastal mariculture environments in China. Science China Earth Sciences, 60(12), 2097–2107, doi:10.1007/s11430-017-9148-7.
  1667. Chmura, G.L., S.C. Anisfeld, D.R. Cahoon and J.C. Lynch, 2003: Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cy., 17(4), doi:10.1029/2002GB001917.
  1668. Duarte, C.M., J.J. Middelburg and N. Caraco, 2005: Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2(1), 1–8, doi:10.5194/bg-2-1-2005.
  1669. Kennedy, H. et al., 2010: Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochem. Cy., 24(4), n/a–n/a, doi:10.1029/2010GB003848.
  1670. McLeod, E. et al., 2011: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ., 9(10), 552–560, doi:10.1890/110004.
  1671. Duarte, C.M. et al., 2017: Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation? Front. Mar. Sci., 4, 100.
  1672. Herr, D. and E. Landis, 2016: Coastal blue carbon ecosystems. Opportunities for nationally determined contributions. Policy Brief. Gland, Switzerland: IUCN and Washington, DC, USA: TNC.
  1673. Martin, A. et al., 2016a: Blue Carbon – Nationally Determined Contributions Inventory. Appendix to: Coastal blue carbon ecosystems. Opportunities for Nationally Determined Contributions. GRID-Arendal, Norway [Available at: http://bluecsolutions.org/dev/wp-content/uploads/Blue-Carbon-NDC-Appendix.pdf%5D. Accessed: 2019/09/30.
  1674. Gallo, N.D., D.G. Victor and L.A. Levin, 2017: Ocean commitments under the Paris Agreement. Nat. Clim. Change, 7(11), 833-838, doi:10.1038/NCLIMATE3422.
  1675. Donato, D.C. et al., 2011: Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci., 4, 293, doi:10.1038/ngeo1123.
  1676. Alongi, D.M., 2015: The impact of climate change on mangrove forests. Curr. Clim. Change Rep., 1(1), 30–39.
  1677. Howard, J. et al., 2017: Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ., 15(1), 42–50, doi:10.1002/fee.1451.
  1678. Almahasheer, H. et al., 2017: Low Carbon sink capacity of Red Sea mangroves. Sci. Rep., 7(1), 9700, doi:10.1038/s41598-017-10424-9.
  1679. Kelleway, J.J. et al., 2016: Seventy years of continuous encroachment substantially increases ‘blue carbon’ capacity as mangroves replace intertidal salt marshes. Glob Chang Biol, 22(3), 1097–109, doi:10.1111/gcb.13158.
  1680. Macreadie, P.I. et al., 2017b: Carbon sequestration by Australian tidal marshes. Sci. Rep., 7, 44071, doi:10.1038/srep44071.
  1681. Serrano, O., P.S. Lavery, M. Rozaimi and M.Á. Mateo, 2014: Influence of water depth on the carbon sequestration capacity of seagrasses. Global Biogeochem. Cy., 28(9), 950–961, doi:10.1002/2014GB004872.
  1682. McKee, K.L., D.R. Cahoon and I.C. Feller, 2007: Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecol. Biogeogr., 16(5), 545–556, doi:10.1111/j.1466-8238.2007.00317.x.
  1683. Laffoley, D. and G.D. Grimsditch, 2009: The management of natural coastal carbon sinks. IUCN, Gland, Switzerland. 53.: ISBN: 978-2-8317-1205-5.
  1684. Pan, Y. et al., 2011: A Large and Persistent Carbon Sink in the World’s Forests. Science, 333(6045), 988.
  1685. Marba, N. and C.M. Duarte, 2009: Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biol., 16(8), 2366–2375, doi:10.1111/j.1365-2486.2009.02130.x.
  1686. Duarte, C.M. et al., 2010: Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochem. Cy., 24(4), doi:10.1029/2010GB003793.
  1687. Pendleton, L. et al., 2012: Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS One, 7(9), e43542, doi:10.1371/journal.pone.0043542.
  1688. Lovelock, C.E., J.W. Fourqurean and J.T. Morris, 2017: Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds. Front. Mar. Sci., 4, 143.
  1689. McLeod, E. et al., 2011: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ., 9(10), 552–560, doi:10.1890/110004.
  1690. Jickells, T.D., J.E. Andrews and D.J. Parkes, 2015: Direct and Indirect Effects of Estuarine Reclamation on Nutrient and Metal Fluxes in the Global Coastal Zone. Aquat. Geochem., 22(4), 337–348, doi:10.1007/s10498-015-9278-7.
  1691. Gu, J. et al., 2018: Losses of salt marsh in China: Trends, threats and management. Estuar. Coast. Shelf Sci., 214, 98–109, doi:10.1016/j.ecss.2018.09.015.
  1692. Li, X., R. Bellerby, C. Craft and S.E. Widney, 2018a: Coastal wetland loss, consequences, and challenges for restoration. Anthropocene Coasts, 1(0), 1–15.
  1693. Alongi, D.M., 2015: The impact of climate change on mangrove forests. Curr. Clim. Change Rep., 1(1), 30–39.
  1694. Atwood, T.B. et al., 2017: Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Change, 7, 523, doi:10.1038/nclimate3326.
  1695. Pendleton, L. et al., 2012: Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS One, 7(9), e43542, doi:10.1371/journal.pone.0043542.
  1696. Howard, J. et al., 2017: Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ., 15(1), 42–50, doi:10.1002/fee.1451.
  1697. Lovelock, C.E., J.W. Fourqurean and J.T. Morris, 2017: Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds. Front. Mar. Sci., 4, 143.
  1698. Taillardat, P., D. A. Friess and M. Lupascu, 2018: Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett., 14(10), 20180251.
  1699. Taillardat, P., D. A. Friess and M. Lupascu, 2018: Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett., 14(10), 20180251.
  1700. Lovelock, C.E., J.W. Fourqurean and J.T. Morris, 2017: Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds. Front. Mar. Sci., 4, 143.
  1701. Taillardat, P., D. A. Friess and M. Lupascu, 2018: Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett., 14(10), 20180251.
  1702. Miteva, D.A., B.C. Murray and S.K. Pattanayak, 2015: Do protected areas reduce blue carbon emissions? A quasi-experimental evaluation of mangroves in Indonesia. Ecol. Econ., 119, 127–135.
  1703. Herr, D., M. Unger, D. Laffoley and A. McGivern, 2017: Pathways for implementation of blue carbon initiatives. Aquat. Conserv. Mar. Freshw. Ecosyst., 27(S1), 116–129, doi:10.1002/aqc.2793.
  1704. Howard, J. et al., 2017: Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ., 15(1), 42–50, doi:10.1002/fee.1451.
  1705. Macreadie, P.I. et al., 2017a: Can we manage coastal ecosystems to sequester more blue carbon? Front. Ecol. Environ., 15(4), 206–213, doi:10.1002/fee.1484.
  1706. McLeod, E. et al., 2011: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ., 9(10), 552–560, doi:10.1890/110004.
  1707. Isensee, K., J. Howard, E. Pidgeon and J. Ramos, 2019: Coastal blue carbon. In: WMO Statement on the State of the Global Climate in 2018. WMO, Geneva, pp. 10–11, ISBN: 978-92-63-11233-0
  1708. López-Portillo, J., A.L. Lara-Domínguez, G. Vázquez and J.A. Aké-Castillo, 2017: Water Quality and Mangrove-Derived Tannins in Four Coastal Lagoons from the Gulf of Mexico with Variable Hydrologic Dynamics.In: Martinez, M.L.; Taramelli, A., and Silva, R. (eds.), Coastal Resilience: Exploring the Many Challenges from Different Viewpoints. Journal of Coastal Research, Special Issue No. 77, pp. 28–38. Coconut Creek (Florida), ISSN 0749-0208 doi:10.2112/SI77-004.1.
  1709. Zhao, Q. et al., 2016a: A review of methodologies and success indicators for coastal wetland restoration. Ecol. Indic., 60, 442–452, doi:10.1016/j.ecolind.2015.07.003.
  1710. Adam, P., 2019: Salt marsh restoration. In: Coastal Wetlands. [G.M.E. Perillo, E. Wolanski, D.R. Cahoon, C.S. Hopkinson, eds.]Elsevier, Amsterdam, Netherlands, pp. 817–861. ISBN: 978-0-444-63893-9.
  1711. Bayraktarov, E. et al., 2016: The cost and feasibility of marine coastal restoration. Ecol. Appl., 26(4), 1055–1074, doi:10.1890/15-1077.
  1712. Wylie, L., A.E. Sutton-Grier and A. Moore, 2016: Keys to successful blue carbon projects: Lessons learned from global case studies. Mar. Policy, 65, 76–84, doi:10.1016/j.marpol.2015.12.020.
  1713. Adame, M.F., S. Cherian, R. Reef and B. Stewart-Koster, 2017: Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecol. Manag., 403, 52–60, doi:10.1016/j.foreco.2017.08.016.
  1714. Schile, L.M., J.C. Callaway, K.N. Suding and N.M. Kelly, 2017: Can community structure track sea level rise? Stress and competitive controls in tidal wetlands. Ecol. Evol., 7(4), 1276–1285, doi:10.1002/ece3.2758.
  1715. Lavery, P.S., M.-Á. Mateo, O. Serrano and M. Rozaimi, 2013: Variability in the Carbon Storage of Seagrass Habitats and Its Implications for Global Estimates of Blue Carbon Ecosystem Service. PLoS One, 8(9), e73748, doi:10.1371/journal.pone.0073748.
  1716. Kelleway, J.J. et al., 2017b: Geochemical analyses reveal the importance of environmental history for blue carbon sequestration. J. Geophys. Res-Biogeo., 122(7), 1789–1805, doi:10.1002/2017JG003775.
  1717. McLeod, E. et al., 2011: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ., 9(10), 552–560, doi:10.1890/110004.
  1718. Johannessen, S.C. and R.W. Macdonald, 2016: Geoengineering with seagrasses: is credit due where credit is given? Environ. Res. Lett., 11(11), 113001.
  1719. Johannessen, S.C. and R.W. Macdonald, 2018a: Reply to Oreska et al ‘Comment on Geoengineering with seagrasses: is credit due where credit is given?’. Environ. Res. Lett., 13(3), 038002.
  1720. Johannessen, S.C. and R.W. Macdonald, 2018b: Reply to Macreadie et al Comment on ‘Geoengineering with seagrasses: is credit due where credit is given?’. Environ. Res. Lett., 13(2), 028001.
  1721. Macreadie, P.I. et al., 2018: Comment on ‘Geoengineering with seagrasses: is credit due where credit is given?’. Environ. Res. Lett., 13(2), 028002.
  1722. Oreska, M.P. et al., 2018: Comment on Geoengineering with seagrasses: is credit due where credit is given? Environ. Res. Lett., 13(3), 038001.
  1723. Keller, J.K., 2019b: Greenhouse Gases. In: A Blue Carbon Primer, The State of Coastal Wetland Carbon Science, Practice and Policy [Windham-Myers, L., S. Crooks and T.G. Troxler (eds.)]. Taylor and Francis Group, United States. ISBN: 978-1-4987-6909-9.
  1724. Adams, C.A., J.E. Andrews and T. Jickells, 2012: Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Sci. Total Environ., 434, 240–251, doi:10.1016/j.scitotenv.2011.11.058.
  1725. Chen, S. and D. Ganapin, 2016: Polycentric coastal and ocean management in the Caribbean Sea Large Marine Ecosystem: harnessing community-based actions to implement regional frameworks. Environ. Dev., 17, 264–276, doi:10.1016/j.envdev.2015.07.010.
  1726. Chmura, G.L., L. Kellman, L. van Ardenne and G.R. Guntenspergen, 2016: Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment. PLoS One, 11(2), e0149937, doi:10.1371/journal.pone.0149937.
  1727. Rosendo, S., L. Celliers and M. Mechisso, 2018: Doing more with the same: A reality-check on the ability of local government to implement Integrated Coastal Management for climate change adaptation. Mar. Policy, 87, 29–39, doi:10.1016/j.marpol.2017.10.001.
  1728. Cameron, C., L.B. Hutley and D.A. Friess, 2019: Estimating the full greenhouse gas emissions offset potential and profile between rehabilitating and established mangroves. Sci. Total Environ., 665, 419–431, doi:10.1016/j.scitotenv.2019.02.104.
  1729. Adams, C.A., J.E. Andrews and T. Jickells, 2012: Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Sci. Total Environ., 434, 240–251, doi:10.1016/j.scitotenv.2011.11.058.
  1730. Chmura, G.L., L. Kellman, L. van Ardenne and G.R. Guntenspergen, 2016: Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment. PLoS One, 11(2), e0149937, doi:10.1371/journal.pone.0149937.
  1731. Maher, D.T. et al., 2016: Pristine mangrove creek waters are a sink of nitrous oxide. Sci. Rep., 6, 25701, doi:10.1038/srep25701.
  1732. Howard, J. et al., 2017: Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ., 15(1), 42–50, doi:10.1002/fee.1451.
  1733. Macreadie, P.I. et al., 2017a: Can we manage coastal ecosystems to sequester more blue carbon? Front. Ecol. Environ., 15(4), 206–213, doi:10.1002/fee.1484.
  1734. Kennedy, H., J.W. Fourqurean and S. Papadimitriou, 2018: The Calcium Carbonate Cycle in Seagrass Ecosystems. In: A Blue Carbon Primer. CRC Press, pp. 107–119.
  1735. Saderne, V. et al., 2019: Role of carbonate burial in Blue Carbon budgets. Nat. Commun., 10(1), 1106.
  1736. Chew, S.T. and J.B. Gallagher, 2018: Accounting for black carbon lowers estimates of blue carbon storage services. Sci. Rep., 8(1), 2553, doi:10.1038/s41598-018-20644-2.
  1737. Maher, D.T., M. Call, I.R. Santos and C.J. Sanders, 2018: Beyond burial: lateral exchange is a significant atmospheric carbon sink in mangrove forests. Biol. Lett., 14(7), 20180200.
  1738. Santos, I.R. et al., 2019: Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnol. Oceanogr., 64(3), 996–1013, doi:10.1002/lno.11090.
  1739. Ward, R.D., D.A. Friess, R.H. Day and R.A. MacKenzie, 2016: Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Health Sustain., 2(4), e01211, doi:10.1002/ehs2.1211.
  1740. Duke, N.C. et al., 2017: Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res., 68(10), 1816–1829.
  1741. Jennerjahn, T.C. et al., 2017: Mangrove Ecosystems under Climate Change. In: Mangrove Ecosystems: A Global Biogeographic Perspective [V.H. Rivera-Monroy, S.Y. Lee, E. Kristensen, and R.R. Twilley eds.]. Springer, pp. 211–244, ISBN: 978-3-319-62206-4
  1742. Nowicki, R.J. et al., 2017: Predicting seagrass recovery times and their implications following an extreme climate event. Mar. Ecol. Prog. Ser., 567, 79–93.
  1743. Kirwan, M.L. and J.P. Megonigal, 2013: Tidal wetland stability in the face of human impacts and sea level rise. Nature, 504, 53, doi:10.1038/nature12856.
  1744. Spencer, T. et al., 2016: Global coastal wetland change under sea level rise and related stresses: The DIVA Wetland Change Model. Global Planet. Change, 139, 15–30, doi:10.1016/j.gloplacha.2015.12.018.
  1745. Barnes, R.S.K., 2017: Are seaward pneumatophore fringes transitional between mangrove and lower-shore system compartments? Mar. Environ. Res., 125, 99–109, doi:10.1016/j.marenvres.2017.01.008.
  1746. Kelleway, J.J. et al., 2016: Seventy years of continuous encroachment substantially increases ‘blue carbon’ capacity as mangroves replace intertidal salt marshes. Glob Chang Biol, 22(3), 1097–109, doi:10.1111/gcb.13158.
  1747. Murdiyarso, D. et al., 2015: The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Change, 5, 1089, doi:10.1038/nclimate2734.
  1748. Atwood, T.B. et al., 2017: Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Change, 7, 523, doi:10.1038/nclimate3326.
  1749. Griscom, B.W. et al., 2017: Natural climate solutions. PNAS, 114(44), 11645.
  1750. Gattuso, J.-P. et al., 2018: Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. Front. Mar. Sci., 5(337), doi:10.3389/fmars.2018.00337.
  1751. Griscom, B.W. et al., 2017: Natural climate solutions. PNAS, 114(44), 11645.
  1752. Gittman, R.K. et al., 2015: Engineering away our natural defenses: an analysis of shoreline hardening in the US. Front. Ecol. Environ., 13(6), 301–307, doi:10.1890/150065.
  1753. Li, X., R. Bellerby, C. Craft and S.E. Widney, 2018a: Coastal wetland loss, consequences, and challenges for restoration. Anthropocene Coasts, 1(0), 1–15.
  1754. Bayraktarov, E. et al., 2016: The cost and feasibility of marine coastal restoration. Ecol. Appl., 26(4), 1055–1074, doi:10.1890/15-1077.
  1755. Costanza, R. et al., 2008: The value of coastal wetlands for hurricane protection. Ambio, 37(4), 241–248.
  1756. Spalding, M.D. et al., 2014: The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast. Manage., 90, 50–57, doi:10.1016/j.ocecoaman.2013.09.007.
  1757. Temmerman, S. et al., 2013: Ecosystem-based coastal defence in the face of global change. Nature, 504, 79, doi:10.1038/nature12859.
  1758. Möller, I., 2019: Applying Uncertain Science to Nature-Based Coastal Protection: Lessons From Shallow Wetland-Dominated Shores. Front. Environ. Sci., 7(49), doi:10.3389/fenvs.2019.00049.
  1759. Vázquez-González, C. et al., 2017: Mangrove and Freshwater Wetland Conservation Through Carbon Offsets: A Cost-Benefit Analysis for Establishing Environmental Policies. Environ. Manage., 59(2), 274–290, doi:10.1007/s00267-016-0790-3.
  1760. Windham-Myers, L., S. Crooks and T.G. Troxler, 2019: A blue carbon primer: the state of coastal wetland carbon science, practice and policy. CRC Press, Boca Raton, Florida. 481 pp. ISBN: 978-1-4987-6909-9.
  1761. Howard, J. et al., 2017: Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ., 15(1), 42–50, doi:10.1002/fee.1451.
  1762. Hill, R. et al., 2015: Can macroalgae contribute to blue carbon? An Australian perspective. Limnol. Oceanogr., 60(5), 1689–1706, doi:10.1002/lno.10128.
  1763. Krause-Jensen, D. and C.M. Duarte, 2016: Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci., 9(10), 737–742, doi:10.1038/ngeo2790.
  1764. Krause-Jensen, D. and C.M. Duarte, 2016: Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci., 9(10), 737–742, doi:10.1038/ngeo2790.
  1765. Krause-Jensen, D. et al., 2018: Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biol. Lett., 14(6), 20180236, doi:10.1098/rsbl.2018.0236.
  1766. Smale, D.A. et al., 2018: Appreciating interconnectivity between habitats is key to blue carbon management. Front. Ecol. Environ., 16(2), 71–73, doi:10.1002/fee.1765.
  1767. N‘Yeurt, A. .R. et al., 2012: Negative carbon via Ocean Afforestation. Process Saf. Environ., 90(6), 467–474, doi:10.1016/j.psep.2012.10.008.
  1768. Chung, I.K. et al., 2013: Installing kelp forests/seaweed beds for mitigation and adaptation against global warming: Korean Project Overview. ICES J. Mar. Sci., 70(5), 1038–1044, doi:10.1093/icesjms/fss206.
  1769. Chung, I.K., C.F.A. Sondak and J. Beardall, 2017: The future of seaweed aquaculture in a rapidly changing world. European J. Phycol., 52(4), 495–505, doi:10.1080/09670262.2017.1359678.
  1770. Duarte, C.M. et al., 2017: Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation? Front. Mar. Sci., 4, 100.
  1771. N‘Yeurt, A.d.R. and V. Iese, 2014: The proliferating brown alga Sargassum polycystum in Tuvalu, South Pacific: assessment of the bloom and applications to local agriculture and sustainable energy. J. App. Phycol., 27(5), 2037–2045, doi:10.1007/s10811-014-0435-y.
  1772. Moreira, D. and J.C.M. Pires, 2016: Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresour. Technol. 215, 371–379, doi:10.1016/j.biortech.2016.03.060.
  1773. Sondak, C.F.A. et al., 2017: Carbon dioxide mitigation potential of seaweed aquaculture beds (SABs). J. App. Phycol., 29(5), 2363–2373, doi:10.1007/s10811-016-1022-1.
  1774. Hughes, A.D. et al., 2012: Does seaweed offer a solution for bioenergy with biological carbon capture and storage? Greenh, Gases:, 2(6), 402–407, doi:10.1002/ghg.1319.
  1775. Dubois, B. et al., 2013: Effect of Tropical Algae as Additives on Rumen in Vitro Gas Production and Fermentation Characteristics. Am. J. Plant Sci., 04(12), 34–43, doi:10.4236/ajps.2013.412A2005.
  1776. Machado, L. et al., 2016: Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. J. App. Phycol., 28(2), 1443–1452, doi:10.1007/s10811-015-0639-9.
  1777. Machado, L. et al., 2018: In Vitro Response of Rumen Microbiota to the Antimethanogenic Red Macroalga Asparagopsis taxiformis. Microb. Ecol., 75(3), 811–818, doi:10.1007/s00248-017-1086-8.
  1778. Jiao, N., K. Tang, H. Cai and Y. Mao, 2011: Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nat. Rev. Microbiol., 9(1), doi:10.1038/nrmicro2386-c2.
  1779. Jiao, N. et al., 2014b: Mechanisms of microbial carbon sequestration in the ocean – future research directions. Biogeosciences, 11(19), 5285–5306, doi:10.5194/bg-11-5285-2014.
  1780. Jiao, N., H. Wang, G. Xu and S. Aricò, 2018b: Blue Carbon on the Rise:Challenges and Opportunities. Natl. Sci. Rev., 5(4), 464-468 doi:10.1093/nsr/nwy030.
  1781. Taylor, P.G. and A.R. Townsend, 2010: Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature, 464(7292), 1178–1181, doi:10.1038/nature08985.
  1782. Yuan, X. et al., 2010: Bacterial production and respiration in subtropical Hong Kong waters: influence of the Pearl River discharge and sewage effluent. Aqut. Microb. Ecol., 58(2), 167–179, doi:10.3354/ame03146.
  1783. Jiao, N., K. Tang, H. Cai and Y. Mao, 2011: Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nat. Rev. Microbiol., 9(1), doi:10.1038/nrmicro2386-c2.
  1784. Jiao, N. et al., 2014b: Mechanisms of microbial carbon sequestration in the ocean – future research directions. Biogeosciences, 11(19), 5285–5306, doi:10.5194/bg-11-5285-2014.
  1785. Liu, J., N. Jiao and K. Tang, 2014: An experimental study on the effects of nutrient enrichment on organic carbon persistence in the western Pacific oligotrophic gyre. Biogeosciences, 11(18), 5115–5122, doi:10.5194/bg-11-5115-2014.
  1786. Miranda, P.M.A., J.M.R. Alves and N. Serra, 2013: Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Clim. Dyn., 40(11–12), 2813–2824, doi:10.1007/s00382-012-1442-9.
  1787. Jiao, N. et al., 2018a: Unveiling the enigma of refractory carbon in the ocean. Natl. Sci. Rev., 5(4), 459-463. , doi:10.1093/nsr/nwy020.
  1788. Zhang, S. et al., 2018: Phosphorus release from cyanobacterial blooms during their decline period in eutrophic Dianchi Lake, China. Environ. Sci. Pollut. Res., doi:10.1007/s11356-018-1517-1.
  1789. Rothman, D.H., J.M. Hayes and R.E. Summons, 2003: Dynamics of the Neoproterozoic carbon cycle. PNAS, 100(14), 8124, doi:10.1073/pnas.0832439100.
  1790. Hale, R. et al., 2017: Mediation of macronutrients and carbon by post-disturbance shelf sea sediment communities. Biogeochemistry, 135(1), 121–133, doi:10.1007/s10533-017-0350-9.
  1791. Avelar, S., T.S. van der Voort and T.I. Eglinton, 2017: Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations. Carbon Bal. Manage., 12(1), 10, doi:10.1186/s13021-017-0077-x.
  1792. Luisetti, T. et al., 2019: Quantifying and valuing carbon flows and stores in coastal and shelf ecosystems in the UK. Ecosyst. Serv., 35, 67–76, doi:10.1016/j.ecoser.2018.10.013.
  1793. van de Velde, S. et al., 2018: Anthropogenic disturbance keeps the coastal seafloor biogeochemistry in a transient state. Sci. Rep., 8(1), 5582, doi:10.1038/s41598-018-23925-y.
  1794. Hu, L. et al., 2016: Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China. J. Mar. Syst., 155, 50–58, doi:10.1016/j.jmarsys.2015.10.018.
  1795. Diesing, M. et al., 2017: Predicting the standing stock of organic carbon in surface sediments of the North–West European continental shelf. Biogeochemistry, 135(1), 183–200, doi:10.1007/s10533-017-0310-4.
  1796. Renforth, P. and G. Henderson, 2017: Assessing ocean alkalinity for carbon sequestration. Rev. Geophys., 55(3), 636–674, doi:10.1002/2016RG000533.
  1797. Albright, R. et al., 2016b: Reversal of ocean acidification enhances net coral reef calcification. Nature, 531, 362, doi:10.1038/nature17155.
  1798. Feng, E.Y., P.K. David, K. Wolfgang and O. Andreas, 2016: Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification? Environ. Res. Lett., 11(7), 074008.
  1799. Gattuso, J.-P. et al., 2018: Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. Front. Mar. Sci., 5(337), doi:10.3389/fmars.2018.00337.
  1800. Montserrat, F. et al., 2017: Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments. Environ. Sci. Technol., 51(7), 3960–3972, doi:10.1021/acs.est.6b05942.
  1801. Rau, G.H., E.L. McLeod and O. Hoegh-Guldberg, 2012: The need for new ocean conservation strategies in a high-carbon dioxide world. Nat. Clim. Change, 2, 720, doi:10.1038/nclimate1555.
  1802. GESAMP, 2019: High Level Review of a Wide Range of Proposed Marine Geoengineering Techniques [Boyd, P.W. and C.M.G. Vivian (eds.)]. IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UN Environment/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, GESAMP, International Maritime Organization, No. 98, 144 pp. London, UK, ISSN: 1020-4973.
  1803. Taylor, L.L. et al., 2015: Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat. Clim. Change, 6, 402, doi:10.1038/nclimate2882.
  1804. Keller, D.P., 2019a: Marine climate engineering. In: Handbook on Marine Environment Protection: Science, Impacts and Sustainable Management [Salomon, M. and T. Markus (eds.)]. Springer, Switzerland. ISBN: 978-3-319-60154-0
  1805. Legendre, L. et al., 2015: The microbial carbon pump concept: Potential biogeochemical significance in the globally changing ocean. Progr. Oceanogr., 134, 432–450, doi:10.1016/j.pocean.2015.01.008.
  1806. Cartapanis, O., E.D. Galbraith, D. Bianchi and S. L. Jaccard, 2018: Carbon burial in deep sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. Clim. Past, 14(11), 1819–1850, doi:10.5194/cp-14-1819-2018.
  1807. Keller, D.P., E.Y. Feng and A. Oschlies, 2014a: Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat. Commun., 5, 3304, doi:10.1038/ncomms4304.
  1808. Bowie, A.R. et al., 2015: Iron budgets for three distinct biogeochemical sites around the Kerguelen Archipelago (Southern Ocean) during the natural fertilisation study, KEOPS-2. Biogeosciences, 12(14), 4421–4445.
  1809. Tagliabue, A. et al., 2017: The integral role of iron in ocean biogeochemistry. Nature, 543(7643), 51–59, doi:10.1038/nature21058.
  1810. Boyd, P.W. et al., 2007: Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions. Science, 315(5812), 612, doi:10.1126/science.1131669.
  1811. Yoon, J.E. et al., 2016: Ocean Iron Fertilization Experiments: Past–Present–Future with Introduction to Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) Project. Biogeosciences Discuss., 2016, 1–41, doi:10.5194/bg-2016-472.
  1812. GESAMP, 2019: High Level Review of a Wide Range of Proposed Marine Geoengineering Techniques [Boyd, P.W. and C.M.G. Vivian (eds.)]. IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UN Environment/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, GESAMP, International Maritime Organization, No. 98, 144 pp. London, UK, ISSN: 1020-4973.
  1813. Williamson, P. and C. Turley, 2012: Ocean acidification in a geoengineering context. Philos. Trans. Roy. Soc. A., 370(1974), 4317.
  1814. Aumont, O. and L. Bopp, 2006: Globalizing results from ocean in situ iron fertilization studies. Global Biogeochem. Cy., 20(2), doi:10.1029/2005GB002591.
  1815. Williamson, P. and C. Turley, 2012: Ocean acidification in a geoengineering context. Philos. Trans. Roy. Soc. A., 370(1974), 4317.
  1816. Boyd, P.W. and M. Bressac, 2016: Developing a test-bed for robust research governance of geoengineering: the contribution of ocean iron biogeochemistry. Philos. Trans. Roy. Soc. A., 374(2081).
  1817. Williams, G.A. et al., 2016: Meeting the climate change challenge: Pressing issues in southern China and SE Asian coastal ecosystems. Reg. Stud. Mar. Sci., 8, 373–381, doi:10.1016/j.rsma.2016.07.002.
  1818. Fuentes-George, K., 2017: Consensus, Certainty, and Catastrophe: Discourse, Governance, and Ocean Iron Fertilization. Global Environmental Politics, 17(2), 125–143, doi:10.1162/GLEP_a_00404.
  1819. McGee, J., K. Brent and W. Burns, 2018: Geoengineering the oceans: an emerging frontier in international climate change governance. Australian Journal of Maritime & Ocean Affairs, 10(1), 67–80, doi:10.1080/18366503.2017.1400899.
  1820. Robinson, J. et al., 2014: How deep is deep enough? Ocean iron fertilization and carbon sequestration in the Southern Ocean. Geophys. Res. Lett., 41(7), 2489–2495, doi:10.1002/2013GL058799.
  1821. Harrison, D.P., 2017: Global negative emissions capacity of ocean macronutrient fertilization. Environ. Res. Lett., 12(3), 035001.
  1822. Williamson, P. and C. Turley, 2012: Ocean acidification in a geoengineering context. Philos. Trans. Roy. Soc. A., 370(1974), 4317.
  1823. Bauman, S.J. et al., 2014: Augmenting the biological pump: The shortcomings of geoengineered upwelling. Oceanography, 27(3), 17–23.
  1824. Kwiatkowski, L., K.L. Ricke and K. Caldeira, 2015: Atmospheric consequences of disruption of the ocean thermocline. Environ. Res. Lett., 10(3) 034016, doi:10.1088/1748-9326/10/3/034016.
  1825. Wong, P.P., et al. 2014a: Coastal systems and low-lying areas. In: Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Field, C.B., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp. 361-409. ISBN: 978-1-107-05807-1
  1826. Narayan, S. et al., 2016: The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences. PLoS One, 11(5), e0154735, doi:10.1371/journal.pone.0154735.
  1827. Moosavi, S., 2017: Ecological Coastal Protection: Pathways to Living Shorelines. Procedia Eng., 196, 930–938, doi:10.1016/j.proeng.2017.08.027.
  1828. Mutombo, K. and A. Ölçer, 2016: Towards Port Infrastructure: A Global Port Climate Risk Analysis. WMU Journal of Maritime Affairs, 16, 161, doi:10.1007/s13437-016-0113-9.
  1829. Forzieri, G. et al., 2018: Escalating impacts of climate extremes on critical infrastructures in Europe. Global Environ. Change, 48, 97–107, doi:10.1016/j.gloenvcha.2017.11.007.
  1830. Oswald Beiler, M., L. Marroquin and S. McNeil, 2016: State-of-the-practice assessment of climate change adaptation practices across metropolitan planning organizations pre- and post-Hurricane Sandy. Transport. Res. A-Pol., 88, 163–174, doi:10.1016/j.tra.2016.04.003.
  1831. Thorne, K.M. et al., 2017: Are coastal managers ready for climate change? A case study from estuaries along the Pacific coast of the United States. Ocean Coast. Manage., 143, 38–50, doi:10.1016/j.ocecoaman.2017.02.010.
  1832. Archer, D. et al., 2014: Moving towards inclusive urban adaptation: approaches to integrating community-based adaptation to climate change at city and national scale. Clim. Dev., 6(4), 345–356, doi:10.1080/17565529.2014.918868.
  1833. Shaffiril, H.A.M., A.A. Samah and J. Lawrence, 2017: Adapting towards climate change impacts: Strategies for small-scale fishermen in Malaysia. Mar. Policy, 81, 196–201.
  1834. Elliff, C.I. and I.R. Silva, 2017: Coral reefs as the first line of defense: Shoreline protection in face of climate change. Mar. Environ. Res., 127, 148–154, doi:10.1016/j.marenvres.2017.03.007.
  1835. van Oppen, M.J.H. et al., 2017a: Shifting paradigms in restoration of the world’s coral reefs. Global Change Biol., 23(9), 3437–3448, doi:10.1111/gcb.13647.
  1836. Gattuso, J.-P. et al., 2018: Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. Front. Mar. Sci., 5(337), doi:10.3389/fmars.2018.00337.
  1837. Barbier, E.B., 2015: Climate change impacts on rural poverty in low-elevation coastal zones. Estuar. Coast. Shelf Sci., 165, A1–A13, doi:10.1016/j.ecss.2015.05.035.
  1838. Wigand, C. et al., 2017: A climate change adaptation strategy for management of coastal marsh systems. Estuar. Coast., 40(3), 682–693.
  1839. Robins, P.E. et al., 2016: Impact of climate change on UK estuaries: A review of past trends and potential projections. Estuar. Coast. Shelf Sci., 169, 119–135, doi:10.1016/j.ecss.2015.12.016.
  1840. Runting, R.K., C.E. Lovelock, H.L. Beyer and J.R. Rhodes, 2017: Costs and Opportunities for Preserving Coastal Wetlands under Sea Level Rise. Conserv. Lett., 10(1), 49–57, doi:doi:10.1111/conl.12239.
  1841. Broto, V.C., E. Boyd and J. Ensor, 2015: Participatory urban planning for climate change adaptation in coastal cities: lessons from a pilot experience in Maputo, Mozambique. Curr. Opin. Environ. Sustain., 13, 11–18, doi:10.1016/j.cosust.2014.12.005.
  1842. Bennett, N.J., A. Kadfak and P. Dearden, 2016: Community-based scenario planning: a process for vulnerability analysis and adaptation planning to social–ecological change in coastal communities. Environ. Dev. Sustain., 18(6), 1771–1799, doi:10.1007/s10668-015-9707-1.
  1843. Crozier, L.G. and J.A. Hutchings, 2014: Plastic and evolutionary responses to climate change in fish. Evol. Appl., 7(1), 68–87, doi:doi:10.1111/eva.12135.
  1844. Miller, D.D. et al., 2017: Adaptation strategies to climate change in marine systems. Global Change Biol., 24, e1–e14.
  1845. Diamond, S.E., 2018: Contemporary climate-driven range shifts: Putting evolution back on the table. Funct. Ecol., 32(7), 1652–1665, doi:10.1111/1365-2435.13095.
  1846. Gienapp, P. and J. Merilä, 2018: Evolutionary Responses to Climate Change. In: Encyclopedia of the Anthropocene [Dellasala, D.A. and M.I. Goldstein (eds.)]. Elsevier, Oxford, pp. 51–59., ISBN: 9780128096659
  1847. Butt, N. et al., 2016: Challenges in assessing the vulnerability of species to climate change to inform conservation actions. Biol. Conserv., 199, 10–15, doi:10.1016/j.biocon.2016.04.020.
  1848. Hobday, A.J. et al., 2015: Reconciling conflicts in pelagic fisheries under climate change. Deep Sea Res. Pt. II, 113, 291–300, doi:10.1016/j.dsr2.2014.10.024.
  1849. Ondiviela, B. et al., 2014: The role of seagrasses in coastal protection in a changing climate. Coast. Eng., 87(Supplement C), 158–168, doi:10.1016/j.coastaleng.2013.11.005.
  1850. Wigand, C. et al., 2017: A climate change adaptation strategy for management of coastal marsh systems. Estuar. Coast., 40(3), 682–693.
  1851. Okey, T.A., H.M. Alidina, V. Lo and S. Jessen, 2014: Effects of climate change on Canada’s Pacific marine ecosystems: a summary of scientific knowledge. Rev. Fish Biol. Fisher., 24(2), 519–559, doi:10.1007/s11160-014-9342-1.
  1852. Young, J.W. et al., 2015: The trophodynamics of marine top predators: Current knowledge, recent advances and challenges. Deep Sea Res. Pt. II, 113, 170–187, doi:10.1016/j.dsr2.2014.05.015.
  1853. Powell, E.J. et al., 2017: A synthesis of thresholds for focal species along the U.S. Atlantic and Gulf Coasts: A review of research and applications. Ocean Coast. Manage., 148, 75–88, doi:10.1016/j.ocecoaman.2017.07.012.
  1854. Rinkevich, B., 2008: Management of coral reefs: We have gone wrong when neglecting active reef restoration. Mar. Pollut. Bull., 56(11), 1821–1824, doi:10.1016/j.marpolbul.2008.08.014.
  1855. Miller, K.I. and G.R. Russ, 2014: Studies of no-take marine reserves: Methods for differentiating reserve and habitat effects. Ocean Coast. Manage., 96(Supplement C), 51–60.
  1856. Miller, K.I. and G.R. Russ, 2014: Studies of no-take marine reserves: Methods for differentiating reserve and habitat effects. Ocean Coast. Manage., 96(Supplement C), 51–60.
  1857. Linden, B. and B. Rinkevich, 2017: Elaborating an eco-engineering approach for stock enhanced sexually derived coral colonies. J. Exp. Mar. Biol. Ecol., 486(Supplement C), 314–321.
  1858. Rinkevich, B., 1995: Restoration Strategies for Coral Reefs Damaged by Recreational Activities: The Use of Sexual and Asexual Recruits. Restor. Ecol., 3(4), 241–251, doi:10.1111/j.1526-100X.1995.tb00091.x.
  1859. Rinkevich, B., 2005: What do we know about Eilat (Red Sea) reef degradation? A critical examination of the published literature. J. Exp. Mar. Biol. Ecol., 327(2), 183–200.
  1860. Rinkevich, B., 2006: The coral gardening concept and the use of underwater nurseries: lessons learned from silvics and silviculture. In: Coral Reef Restoration Handbook [Precht, W.F. (ed.)]. CRS/Taylor; Francis Boca Raton, pp. 291–302. ISBN: 9780429117886.
  1861. Rinkevich, B., 2008: Management of coral reefs: We have gone wrong when neglecting active reef restoration. Mar. Pollut. Bull., 56(11), 1821–1824, doi:10.1016/j.marpolbul.2008.08.014.
  1862. Bongiorni, L. et al., 2011: First step in the restoration of a highly degraded coral reef (Singapore) by in situ coral intensive farming. Aquaculture, 322–323(Supplement C), 191–200.
  1863. Shafir, S. and B. Rinkevich, 2008: Chapter 9 – The underwater silviculture approach for reef restoration: an emergent aquaculture theme. In: Aquaculture Research Trends [Schwartz, S. H.]. Nova Science Publications, New York, pp. 279–295. ISBN: 9781604562170.
  1864. Mbije, N.E.J., E. Spanier and B. Rinkevich, 2010: Testing the first phase of the ‘gardening concept’ as an applicable tool in restoring denuded reefs in Tanzania. Ecol. Eng., 36(5), 713–721, doi:10.1016/j.ecoleng.2009.12.018.
  1865. Shaish, L., G. Levy, G. Katzir and B. Rinkevich, 2010b: Employing a highly fragmented, weedy coral species in reef restoration. Ecol. Eng., 36(10), 1424–1432, doi:10.1016/j.ecoleng.2010.06.022.
  1866. Shaish, L., G. Levy, G. Katzir and B. Rinkevich, 2010a: Coral Reef Restoration (Bolinao, Philippines) in the Face of Frequent Natural Catastrophes. Restor. Ecol., 18(3), 285–299, doi:10.1111/j.1526-100X.2009.00647.x.
  1867. Bongiorni, L. et al., 2011: First step in the restoration of a highly degraded coral reef (Singapore) by in situ coral intensive farming. Aquaculture, 322–323(Supplement C), 191–200.
  1868. Horoszowski-Fridman, Y.B., I. Izhaki and B. Rinkevich, 2011: Engineering of coral reef larval supply through transplantation of nursery-farmed gravid colonies. J. Exp. Mar. Biol. Ecol., 399(2), 162–166, doi:10.1016/j.jembe.2011.01.005.
  1869. Linden, B. and B. Rinkevich, 2011: Creating stocks of young colonies from brooding coral larvae, amenable to active reef restoration. J. Exp. Mar. Biol. Ecol., 398(1), 40–46.
  1870. Mbije, N.E., E. Spanier and B. Rinkevich, 2013: A first endeavour in restoring denuded, post-bleached reefs in Tanzania. Estuar. Coast. Shelf Sci., 128(Supplement C), 41–51.
  1871. Cruz, D.W.d., R.D. Villanueva and M.V.B. Baria, 2014: Community-based, low-tech method of restoring a lost thicket of Acropora corals. ICES J. Mar. Sci., 71(7), 1866–1875, doi:10.1093/icesjms/fst228.
  1872. Chavanich, S. et al., 2015: Conservation, management, and restoration of coral reefs. Animal evolution: early emerging animals matter, 118(2), 132–134.
  1873. Horoszowski-Fridman, Y.B., J.-C. Brêthes, N. Rahmani and B. Rinkevich, 2015: Marine silviculture: Incorporating ecosystem engineering properties into reef restoration acts. Ecol. Eng., 82(Supplement C), 201–213.
  1874. Lirman, D. and S. Schopmeyer, 2016: Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. Peerj, 4, e2597, doi:10.7717/peerj.2597.
  1875. Montoya Maya, P.H., K.P. Smit, A.J. Burt and S. Frias-Torres, 2016: Large-scale coral reef restoration could assist natural recovery in Seychelles, Indian Ocean. Nat. Conserv., 16(3), 1–17, doi:10.3897/natureconservation.16.8604.
  1876. Lohr, K.E. and J.T. Patterson, 2017: Intraspecific variation in phenotype among nursery-reared staghorn coral Acropora cervicornis (Lamarck, 1816). J. Exp. Mar. Biol. Ecol., 486(Supplement C), 87–92.
  1877. Rachmilovitz, E.N. and B. Rinkevich, 2017: Tiling the reef – Exploring the first step of an ecological engineering tool that may promote phase-shift reversals in coral reefs. Ecol. Eng., 105(Supplement C), 150–161.
  1878. Rinkevich, B., 2015b: Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration. J. Environ. Manage., 162(Supplement C), 199–205.
  1879. Hein, M.Y., B.L. Willis, R. Beeden and A. Birtles, 2017: The need for broader ecological and socioeconomic tools to evaluate the effectiveness of coral restoration programs. Restor. Ecol., 25(6), 873–883, doi:10.1111/rec.12580.
  1880. Rinkevich, B., 2014: Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? Curr. Opin. Environ. Sustain., 7(Supplement C), 28–36, doi:10.1016/j.cosust.2013.11.018.
  1881. Rinkevich, B., 2015b: Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration. J. Environ. Manage., 162(Supplement C), 199–205.
  1882. Linden, B. and B. Rinkevich, 2017: Elaborating an eco-engineering approach for stock enhanced sexually derived coral colonies. J. Exp. Mar. Biol. Ecol., 486(Supplement C), 314–321.
  1883. Rinkevich, B., 2014: Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? Curr. Opin. Environ. Sustain., 7(Supplement C), 28–36, doi:10.1016/j.cosust.2013.11.018.
  1884. Forsman, Z.H., C.A. Page, R.J. Toonen and D. Vaughan, 2015: Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover. Peerj, 3(1), e1313, doi:10.7717/peerj.1313.
  1885. Coelho, V.R. et al., 2017: Shading as a mitigation tool for coral bleaching in three common Indo-Pacific species. J. Exp. Mar. Biol. Ecol., 497(Supplement C), 152–163.
  1886. Horoszowski-Fridman, Y.B. and B. Rinkevich, 2017: Restoration of the Animal Forests: Harnessing Silviculture Biodiversity Concepts for Coral Transplantation in Marine Animal Forests.[Rossi, S., L. Bramanti, A. Gori and C. Orejas (eds.)]. Springer International Publishing, Cham, pp. 1–2, ISBN: 978-3-319-21011-7 .
  1887. Linden, B. and B. Rinkevich, 2017: Elaborating an eco-engineering approach for stock enhanced sexually derived coral colonies. J. Exp. Mar. Biol. Ecol., 486(Supplement C), 314–321.
  1888. Rachmilovitz, E.N. and B. Rinkevich, 2017: Tiling the reef – Exploring the first step of an ecological engineering tool that may promote phase-shift reversals in coral reefs. Ecol. Eng., 105(Supplement C), 150–161.
  1889. Casey, J.M., S.R. Connolly and T.D. Ainsworth, 2015: Coral transplantation triggers shift in microbiome and promotion of coral disease associated potential pathogens. Sci. Rep., 5(1), 833, doi:10.1038/srep11903.
  1890. Horoszowski-Fridman, Y.B. and B. Rinkevich, 2017: Restoration of the Animal Forests: Harnessing Silviculture Biodiversity Concepts for Coral Transplantation in Marine Animal Forests.[Rossi, S., L. Bramanti, A. Gori and C. Orejas (eds.)]. Springer International Publishing, Cham, pp. 1–2, ISBN: 978-3-319-21011-7 .
  1891. Shaver, E.C. and B.R. Silliman, 2017: Time to cash in on positive interactions for coral restoration. Peerj, 5, e3499, doi:10.7717/peerj.3499.
  1892. Shaish, L., G. Levy, G. Katzir and B. Rinkevich, 2010b: Employing a highly fragmented, weedy coral species in reef restoration. Ecol. Eng., 36(10), 1424–1432, doi:10.1016/j.ecoleng.2010.06.022.
  1893. Gómez, C.E.G. et al., 2014: Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions. Coral Reefs, 34, 451–460.
  1894. Iwao, K., N. Wada, A. Ohdera and M. Omori, 2014: How many donor colonies should be cross-fertilized for nursery farming of sexually propagated corals? Natural Resources, 05(10), 521–526, doi:10.4236/nr.2014.510047.
  1895. Drury, C. et al., 2016: Genomic variation among populations of threatened coral: Acropora cervicornis. BMC Genomics, 17(1), 958, doi:10.1186/s12864-016-2583-8.
  1896. Horoszowski-Fridman, Y.B. and B. Rinkevich, 2017: Restoration of the Animal Forests: Harnessing Silviculture Biodiversity Concepts for Coral Transplantation in Marine Animal Forests.[Rossi, S., L. Bramanti, A. Gori and C. Orejas (eds.)]. Springer International Publishing, Cham, pp. 1–2, ISBN: 978-3-319-21011-7 .
  1897. Rinkevich, B., 2014: Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? Curr. Opin. Environ. Sustain., 7(Supplement C), 28–36, doi:10.1016/j.cosust.2013.11.018.
  1898. Rinkevich, B., 2015b: Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration. J. Environ. Manage., 162(Supplement C), 199–205.
  1899. Shaish, L., G. Levy, G. Katzir and B. Rinkevich, 2010b: Employing a highly fragmented, weedy coral species in reef restoration. Ecol. Eng., 36(10), 1424–1432, doi:10.1016/j.ecoleng.2010.06.022.
  1900. Shaish, L., G. Levy, G. Katzir and B. Rinkevich, 2010a: Coral Reef Restoration (Bolinao, Philippines) in the Face of Frequent Natural Catastrophes. Restor. Ecol., 18(3), 285–299, doi:10.1111/j.1526-100X.2009.00647.x.
  1901. Horoszowski-Fridman, Y.B., I. Izhaki and B. Rinkevich, 2011: Engineering of coral reef larval supply through transplantation of nursery-farmed gravid colonies. J. Exp. Mar. Biol. Ecol., 399(2), 162–166, doi:10.1016/j.jembe.2011.01.005.
  1902. Brown, B., R. Dunne, M. Goodson and A. Douglas, 2002: Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs, 21(2), 119–126.
  1903. Horoszowski-Fridman, Y.B., I. Izhaki and B. Rinkevich, 2011: Engineering of coral reef larval supply through transplantation of nursery-farmed gravid colonies. J. Exp. Mar. Biol. Ecol., 399(2), 162–166, doi:10.1016/j.jembe.2011.01.005.
  1904. Palumbi, S.R., D.J. Barshis, N. Traylor-Knowles and R.A. Bay, 2014: Mechanisms of reef coral resistance to future climate change. Science, 344(6186), 895–898, doi:10.1126/science.1251336.
  1905. Putnam, H.M. and R.D. Gates, 2015: Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J. Exp. Biol., 218(15), 2365–2372, doi:10.1242/jeb.123018.
  1906. Putnam, H.M., J.M. Davidson and R.D. Gates, 2016: Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol. Appl., 9(9), 1165–1178, doi:10.1111/eva.12408.
  1907. Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. 630 pp., In Press.
  1908. IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 630
  1909. Graham, N.A.J., J.E. Cinner, A.V. Norstrom and M. Nystrom, 2014: Coral reefs as novel ecosystems: embracing new futures. Curr. Opin. Environ. Sustain., 7, 9–14, doi:10.1016/j.cosust.2013.11.023.
  1910. Rinkevich, B., 2015a: Climate Change and Active Reef Restoration—Ways of Constructing the “Reefs of Tomorrow”. J. Mar. Sci. Eng., 3(1), 111–127, doi:10.3390/jmse3010111.
  1911. Harborne, A.R. et al., 2017: Multiple Stressors and the Functioning of Coral Reefs. Annu. Rev. Mar. Sci., Vol 8, 9(1), 445–468, doi:10.1146/annurev-marine-010816-060551.
  1912. Rinkevich, B., 1995: Restoration Strategies for Coral Reefs Damaged by Recreational Activities: The Use of Sexual and Asexual Recruits. Restor. Ecol., 3(4), 241–251, doi:10.1111/j.1526-100X.1995.tb00091.x.
  1913. Rinkevich, B., 2000: Steps towards the evaluation of coral reef restoration by using small branch fragments. Mar. Biol., 136(5), 807–812, doi:10.1007/s002270000293.
  1914. Barton, J.A., B.L. Willis and K.S. Hutson, 2017: Coral propagation: a review of techniques for ornamental trade and reef restoration. Rev. Aquacult., 9(3), 238–256, doi:10.1111/raq.12135.
  1915. Hoegh-Guldberg, O. et al., 2008: Assisted Colonization and Rapid Climate Change. Science, 321(5887), 345.
  1916. Chauvenet, A.L.M. et al., 2013: Maximizing the success of assisted colonizations. Animal Conserv., 16(2), 161–169, doi:10.1111/j.1469-1795.2012.00589.x.
  1917. van Oppen, M.J.H., J.K. Oliver, H.M. Putnam and R.D. Gates, 2015: Building coral reef resilience through assisted evolution. PNAS, 112(8), 2307.
  1918. Rinkevich, B., 2019: Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. Global Change Biol., 25(4), 1198–1206, doi:10.1111/gcb.14576.
  1919. McIlroy, S.E. and M.A. Coffroth, 2017: Coral ontogeny affects early symbiont acquisition in laboratory-reared recruits. Coral Reefs, 36(3), 927–932, doi:10.1007/s00338-017-1584-7.
  1920. Bourne, D.G., K.M. Morrow and N.S. Webster, 2016: Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems. Annu. Rev. Microbiol., 70(1), 317–340, doi:10.1146/annurev-micro-102215-095440.
  1921. Sweet, M.J. and M.T. Bulling, 2017: On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Front. Mar. Sci., 4(9), doi:10.3389/fmars.2017.00009.
  1922. van Oppen, M.J.H. et al., 2017b: Shifting paradigms in restoration of the world’s coral reefs. Global Change Biol., 23(9), 3437–3448, doi:10.1111/gcb.13647.
  1923. Rinkevich, B., 2006: The coral gardening concept and the use of underwater nurseries: lessons learned from silvics and silviculture. In: Coral Reef Restoration Handbook [Precht, W.F. (ed.)]. CRS/Taylor; Francis Boca Raton, pp. 291–302. ISBN: 9780429117886.
  1924. Rinkevich, B., 2014: Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? Curr. Opin. Environ. Sustain., 7(Supplement C), 28–36, doi:10.1016/j.cosust.2013.11.018.
  1925. Riegl, B.M. et al., 2011: Present Limits to Heat-Adaptability in Corals and Population-Level Responses to Climate Extremes. PLoS One, 6(9), e24802, doi:10.1371/journal.pone.0024802.
  1926. Coles, S.L. and B.M. Riegl, 2013: Thermal tolerances of reef corals in the Gulf: A review of the potential for increasing coral survival and adaptation to climate change through assisted translocation. Mar. Pollut. Bull., 72(2), 323–332, doi:10.1016/j.marpolbul.2012.09.006.
  1927. Ferrario, F. et al., 2014: The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun., 5, 3794, doi:10.1038/ncomms4794.
  1928. Shaish, L., G. Levy, G. Katzir and B. Rinkevich, 2010a: Coral Reef Restoration (Bolinao, Philippines) in the Face of Frequent Natural Catastrophes. Restor. Ecol., 18(3), 285–299, doi:10.1111/j.1526-100X.2009.00647.x.
  1929. Schopmeyer, S., A. et al., 2012: In Situ Coral Nurseries Serve as Genetic Repositories for Coral Reef Restoration after an Extreme Cold‐Water Event. Restor. Ecol., 20(6), 696–703, doi:10.1111/j.1526-100X.2011.00836.x.
  1930. Hernández-Delgado, E.A. et al., 2014: Community-Based Coral Reef Rehabilitation in a Changing Climate: Lessons Learned from Hurricanes, Extreme Rainfall, and Changing Land Use Impacts. Open Ecol. J., 04(14), 918–944, doi:10.4236/oje.2014.414077.
  1931. Rinkevich, B., 2015a: Climate Change and Active Reef Restoration—Ways of Constructing the “Reefs of Tomorrow”. J. Mar. Sci. Eng., 3(1), 111–127, doi:10.3390/jmse3010111.
  1932. West, J.M. et al., 2017: Climate-Smart Design for Ecosystem Management: A Test Application for Coral Reefs. Environ. Manage., 59(1), 102–117, doi:10.1007/s00267-016-0774-3.
  1933. Vergés, A. et al., 2019: Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol., 33(6), 1000-1013. doi:10.1111/1365-2435.13310.
  1934. Rinkevich, B., 2014: Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? Curr. Opin. Environ. Sustain., 7(Supplement C), 28–36, doi:10.1016/j.cosust.2013.11.018.
  1935. Lirman, D. and S. Schopmeyer, 2016: Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. Peerj, 4, e2597, doi:10.7717/peerj.2597.
  1936. Frias-Torres, S. and C. van de Geer, 2015: Testing animal-assisted cleaning prior to transplantation in coral reef restoration. Peerj, 3, e1287, doi:10.7717/peerj.1287.
  1937. Lirman, D. and S. Schopmeyer, 2016: Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. Peerj, 4, e2597, doi:10.7717/peerj.2597.
  1938. Montoya Maya, P.H., K.P. Smit, A.J. Burt and S. Frias-Torres, 2016: Large-scale coral reef restoration could assist natural recovery in Seychelles, Indian Ocean. Nat. Conserv., 16(3), 1–17, doi:10.3897/natureconservation.16.8604.
  1939. Jacob, C., A. Buffard, S. Pioch and S. Thorin, 2017: Marine ecosystem restoration and biodiversity offset. Ecol. Eng., doi:10.1016/j.ecoleng.2017.09.007.
  1940. Rachmilovitz, E.N. and B. Rinkevich, 2017: Tiling the reef – Exploring the first step of an ecological engineering tool that may promote phase-shift reversals in coral reefs. Ecol. Eng., 105(Supplement C), 150–161.
  1941. Rinkevich, B., 2015b: Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration. J. Environ. Manage., 162(Supplement C), 199–205.
  1942. Barton, J.A., B.L. Willis and K.S. Hutson, 2017: Coral propagation: a review of techniques for ornamental trade and reef restoration. Rev. Aquacult., 9(3), 238–256, doi:10.1111/raq.12135.
  1943. Flores, R. . et al., 2017: Application of Transplantation Technology to Improve Coral Reef Resources for Sustainable Fisheries and Underwater Tourism. Int. J. Environ. Sci. Dev., 8(1), 44.
  1944. Hein, M.Y., B.L. Willis, R. Beeden and A. Birtles, 2017: The need for broader ecological and socioeconomic tools to evaluate the effectiveness of coral restoration programs. Restor. Ecol., 25(6), 873–883, doi:10.1111/rec.12580.
  1945. Rinkevich, B., 2014: Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? Curr. Opin. Environ. Sustain., 7(Supplement C), 28–36, doi:10.1016/j.cosust.2013.11.018.
  1946. Shaish, L., G. Levy, G. Katzir and B. Rinkevich, 2010a: Coral Reef Restoration (Bolinao, Philippines) in the Face of Frequent Natural Catastrophes. Restor. Ecol., 18(3), 285–299, doi:10.1111/j.1526-100X.2009.00647.x.
  1947. Schopmeyer, S., A. et al., 2012: In Situ Coral Nurseries Serve as Genetic Repositories for Coral Reef Restoration after an Extreme Cold‐Water Event. Restor. Ecol., 20(6), 696–703, doi:10.1111/j.1526-100X.2011.00836.x.
  1948. Coles, S.L. and B.M. Riegl, 2013: Thermal tolerances of reef corals in the Gulf: A review of the potential for increasing coral survival and adaptation to climate change through assisted translocation. Mar. Pollut. Bull., 72(2), 323–332, doi:10.1016/j.marpolbul.2012.09.006.
  1949. Hernández-Delgado, E.A. et al., 2014: Community-Based Coral Reef Rehabilitation in a Changing Climate: Lessons Learned from Hurricanes, Extreme Rainfall, and Changing Land Use Impacts. Open Ecol. J., 04(14), 918–944, doi:10.4236/oje.2014.414077.
  1950. Rinkevich, B., 2015a: Climate Change and Active Reef Restoration—Ways of Constructing the “Reefs of Tomorrow”. J. Mar. Sci. Eng., 3(1), 111–127, doi:10.3390/jmse3010111.
  1951. Wilson, A.M.W. and C. Forsyth, 2018: Restoring near-shore marine ecosystems to enhance climate security for island ocean states: Aligning international processes and local practices. Mar. Policy, 93, 284-294 doi:10.1016/j.marpol.2018.01.018.
  1952. Perry, C.T. et al., 2018: Loss of coral reef growth capacity to track future increases in sea level. Nature, 558(7710), 396–400, doi:10.1038/s41586-018-0194-z.
  1953. Rinkevich, B., 2008: Management of coral reefs: We have gone wrong when neglecting active reef restoration. Mar. Pollut. Bull., 56(11), 1821–1824, doi:10.1016/j.marpolbul.2008.08.014.
  1954. Ban, S.S., N.A.J. Graham and S.R. Connolly, 2014: Evidence for multiple stressor interactions and effects on coral reefs. Global Change Biol., 20(3), 681–697, doi:10.1111/gcb.12453.
  1955. Schönberg, C.H.L. et al., 2017: Bioerosion: the other ocean acidification problem. ICES J. Mar. Sci., 74(4), 895–925, doi:10.1093/icesjms/fsw254.
  1956. Bayraktarov, E. et al., 2016: The cost and feasibility of marine coastal restoration. Ecol. Appl., 26(4), 1055–1074, doi:10.1890/15-1077.
  1957. Flores, R. . et al., 2017: Application of Transplantation Technology to Improve Coral Reef Resources for Sustainable Fisheries and Underwater Tourism. Int. J. Environ. Sci. Dev., 8(1), 44.
  1958. Linden, B. and B. Rinkevich, 2017: Elaborating an eco-engineering approach for stock enhanced sexually derived coral colonies. J. Exp. Mar. Biol. Ecol., 486(Supplement C), 314–321.
  1959. Hayden, H.L. and E.F. Granek, 2015: Coastal sediment elevation change following anthropogenic mangrove clearing. Estuar. Coast. Shelf Sci., 165, 70–74, doi:10.1016/j.ecss.2015.09.004.
  1960. Huxham, M. et al., 2015: Applying Climate Compatible Development and economic valuation to coastal management: A case study of Kenya’s mangrove forests. J. Environ. Manage., 157, 168–181, doi:10.1016/j.jenvman.2015.04.018.
  1961. Ahmed, N. and M. Glaser, 2016a: Can “Integrated Multi-Trophic Aquaculture (IMTA)” adapt to climate change in coastal Bangladesh? Ocean Coast. Manage., 132, 120–131, doi:10.1016/j.ocecoaman.2016.08.017.
  1962. Sierra-Correa, P.C. and J.R. Cantera Kintz, 2015: Ecosystem-based adaptation for improving coastal planning for sea level rise: A systematic review for mangrove coasts. Mar. Policy, 51, 385–393, doi:10.1016/j.marpol.2014.09.013.
  1963. Romañach, S.S. et al., 2018: Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manage., 154, 72–82.
  1964. Nanlohy, H., A.N. Bambang, Ambariyanto and S. Hutabarat, 2015: Coastal Communities Knowledge Level on Climate Change as a Consideration in Mangrove Ecosystems Management in the Kotania Bay, West Seram Regency. Procedia Environ. Sci., 23, 157–163, doi:10.1016/j.proenv.2015.01.024.
  1965. Nguyen, T.P., T.T. Luom and K.E. Parnell, 2017: Mangrove allocation for coastal protection and livelihood improvement in Kien Giang province, Vietnam: Constraints and recommendations. Land Use Policy, 63, 401–407, doi:10.1016/j.landusepol.2017.01.048.
  1966. Triyanti, A., M. Bavinck, J. Gupta and M.A. Marfai, 2017: Social capital, interactive governance and coastal protection: The effectiveness of mangrove ecosystem-based strategies in promoting inclusive development in Demak, Indonesia. Ocean Coast. Manage., 150, 3–11, doi:10.1016/j.ocecoaman.2017.10.017.
  1967. Hayden, H.L. and E.F. Granek, 2015: Coastal sediment elevation change following anthropogenic mangrove clearing. Estuar. Coast. Shelf Sci., 165, 70–74, doi:10.1016/j.ecss.2015.09.004.
  1968. Nanlohy, H., A.N. Bambang, Ambariyanto and S. Hutabarat, 2015: Coastal Communities Knowledge Level on Climate Change as a Consideration in Mangrove Ecosystems Management in the Kotania Bay, West Seram Regency. Procedia Environ. Sci., 23, 157–163, doi:10.1016/j.proenv.2015.01.024.
  1969. Sierra-Correa, P.C. and J.R. Cantera Kintz, 2015: Ecosystem-based adaptation for improving coastal planning for sea level rise: A systematic review for mangrove coasts. Mar. Policy, 51, 385–393, doi:10.1016/j.marpol.2014.09.013.
  1970. Miller, D.D. et al., 2017: Adaptation strategies to climate change in marine systems. Global Change Biol., 24, e1–e14.
  1971. Alongi, D.M., 2015: The impact of climate change on mangrove forests. Curr. Clim. Change Rep., 1(1), 30–39.
  1972. Nanlohy, H., A.N. Bambang, Ambariyanto and S. Hutabarat, 2015: Coastal Communities Knowledge Level on Climate Change as a Consideration in Mangrove Ecosystems Management in the Kotania Bay, West Seram Regency. Procedia Environ. Sci., 23, 157–163, doi:10.1016/j.proenv.2015.01.024.
  1973. Palacios, M.L. and J.R. Cantera, 2017: Mangrove timber use as an ecosystem service in the Colombian Pacific. Hydrobiologia, 803(1), 345–358.
  1974. Nanlohy, H., A.N. Bambang, Ambariyanto and S. Hutabarat, 2015: Coastal Communities Knowledge Level on Climate Change as a Consideration in Mangrove Ecosystems Management in the Kotania Bay, West Seram Regency. Procedia Environ. Sci., 23, 157–163, doi:10.1016/j.proenv.2015.01.024.
  1975. Nguyen, T.P., T.T. Luom and K.E. Parnell, 2017: Mangrove allocation for coastal protection and livelihood improvement in Kien Giang province, Vietnam: Constraints and recommendations. Land Use Policy, 63, 401–407, doi:10.1016/j.landusepol.2017.01.048.
  1976. Sierra-Correa, P.C. and J.R. Cantera Kintz, 2015: Ecosystem-based adaptation for improving coastal planning for sea level rise: A systematic review for mangrove coasts. Mar. Policy, 51, 385–393, doi:10.1016/j.marpol.2014.09.013.
  1977. Ward, R.D., D.A. Friess, R.H. Day and R.A. MacKenzie, 2016: Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Health Sustain., 2(4), e01211, doi:10.1002/ehs2.1211.
  1978. Romañach, S.S. et al., 2018: Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manage., 154, 72–82.
  1979. Nguyen, T.P., T.T. Luom and K.E. Parnell, 2017: Mangrove allocation for coastal protection and livelihood improvement in Kien Giang province, Vietnam: Constraints and recommendations. Land Use Policy, 63, 401–407, doi:10.1016/j.landusepol.2017.01.048.
  1980. Romañach, S.S. et al., 2018: Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manage., 154, 72–82.
  1981. Sierra-Correa, P.C. and J.R. Cantera Kintz, 2015: Ecosystem-based adaptation for improving coastal planning for sea level rise: A systematic review for mangrove coasts. Mar. Policy, 51, 385–393, doi:10.1016/j.marpol.2014.09.013.
  1982. Nguyen, T.P., T.T. Luom and K.E. Parnell, 2017: Mangrove allocation for coastal protection and livelihood improvement in Kien Giang province, Vietnam: Constraints and recommendations. Land Use Policy, 63, 401–407, doi:10.1016/j.landusepol.2017.01.048.
  1983. Gilman, E.L., J. Ellison, N.C. Duke and C. Field, 2008: Threats to mangroves from climate change and adaptation options: a review. Aquat. Bot., 89(2), 237–250.
  1984. Ataur Rahman, M. and S. Rahman, 2015: Natural and traditional defense mechanisms to reduce climate risks in coastal zones of Bangladesh. Weather and Climate Extremes, 7, 84–95, doi:10.1016/j.wace.2014.12.004.
  1985. Sierra-Correa, P.C. and J.R. Cantera Kintz, 2015: Ecosystem-based adaptation for improving coastal planning for sea level rise: A systematic review for mangrove coasts. Mar. Policy, 51, 385–393, doi:10.1016/j.marpol.2014.09.013.
  1986. Ahmed, N. and M. Glaser, 2016a: Can “Integrated Multi-Trophic Aquaculture (IMTA)” adapt to climate change in coastal Bangladesh? Ocean Coast. Manage., 132, 120–131, doi:10.1016/j.ocecoaman.2016.08.017.
  1987. Nguyen, T.P., T.T. Luom and K.E. Parnell, 2017: Mangrove allocation for coastal protection and livelihood improvement in Kien Giang province, Vietnam: Constraints and recommendations. Land Use Policy, 63, 401–407, doi:10.1016/j.landusepol.2017.01.048.
  1988. Romañach, S.S. et al., 2018: Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manage., 154, 72–82.
  1989. Miloshis, M. and C.A. Fairfield, 2015: Coastal wetland management: A rating system for potential engineering interventions. Ecol. Eng., 75, 195–198.
  1990. Schaeffer-Novelli, Y. et al., 2016: Climate changes in mangrove forests and salt marshes. Brazilian J. Oceanogr., 64((spe2)), 37–52.
  1991. Watson, E.B. et al., 2017a: Anthropocene Survival of Southern New England’s Salt Marshes. Estuar. Coast., 40(3), 617–625, doi:10.1007/s12237-016-0166-1.
  1992. Schuerch, M. et al., 2018: Future response of global coastal wetlands to sea level rise. Nature, 561(7722), 231–234, doi:10.1038/s41586-018-0476-5.
  1993. Watson, E.B. et al., 2017a: Anthropocene Survival of Southern New England’s Salt Marshes. Estuar. Coast., 40(3), 617–625, doi:10.1007/s12237-016-0166-1.
  1994. Ondiviela, B. et al., 2014: The role of seagrasses in coastal protection in a changing climate. Coast. Eng., 87(Supplement C), 158–168, doi:10.1016/j.coastaleng.2013.11.005.
  1995. Miloshis, M. and C.A. Fairfield, 2015: Coastal wetland management: A rating system for potential engineering interventions. Ecol. Eng., 75, 195–198.
  1996. Schaeffer-Novelli, Y. et al., 2016: Climate changes in mangrove forests and salt marshes. Brazilian J. Oceanogr., 64((spe2)), 37–52.
  1997. Wigand, C. et al., 2017: A climate change adaptation strategy for management of coastal marsh systems. Estuar. Coast., 40(3), 682–693.
  1998. Wong, P.P., et al. 2014a: Coastal systems and low-lying areas. In: Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Field, C.B., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp. 361-409. ISBN: 978-1-107-05807-1
  1999. Ondiviela, B. et al., 2014: The role of seagrasses in coastal protection in a changing climate. Coast. Eng., 87(Supplement C), 158–168, doi:10.1016/j.coastaleng.2013.11.005.
  2000. Onaka, S., H. Hashimoto, S.R. Nashreen Banu Soogun and A. Jheengut, 2015: Chapter 26 – Coastal Erosion and Demonstration Project as Coastal Adaptation Measures in Mauritius. In: Handbook of Coastal Disaster Mitigation for Engineers and Planners. [Esteban, M., H. Takagi and T. Shibayama (eds.)]. Butterworth-Heinemann, Boston, pp. 561–577. ISBN: 978-0-12-801060-0.
  2001. Ranasinghe, R., 2016: Assessing climate change impacts on open sandy coasts: A review. Earth-Sci. Rev., 160, 320–332, doi:10.1016/j.earscirev.2016.07.011.
  2002. MacDonald, M.A. et al., 2017: Benefits of coastal managed realignment for society: Evidence from ecosystem service assessments in two UK regions. Estuar. Coast. Shelf Sci., doi:10.1016/j.ecss.2017.09.007.
  2003. Pranzini, E., 2017: Shore protection in Italy: From hard to soft engineering … and back. Ocean Coast. Manage., 156, 43–57. doi:10.1016/j.ocecoaman.2017.04.018.
  2004. Salgado, K. and M.L. Martinez, 2017: Is ecosystem-based coastal defense a realistic alternative? Exploring the evidence. J. Coast. Conserv., 21(6), 837–848, doi:10.1007/s11852-017-0545-1.
  2005. Vikolainen, V., J. Flikweert, H. Bressers and K. Lulofs, 2017: Governance context for coastal innovations in England: The case of Sandscaping in North Norfolk. Ocean Coast. Manage., 145, 82–93, doi:10.1016/j.ocecoaman.2017.05.012.
  2006. Gracia, A., N. Rangel-Buitrago, J.A. Oakley and A.T. Williams, 2018: Use of ecosystems in coastal erosion management. Ocean Coast. Manage., 156, 277–289, doi:10.1016/j.ocecoaman.2017.07.009.
  2007. Sutton-Grier, A.E., K. Wowk and H. Bamford, 2015: Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy, 51, 137–148, doi:10.1016/j.envsci.2015.04.006.
  2008. Pranzini, E., 2017: Shore protection in Italy: From hard to soft engineering … and back. Ocean Coast. Manage., 156, 43–57. doi:10.1016/j.ocecoaman.2017.04.018.
  2009. Sutton-Grier, A.E., K. Wowk and H. Bamford, 2015: Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy, 51, 137–148, doi:10.1016/j.envsci.2015.04.006.
  2010. Vikolainen, V., J. Flikweert, H. Bressers and K. Lulofs, 2017: Governance context for coastal innovations in England: The case of Sandscaping in North Norfolk. Ocean Coast. Manage., 145, 82–93, doi:10.1016/j.ocecoaman.2017.05.012.
  2011. Sánchez-Arcilla, A. et al., 2016: Managing coastal environments under climate change: Pathways to adaptation. Sci. Total Environ., 572, 1336–1352, doi:10.1016/j.scitotenv.2016.01.124.
  2012. Goreau, T.J.F. and P. Prong, 2017: Biorock Electric Reefs Grow Back Severely Eroded Beaches in Months. J. Mar. Sci. Eng., 5(4), 48.
  2013. Vikolainen, V., J. Flikweert, H. Bressers and K. Lulofs, 2017: Governance context for coastal innovations in England: The case of Sandscaping in North Norfolk. Ocean Coast. Manage., 145, 82–93, doi:10.1016/j.ocecoaman.2017.05.012.
  2014. Carro, I., Seijo, L., Nagy, G.J., Lagos, X. and Gutiérrez, O., 2018: Building capacity on ecosystem-based adaption strategy to cope with extreme events and sea level rise on the Uruguayan coast. Int. J. Clim. Change Strategies Manage., 10(4), 504–522, doi:10.1108/IJCCSM-07-2017-0149.
  2015. Gracia, A., N. Rangel-Buitrago, J.A. Oakley and A.T. Williams, 2018: Use of ecosystems in coastal erosion management. Ocean Coast. Manage., 156, 277–289, doi:10.1016/j.ocecoaman.2017.07.009.
  2016. Onaka, S., H. Hashimoto, S.R. Nashreen Banu Soogun and A. Jheengut, 2015: Chapter 26 – Coastal Erosion and Demonstration Project as Coastal Adaptation Measures in Mauritius. In: Handbook of Coastal Disaster Mitigation for Engineers and Planners. [Esteban, M., H. Takagi and T. Shibayama (eds.)]. Butterworth-Heinemann, Boston, pp. 561–577. ISBN: 978-0-12-801060-0.
  2017. MacDonald, M.A. et al., 2017: Benefits of coastal managed realignment for society: Evidence from ecosystem service assessments in two UK regions. Estuar. Coast. Shelf Sci., doi:10.1016/j.ecss.2017.09.007.
  2018. Nehren, U. et al., 2017: Sand Dunes and Mangroves for Disaster Risk Reduction and Climate Change Adaptation in the Coastal Zone of Quang Nam Province, Vietnam. In: Land Use and Climate Change Interactions in Central Vietnam: LUCCi [Nauditt, A. and L. Ribbe (eds.)]. Springer Singapore, Singapore, pp. 201–222. ISBN: 978-981-10-2624-9.
  2019. Nehren, U. et al., 2017: Sand Dunes and Mangroves for Disaster Risk Reduction and Climate Change Adaptation in the Coastal Zone of Quang Nam Province, Vietnam. In: Land Use and Climate Change Interactions in Central Vietnam: LUCCi [Nauditt, A. and L. Ribbe (eds.)]. Springer Singapore, Singapore, pp. 201–222. ISBN: 978-981-10-2624-9.
  2020. Sutton-Grier, A.E., K. Wowk and H. Bamford, 2015: Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy, 51, 137–148, doi:10.1016/j.envsci.2015.04.006.
  2021. Magnan, A.K. and V.K.E. Duvat, 2018: Unavoidable solutions for coastal adaptation in Reunion Island (Indian Ocean). Environ. Sci. Policy, 89, 393–400, doi:10.1016/j.envsci.2018.09.002.
  2022. Onaka, S., H. Hashimoto, S.R. Nashreen Banu Soogun and A. Jheengut, 2015: Chapter 26 – Coastal Erosion and Demonstration Project as Coastal Adaptation Measures in Mauritius. In: Handbook of Coastal Disaster Mitigation for Engineers and Planners. [Esteban, M., H. Takagi and T. Shibayama (eds.)]. Butterworth-Heinemann, Boston, pp. 561–577. ISBN: 978-0-12-801060-0.
  2023. Martínez, C. et al., 2017: Coastal erosion in central Chile: A new hazard? Ocean Coast. Manage.,156, 141-155. doi:10.1016/j.ocecoaman.2017.07.011.
  2024. Shumack, S. and P. Hesse, 2017: Assessing the geomorphic disturbance from fires on coastal dunes near Esperance, Western Australia: Implications for dune de-stabilisation. Aeolian Research, 31, 29–49. doi:10.1016/j.aeolia.2017.08.005.
  2025. Pranzini, E., 2017: Shore protection in Italy: From hard to soft engineering … and back. Ocean Coast. Manage., 156, 43–57. doi:10.1016/j.ocecoaman.2017.04.018.
  2026. Perkins, M.J. et al., 2015: Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures? Estuar. Coast. Shelf Sci., 167, 504–515, doi:10.1016/j.ecss.2015.10.033.
  2027. Perry, J., 2015: Climate change adaptation in the world’s best places: A wicked problem in need of immediate attention. Landscape Urban Plan., 133, 1–11, doi:10.1016/j.landurbplan.2014.08.013.
  2028. Moosavi, S., 2017: Ecological Coastal Protection: Pathways to Living Shorelines. Procedia Eng., 196, 930–938, doi:10.1016/j.proeng.2017.08.027.
  2029. Scarano, F.R., 2017: Ecosystem-based adaptation to climate change: concept, scalability and a role for conservation science. Perspect. Ecol. Conserv., 15(2), 65–73, doi:10.1016/j.pecon.2017.05.003.
  2030. Perkins, M.J. et al., 2015: Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures? Estuar. Coast. Shelf Sci., 167, 504–515, doi:10.1016/j.ecss.2015.10.033.
  2031. Beetham, E., P.S. Kench and S. Popinet, 2017: Future Reef Growth Can Mitigate Physical Impacts of Sea level Rise on Atoll Islands. Earth’s Future, 5(10), 1002–1014, doi:10.1002/2017ef000589.
  2032. Elliff, C.I. and I.R. Silva, 2017: Coral reefs as the first line of defense: Shoreline protection in face of climate change. Mar. Environ. Res., 127, 148–154, doi:10.1016/j.marenvres.2017.03.007.
  2033. Beck, M.W. et al., 2018: The global flood protection savings provided by coral reefs. Nat. Commun., 9(1), 2186, doi:10.1038/s41467-018-04568-z.
  2034. Comte, A. and L.H. Pendleton, 2018: Management strategies for coral reefs and people under Global Environ. Change: 25 years of scientific research. J. Environ. Manage., 209, 462–474, doi:10.1016/j.jenvman.2017.12.051.
  2035. Ondiviela, B. et al., 2014: The role of seagrasses in coastal protection in a changing climate. Coast. Eng., 87(Supplement C), 158–168, doi:10.1016/j.coastaleng.2013.11.005.
  2036. Miloshis, M. and C.A. Fairfield, 2015: Coastal wetland management: A rating system for potential engineering interventions. Ecol. Eng., 75, 195–198.
  2037. Schaeffer-Novelli, Y. et al., 2016: Climate changes in mangrove forests and salt marshes. Brazilian J. Oceanogr., 64((spe2)), 37–52.
  2038. Wigand, C. et al., 2017: A climate change adaptation strategy for management of coastal marsh systems. Estuar. Coast., 40(3), 682–693.
  2039. Watkiss, P., A. Hunt and M. Savaga, 2014: Early Value-for-Money Adaptation: Delivering VfM Adaptation using Iterative Frameworks and LowRegret Options, Global Climate Adaptation Partnership, UK Department for International Development, London, 53 pp. DOI:http://dx.doi.org/10.12774/eod_cr.july2014.watkisspetal
  2040. Narayan, S. et al., 2016: The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences. PLoS One, 11(5), e0154735, doi:10.1371/journal.pone.0154735.
  2041. Ataur Rahman, M. and S. Rahman, 2015: Natural and traditional defense mechanisms to reduce climate risks in coastal zones of Bangladesh. Weather and Climate Extremes, 7, 84–95, doi:10.1016/j.wace.2014.12.004.
  2042. Perkins, M.J. et al., 2015: Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures? Estuar. Coast. Shelf Sci., 167, 504–515, doi:10.1016/j.ecss.2015.10.033.
  2043. Sutton-Grier, A.E., K. Wowk and H. Bamford, 2015: Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy, 51, 137–148, doi:10.1016/j.envsci.2015.04.006.
  2044. Sánchez-Arcilla, A. et al., 2016: Managing coastal environments under climate change: Pathways to adaptation. Sci. Total Environ., 572, 1336–1352, doi:10.1016/j.scitotenv.2016.01.124.
  2045. van der Nat, A., P. Vellinga, R. Leemans and E. van Slobbe, 2016: Ranking coastal flood protection designs from engineered to nature-based. Ecol. Eng., 87, 80–90, doi:10.1016/j.ecoleng.2015.11.007.
  2046. Kochnower, D., S.M.W. Reddy and R.E. Flick, 2015: Factors influencing local decisions to use habitats to protect coastal communities from hazards. Ocean Coast. Manage., 116, 277–290, doi:10.1016/j.ocecoaman.2015.07.021.
  2047. MacDonald, M.A. et al., 2017: Benefits of coastal managed realignment for society: Evidence from ecosystem service assessments in two UK regions. Estuar. Coast. Shelf Sci., doi:10.1016/j.ecss.2017.09.007.
  2048. Sutton-Grier, A.E., K. Wowk and H. Bamford, 2015: Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy, 51, 137–148, doi:10.1016/j.envsci.2015.04.006.
  2049. Perkins, M.J. et al., 2015: Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures? Estuar. Coast. Shelf Sci., 167, 504–515, doi:10.1016/j.ecss.2015.10.033.
  2050. Narayan, S. et al., 2016: The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences. PLoS One, 11(5), e0154735, doi:10.1371/journal.pone.0154735.
  2051. Roberts, C.M. et al., 2017: Marine reserves can mitigate and promote adaptation to climate change. PNAS, 114(24), 6167–6175.
  2052. Ataur Rahman, M. and S. Rahman, 2015: Natural and traditional defense mechanisms to reduce climate risks in coastal zones of Bangladesh. Weather and Climate Extremes, 7, 84–95, doi:10.1016/j.wace.2014.12.004.
  2053. Abedin, M.A., U. Habiba and R. Shaw, 2014: Community Perception and Adaptation to Safe Drinking Water Scarcity: Salinity, Arsenic, and Drought Risks in Coastal Bangladesh. Int. J. Disast. Risk Sci., 5(2), 110–124, doi:10.1007/s13753-014-0021-6.
  2054. Betzold, C. and I. Mohamed, 2017: Seawalls as a response to coastal erosion and flooding: a case study from Grande Comore, Comoros (West Indian Ocean). Reg. Environ. Change, 17(4), 1077–1087, doi:10.1007/s10113-016-1044-x.
  2055. Linkon, S.B., 2018: Autonomy in Building Process to Adapt the Climate Change Impacts: A Study of the Coastal Settlements in Bangladesh. International Journal of Environment and Sustainability [IJES], 6(2), 19-39 ISSN 1927-9566
  2056. Perkins, M.J. et al., 2015: Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures? Estuar. Coast. Shelf Sci., 167, 504–515, doi:10.1016/j.ecss.2015.10.033.
  2057. Moosavi, S., 2017: Ecological Coastal Protection: Pathways to Living Shorelines. Procedia Eng., 196, 930–938, doi:10.1016/j.proeng.2017.08.027.
  2058. Cartapanis, O., E.D. Galbraith, D. Bianchi and S. L. Jaccard, 2018: Carbon burial in deep sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. Clim. Past, 14(11), 1819–1850, doi:10.5194/cp-14-1819-2018.
  2059. Nagy, G.J., L. Seijo, J.E. Verocai and M. Bidegain, 2014: Stakeholders’ climate perception and adaptation in coastal Uruguay. International Journal of Climate Change Strategies and Management, 6(1), 63–84, doi:doi:10.1108/IJCCSM-03-2013-0035.
  2060. Broto, V.C., E. Boyd and J. Ensor, 2015: Participatory urban planning for climate change adaptation in coastal cities: lessons from a pilot experience in Maputo, Mozambique. Curr. Opin. Environ. Sustain., 13, 11–18, doi:10.1016/j.cosust.2014.12.005.
  2061. Marfai, M.A., A. Sekaranom and P. Ward, 2015: Community responses and adaptation strategies toward flood hazard in Jakarta, Indonesia. Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 75, 1127–1144.
  2062. Kabisch, N., H. Korn, J. Stadler and A. Bonn, 2017: Nature‐based Solutions to Climate Change Adaptation in Urban Areas. Linkages between Science, Policy and Practice. Theory and Practice of Urban Sustainability Transitions, Springer Open, 337 pp.
  2063. Zikra, M., S. Suntoyo and L. Lukijanto, 2015: Climate Change Impacts on Indonesian Coastal Areas. Procedia Earth Planet. Sci., 14, 57–63.
  2064. Peng, L., M.G. Stewart and R.E. Melchers, 2017: Corrosion and capacity prediction of marine steel infrastructure under a changing environment. Struct. Infrastruct. E., 13(8), 988–1001.
  2065. DasGupta, R. and R. Shaw, 2015: An indicator based approach to assess coastal communities’ resilience against climate related disasters in Indian Sundarbans. J. Coast. Conserv., 19(1), 85–101, doi:10.1007/s11852-014-0369-1.
  2066. Betzold, C. and I. Mohamed, 2017: Seawalls as a response to coastal erosion and flooding: a case study from Grande Comore, Comoros (West Indian Ocean). Reg. Environ. Change, 17(4), 1077–1087, doi:10.1007/s10113-016-1044-x.
  2067. Hagedoorn, L.C. et al., 2019: Community-based adaptation to climate change in small island developing states: an analysis of the role of social capital. Clim. Dev., 1–12, doi:10.1080/17565529.2018.1562869.
  2068. Dhar, T.K. and L. Khirfan, 2016: Community-based adaptation through ecological design: lessons from Negril, Jamaica. J. Urban Des., 21(2), 234–255, doi:10.1080/13574809.2015.1133224.
  2069. Hobday, A.J. et al., 2016a: Planning adaptation to climate change in fast-warming marine regions with seafood-dependent coastal communities. Rev. Fish Biol. Fisher., 26(2), 249–264, doi:10.1007/s11160-016-9419-0.
  2070. Jurjonas, M. and E. Seekamp, 2018: Rural coastal community resilience: Assessing a framework in eastern North Carolina. Ocean Coast. Manage., 162, 137–150, doi:10.1016/j.ocecoaman.2017.10.010.
  2071. Ataur Rahman, M. and S. Rahman, 2015: Natural and traditional defense mechanisms to reduce climate risks in coastal zones of Bangladesh. Weather and Climate Extremes, 7, 84–95, doi:10.1016/j.wace.2014.12.004.
  2072. Petzold, J. and B.M.W. Ratter, 2015: Climate change adaptation under a social capital approach – An analytical framework for small islands. Ocean Coast. Manage., 112, 36–43, doi:10.1016/j.ocecoaman.2015.05.003.
  2073. Dhar, T.K. and L. Khirfan, 2016: Community-based adaptation through ecological design: lessons from Negril, Jamaica. J. Urban Des., 21(2), 234–255, doi:10.1080/13574809.2015.1133224.
  2074. Gourlie, D. et al., 2018: Performing “A New Song”: Suggested Considerations for Drafting Effective Coastal Fisheries Legislation Under Climate Change. Mar. Policy, 88, 342–349, doi:10.1016/j.marpol.2017.06.012.
  2075. Nursey-Bray, M., P. Fidelman and M. Owusu, 2018: Does co-management facilitate adaptive capacity in times of environmental change? Insights from fisheries in Australia. Mar. Policy, 96, 72–80, doi:10.1016/j.marpol.2018.07.016.
  2076. Pinsky, M.L. et al., 2018: Preparing ocean governance for species on the move. Science, 360(6394), 1189.
  2077. Asch, R.G., W.W.L. Cheung and G. Reygondeau, 2018: Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change. Mar. Policy, 88, 285–294, doi:10.1016/j.marpol.2017.08.015.
  2078. Cheung, W.W.L., M.C. Jones, G. Reygondeau and T.L. Frölicher, 2018b: Opportunities for climate-risk reduction through effective fisheries management. Global Change Biol., 2108, 1–15, doi:doi:10.1111/gcb.14390.
  2079. Finkbeiner, E.M. et al., 2018: Exploring trade-offs in climate change response in the context of Pacific Island fisheries. Mar. Policy, 88, 359–364, doi:10.1016/j.marpol.2017.09.032.
  2080. Cvitanovic, C. et al., 2016: Linking adaptation science to action to build food secure Pacific Island communities. Clim. Risk Manage., 11, 53–62, doi:10.1016/j.crm.2016.01.003.
  2081. Faraco, L.F.D. et al., 2016: Vulnerability Among Fishers in Southern Brazil and its Relation to Marine Protected Areas in a Scenario of Declining Fisheries. Desenvolvimento e Meio Ambiente, 38(1), 51–76, doi:10.5380/dma.v38i0.45850.
  2082. Harkes, I.H.T. et al., 2015: Shrimp aquaculture as a vehicle for Climate Compatible Development in Sri Lanka. The case of Puttalam Lagoon. Mar. Policy, 61, 273–283, doi:10.1016/j.marpol.2015.08.003.
  2083. Busch, D.S. et al., 2016: Climate science strategy of the US National Marine Fisheries Service. Mar. Policy, 74, 58–67, doi:10.1016/j.marpol.2016.09.001.
  2084. Valmonte-Santos, R., M. W. Rosegrant and M.M. Dey, 2016: Fisheries sector under climate change in the coral triangle countries of Pacific Islands: Current status and policy issues. Mar. Policy, 67, 148–155, doi:10.1016/j.marpol.2015.12.022.
  2085. Ataur Rahman, M. and S. Rahman, 2015: Natural and traditional defense mechanisms to reduce climate risks in coastal zones of Bangladesh. Weather and Climate Extremes, 7, 84–95, doi:10.1016/j.wace.2014.12.004.
  2086. Linkon, S.B., 2018: Autonomy in Building Process to Adapt the Climate Change Impacts: A Study of the Coastal Settlements in Bangladesh. International Journal of Environment and Sustainability [IJES], 6(2), 19-39 ISSN 1927-9566
  2087. Marfai, M.A., A. Sekaranom and P. Ward, 2015: Community responses and adaptation strategies toward flood hazard in Jakarta, Indonesia. Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 75, 1127–1144.
  2088. Ataur Rahman, M. and S. Rahman, 2015: Natural and traditional defense mechanisms to reduce climate risks in coastal zones of Bangladesh. Weather and Climate Extremes, 7, 84–95, doi:10.1016/j.wace.2014.12.004.
  2089. Bennett, N.J., A. Kadfak and P. Dearden, 2016: Community-based scenario planning: a process for vulnerability analysis and adaptation planning to social–ecological change in coastal communities. Environ. Dev. Sustain., 18(6), 1771–1799, doi:10.1007/s10668-015-9707-1.
  2090. Jamero, M.L., M. Onuki, M. Esteban and N. Tan, 2018: Community-based adaptation in low-lying islands in the Philippines: challenges and lessons learned. Reg. Environ. Change, 18(8), 2249–2260, doi:10.1007/s10113-018-1332-8.
  2091. Hagedoorn, L.C. et al., 2019: Community-based adaptation to climate change in small island developing states: an analysis of the role of social capital. Clim. Dev., 1–12, doi:10.1080/17565529.2018.1562869.
  2092. Barbier, E.B., 2015: Climate change impacts on rural poverty in low-elevation coastal zones. Estuar. Coast. Shelf Sci., 165, A1–A13, doi:10.1016/j.ecss.2015.05.035.
  2093. Petzold, J. and B.M.W. Ratter, 2015: Climate change adaptation under a social capital approach – An analytical framework for small islands. Ocean Coast. Manage., 112, 36–43, doi:10.1016/j.ocecoaman.2015.05.003.
  2094. Bennett, N.J., A. Kadfak and P. Dearden, 2016: Community-based scenario planning: a process for vulnerability analysis and adaptation planning to social–ecological change in coastal communities. Environ. Dev. Sustain., 18(6), 1771–1799, doi:10.1007/s10668-015-9707-1.
  2095. Dhar, T.K. and L. Khirfan, 2016: Community-based adaptation through ecological design: lessons from Negril, Jamaica. J. Urban Des., 21(2), 234–255, doi:10.1080/13574809.2015.1133224.
  2096. Jamero, M.L., M. Onuki, M. Esteban and N. Tan, 2018: Community-based adaptation in low-lying islands in the Philippines: challenges and lessons learned. Reg. Environ. Change, 18(8), 2249–2260, doi:10.1007/s10113-018-1332-8.
  2097. Dutra, L.X.C. et al., 2015: Organizational drivers that strengthen adaptive capacity in the coastal zone of Australia. Ocean Coast. Manage., 109, 64–76, doi:10.1016/j.landusepol.2015.09.003.
  2098. Tapsuwan, S. and W. Rongrongmuang, 2015: Climate change perception of the dive tourism industry in Koh Tao island, Thailand. J. Outdoor Recreat. Tour., 11, 58–63, doi:10.1016/j.jort.2015.06.005.
  2099. Galappaththi, I.M., E.K. Galappaththi and S.S. Kodithuwakku, 2017: Can start-up motives influence social-ecological resilience in community-based entrepreneurship setting? Case of coastal shrimp farmers in Sri Lanka. Mar. Policy, 86, 156–163, doi:10.1016/j.marpol.2017.09.024.
  2100. Ray, A., L. Hughes, D. M. Konisky and C. Kaylor, 2017: Extreme weather exposure and support for climate change adaptation. Global Environ. Change, 46, 104–113, doi:10.1016/j.gloenvcha.2017.07.002.
  2101. Cinner, J.E. et al., 2018: Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change, 8(2), 117–123, doi:10.1038/s41558-017-0065-x.
  2102. Hagedoorn, L.C. et al., 2019: Community-based adaptation to climate change in small island developing states: an analysis of the role of social capital. Clim. Dev., 1–12, doi:10.1080/17565529.2018.1562869.
  2103. Elrick-Barr, C.E. et al., 2016: How are coastal households responding to climate change? Environ. Sci. Policy, 63, 177–186, doi:10.1016/j.envsci.2016.05.013.
  2104. Hamilton, L.C. and T.G. Safford, 2015: Environmental Views from the Coast: Public Concern about Local to Global Marine Issues. Society & Natural Resources, 28(1), 57–74, doi:10.1080/08941920.2014.933926.
  2105. Nanlohy, H., A.N. Bambang, Ambariyanto and S. Hutabarat, 2015: Coastal Communities Knowledge Level on Climate Change as a Consideration in Mangrove Ecosystems Management in the Kotania Bay, West Seram Regency. Procedia Environ. Sci., 23, 157–163, doi:10.1016/j.proenv.2015.01.024.
  2106. Elrick-Barr, C.E. et al., 2016: How are coastal households responding to climate change? Environ. Sci. Policy, 63, 177–186, doi:10.1016/j.envsci.2016.05.013.
  2107. Hernández-Delgado, E.A., 2015: The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies. Mar. Pollut. Bull., 101(1), 5–28, doi:10.1016/j.marpolbul.2015.09.018.
  2108. Sheller, M. and Y.M. León, 2016: Uneven socioecologies of Hispaniola: Asymmetric capabilities for climate adaptation in Haiti and the Dominican Republic. Geoforum, 73, 32–46, doi:10.1016/j.geoforum.2015.07.026.
  2109. Abedin, M.A. and R. Shaw, 2015: The role of university networks in disaster risk reduction: Perspective from coastal Bangladesh. Int. J. Disast. Risk Reduc., 13, 381–389, doi:10.1016/j.ijdrr.2015.08.001.
  2110. Hobday, A.J. et al., 2015: Reconciling conflicts in pelagic fisheries under climate change. Deep Sea Res. Pt. II, 113, 291–300, doi:10.1016/j.dsr2.2014.10.024.
  2111. Lirman, D. and S. Schopmeyer, 2016: Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. Peerj, 4, e2597, doi:10.7717/peerj.2597.
  2112. Williams, G.A. et al., 2016: Meeting the climate change challenge: Pressing issues in southern China and SE Asian coastal ecosystems. Reg. Stud. Mar. Sci., 8, 373–381, doi:10.1016/j.rsma.2016.07.002.
  2113. Wong, P.P., et al. 2014a: Coastal systems and low-lying areas. In: Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Field, C.B., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp. 361-409. ISBN: 978-1-107-05807-1
  2114. Poumadère, M. et al., 2015: Coastal vulnerabilities under the deliberation of stakeholders: The case of two French sandy beaches. Ocean Coast. Manage., 105, 166–176, doi:10.1016/j.ocecoaman.2014.12.024.
  2115. Sherren, K., L. Loik and J.A. Debner, 2016: Climate adaptation in ‘new world’ cultural landscapes: The case of Bay of Fundy agricultural dykelands (Nova Scotia, Canada). Land Use Policy, 51, 267–280, doi:10.1016/j.landusepol.2015.11.018.
  2116. Torabi, E., A. Dedekorkut-Howes and M. Howes, 2018: Adapting or maladapting: Building resilience to climate-related disasters in coastal cities. Cities, 72, 295–309, doi:10.1016/j.cities.2017.09.008.
  2117. Rulleau, B. and H. Rey-Valette, 2017: Forward planning to maintain the attractiveness of coastal areas: Choosing between seawalls and managed retreat. Environ. Sci. Policy, 72, 12–19, doi:10.1016/j.envsci.2017.01.009.
  2118. Friedrich, E. and D. Kretzinger, 2012: Vulnerability of wastewater infrastructure of coastal cities to sea level rise: A South African case study. Water SA, 38(5), 755–764.
  2119. Vikolainen, V., J. Flikweert, H. Bressers and K. Lulofs, 2017: Governance context for coastal innovations in England: The case of Sandscaping in North Norfolk. Ocean Coast. Manage., 145, 82–93, doi:10.1016/j.ocecoaman.2017.05.012.
  2120. Perkins, M.J. et al., 2015: Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures? Estuar. Coast. Shelf Sci., 167, 504–515, doi:10.1016/j.ecss.2015.10.033.
  2121. Becker, A.H. et al., 2016: A method to estimate climate-critical construction materials applied to seaport protection. Global Environ. Change, 40, 125–136.
  2122. Colin, M., F. Palhol and A. Leuxe, 2016: Adaptation of transport infrastructures and networks to climate change. Transp. Res. Proc., 14, 86–95.
  2123. Asadabadi, A. and E. Miller-Hooks, 2017: Assessing strategies for protecting transportation infrastructure from an uncertain climate future. Transport. Res. A-Pol., 105, 27–41.
  2124. Brown, J.M. et al., 2018a: A coastal vulnerability assessment for planning climate resilient infrastructure. Ocean Coast. Manage., 163, 101–112.
  2125. Jeong, H., H. Lee, H. Kim and H. Kim, 2014: Algorithm for economic assessment of infrastructure adaptation to climate change. In ISARC Proceedings of the International Symposium on Automation and Robotics in Construction. IAARC Publications, Australia, 31, 1.ISBN: 978-0-64-659711-9
  2126. Friedrich, E. and D. Kretzinger, 2012: Vulnerability of wastewater infrastructure of coastal cities to sea level rise: A South African case study. Water SA, 38(5), 755–764.
  2127. Colin, M., F. Palhol and A. Leuxe, 2016: Adaptation of transport infrastructures and networks to climate change. Transp. Res. Proc., 14, 86–95.
  2128. van der Nat, A., P. Vellinga, R. Leemans and E. van Slobbe, 2016: Ranking coastal flood protection designs from engineered to nature-based. Ecol. Eng., 87, 80–90, doi:10.1016/j.ecoleng.2015.11.007.
  2129. Kabisch, N., H. Korn, J. Stadler and A. Bonn, 2017: Nature‐based Solutions to Climate Change Adaptation in Urban Areas. Linkages between Science, Policy and Practice. Theory and Practice of Urban Sustainability Transitions, Springer Open, 337 pp.
  2130. Gracia, A., N. Rangel-Buitrago, J.A. Oakley and A.T. Williams, 2018: Use of ecosystems in coastal erosion management. Ocean Coast. Manage., 156, 277–289, doi:10.1016/j.ocecoaman.2017.07.009.
  2131. Perkins, M.J. et al., 2015: Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures? Estuar. Coast. Shelf Sci., 167, 504–515, doi:10.1016/j.ecss.2015.10.033.
  2132. van der Nat, A., P. Vellinga, R. Leemans and E. van Slobbe, 2016: Ranking coastal flood protection designs from engineered to nature-based. Ecol. Eng., 87, 80–90, doi:10.1016/j.ecoleng.2015.11.007.
  2133. Moosavi, S., 2017: Ecological Coastal Protection: Pathways to Living Shorelines. Procedia Eng., 196, 930–938, doi:10.1016/j.proeng.2017.08.027.
  2134. Moosavi, S., 2017: Ecological Coastal Protection: Pathways to Living Shorelines. Procedia Eng., 196, 930–938, doi:10.1016/j.proeng.2017.08.027.
  2135. Gracia, A., N. Rangel-Buitrago, J.A. Oakley and A.T. Williams, 2018: Use of ecosystems in coastal erosion management. Ocean Coast. Manage., 156, 277–289, doi:10.1016/j.ocecoaman.2017.07.009.
  2136. Martínez, C.I.P., W.H.A. Piña and S.F. Moreno, 2018: Prevention, mitigation and adaptation to climate change from perspectives of urban population in an emerging economy. J. Clean. Prod., 178, 314–324.
  2137. Woodruff, S.C., 2018: City membership in climate change adaptation networks. Environ. Sci. Policy, 84, 60–68.
  2138. Perkins, M.J. et al., 2015: Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures? Estuar. Coast. Shelf Sci., 167, 504–515, doi:10.1016/j.ecss.2015.10.033.
  2139. van der Nat, A., P. Vellinga, R. Leemans and E. van Slobbe, 2016: Ranking coastal flood protection designs from engineered to nature-based. Ecol. Eng., 87, 80–90, doi:10.1016/j.ecoleng.2015.11.007.
  2140. Gracia, A., N. Rangel-Buitrago, J.A. Oakley and A.T. Williams, 2018: Use of ecosystems in coastal erosion management. Ocean Coast. Manage., 156, 277–289, doi:10.1016/j.ocecoaman.2017.07.009.
  2141. Jeong, H., H. Lee, H. Kim and H. Kim, 2014: Algorithm for economic assessment of infrastructure adaptation to climate change. In ISARC Proceedings of the International Symposium on Automation and Robotics in Construction. IAARC Publications, Australia, 31, 1.ISBN: 978-0-64-659711-9
  2142. Gracia, A., N. Rangel-Buitrago, J.A. Oakley and A.T. Williams, 2018: Use of ecosystems in coastal erosion management. Ocean Coast. Manage., 156, 277–289, doi:10.1016/j.ocecoaman.2017.07.009.
  2143. Vikolainen, V., J. Flikweert, H. Bressers and K. Lulofs, 2017: Governance context for coastal innovations in England: The case of Sandscaping in North Norfolk. Ocean Coast. Manage., 145, 82–93, doi:10.1016/j.ocecoaman.2017.05.012.
  2144. Kaja, N. and M. Mellic, 2017: Climate change: Issues of Built Heritage Structures in the coastal region. Journal of Scientific Research, 13, 54–60.
  2145. Moosavi, S., 2017: Ecological Coastal Protection: Pathways to Living Shorelines. Procedia Eng., 196, 930–938, doi:10.1016/j.proeng.2017.08.027.
  2146. Martínez, C.I.P., W.H.A. Piña and S.F. Moreno, 2018: Prevention, mitigation and adaptation to climate change from perspectives of urban population in an emerging economy. J. Clean. Prod., 178, 314–324.
  2147. Mikellidou, C.V., L.M. Shakou, G. Boustras and C. Dimopoulos, 2018: Energy critical infrastructures at risk from climate change: A state of the art review. Saf. Sci., 110, 110–120.
  2148. Cheung, W.W.L., M.C. Jones, G. Reygondeau and T.L. Frölicher, 2018b: Opportunities for climate-risk reduction through effective fisheries management. Global Change Biol., 2108, 1–15, doi:doi:10.1111/gcb.14390.
  2149. Islam, M.M., S. Sallu, K. Hubacek and J. Paavola, 2013: Vulnerability of fishery-based livelihoods to the impacts of climate variability and change: insights from coastal Bangladesh. Reg. Environ. Change, 14(1), 281–294, doi:10.1007/s10113-013-0487-6.
  2150. Heenan, A. et al., 2015: A climate-informed, ecosystem approach to fisheries management. Mar. Policy, 57, 182–192, doi:10.1016/j.marpol.2015.03.018.
  2151. Faraco, L.F.D. et al., 2016: Vulnerability Among Fishers in Southern Brazil and its Relation to Marine Protected Areas in a Scenario of Declining Fisheries. Desenvolvimento e Meio Ambiente, 38(1), 51–76, doi:10.5380/dma.v38i0.45850.
  2152. Dasgupta, S. et al., 2017: The Impact of Aquatic Salinization on Fish Habitats and Poor Communities in a Changing Climate: Evidence from Southwest Coastal Bangladesh. Ecol. Econ., 139, 128–139, doi:10.1016/j.ecolecon.2017.04.009.
  2153. Cheung, W.W.L., M.C. Jones, G. Reygondeau and T.L. Frölicher, 2018b: Opportunities for climate-risk reduction through effective fisheries management. Global Change Biol., 2108, 1–15, doi:doi:10.1111/gcb.14390.
  2154. Harvey, B.J., K.L. Nash, J.L. Blanchard and D.P. Edwards, 2018: Ecosystem-based management of coral reefs under climate change. Ecol. Evol., 8(12), 6354–6368, doi:10.1002/ece3.4146.
  2155. Gaines, S.D. et al., 2018: Improved fisheries management could offset many negative effects of climate change. Sci. Adv., 4(8), eaao1378, doi:10.1126/sciadv.aao1378.
  2156. Hobday, A.J. et al., 2015: Reconciling conflicts in pelagic fisheries under climate change. Deep Sea Res. Pt. II, 113, 291–300, doi:10.1016/j.dsr2.2014.10.024.
  2157. Dey, M.M. et al., 2016: Analysis of the economic impact of climate change and climate change adaptation strategies for fisheries sector in Pacific coral triangle countries: Model, estimation strategy, and baseline results. Mar. Policy, 67, 156–163, doi:10.1016/j.marpol.2015.12.011.
  2158. Rosegrant, M.W., M.M. Dey, R. Valmonte-Santos and O.L. Chen, 2016: Economic impacts of climate change and climate change adaptation strategies in Vanuatu and Timor-Leste. Mar. Policy, 67, 179–188, doi:10.1016/j.marpol.2015.12.010.
  2159. Campbell, J.R., 2017: Climate Change Impacts on Atolls and Island Nations in the South Pacific. Encyclopedia of the Anthropocene: Volume 2. [Dellasala, D.A., Goldstein, M.I. (eds.)] Elsevier, New York. p. 227-232. ISBN: 978-0-12-813576-1.
  2160. Finkbeiner, E.M. et al., 2018: Exploring trade-offs in climate change response in the context of Pacific Island fisheries. Mar. Policy, 88, 359–364, doi:10.1016/j.marpol.2017.09.032.
  2161. Ho, C.-H. et al., 2016: Mitigating uncertainty and enhancing resilience to climate change in the fisheries sector in Taiwan: Policy implications for food security. Ocean Coast. Manage., 130, 355–372, doi:10.1016/j.ocecoaman.2016.06.020.
  2162. Gourlie, D. et al., 2017: Performing “A New Song”: Suggested Considerations for Drafting Effective Coastal Fisheries Legislation Under Climate Change. Mar. Policy, 88; 342-349, doi:10.1016/j.marpol.2017.06.012.
  2163. Asch, R.G., W.W.L. Cheung and G. Reygondeau, 2018: Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change. Mar. Policy, 88, 285–294, doi:10.1016/j.marpol.2017.08.015.
  2164. Payne, M.R. et al., 2017: Lessons from the First Generation of Marine Ecological Forecast Products. Front. Mar. Sci., 4(289), doi:10.3389/fmars.2017.00289.
  2165. Pinsky, M.L. et al., 2018: Preparing ocean governance for species on the move. Science, 360(6394), 1189.
  2166. Colburn, L.L. et al., 2016: Indicators of climate change and social vulnerability in fishing dependent communities along the Eastern and Gulf Coasts of the United States. Mar. Policy, 74, 323–333, doi:10.1016/j.marpol.2016.04.030.
  2167. Cvitanovic, C. et al., 2016: Linking adaptation science to action to build food secure Pacific Island communities. Clim. Risk Manage., 11, 53–62, doi:10.1016/j.crm.2016.01.003.
  2168. Faraco, L.F.D. et al., 2016: Vulnerability Among Fishers in Southern Brazil and its Relation to Marine Protected Areas in a Scenario of Declining Fisheries. Desenvolvimento e Meio Ambiente, 38(1), 51–76, doi:10.5380/dma.v38i0.45850.
  2169. Miller, K.A., G.R. Munro, U.R. Sumaila and WW. Cheung, 2013: Governing marine fisheries in a changing climate: A game‐theoretic perspective. Can. J.gr. Econ., 61(2), 309–334.
  2170. Álvarez-Romero, J.G. et al., 2018: Designing connected marine reserves in the face of global warming. Global Change Biol., 24(2), e671–e691, doi:10.1111/gcb.13989.
  2171. Faraco, L.F.D. et al., 2016: Vulnerability Among Fishers in Southern Brazil and its Relation to Marine Protected Areas in a Scenario of Declining Fisheries. Desenvolvimento e Meio Ambiente, 38(1), 51–76, doi:10.5380/dma.v38i0.45850.
  2172. Valmonte-Santos, R., M. W. Rosegrant and M.M. Dey, 2016: Fisheries sector under climate change in the coral triangle countries of Pacific Islands: Current status and policy issues. Mar. Policy, 67, 148–155, doi:10.1016/j.marpol.2015.12.022.
  2173. Dasgupta, S. et al., 2017: The Impact of Aquatic Salinization on Fish Habitats and Poor Communities in a Changing Climate: Evidence from Southwest Coastal Bangladesh. Ecol. Econ., 139, 128–139, doi:10.1016/j.ecolecon.2017.04.009.
  2174. Roberts, C.M. et al., 2017: Marine reserves can mitigate and promote adaptation to climate change. PNAS, 114(24), 6167–6175.
  2175. Asch, R.G., W.W.L. Cheung and G. Reygondeau, 2018: Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change. Mar. Policy, 88, 285–294, doi:10.1016/j.marpol.2017.08.015.
  2176. Cheung, W.W.L., M.C. Jones, G. Reygondeau and T.L. Frölicher, 2018b: Opportunities for climate-risk reduction through effective fisheries management. Global Change Biol., 2108, 1–15, doi:doi:10.1111/gcb.14390.
  2177. Harvey, B.J., K.L. Nash, J.L. Blanchard and D.P. Edwards, 2018: Ecosystem-based management of coral reefs under climate change. Ecol. Evol., 8(12), 6354–6368, doi:10.1002/ece3.4146.
  2178. Jones, K.R. et al., 2018: The Location and Protection Status of Earth’s Diminishing Marine Wilderness. Curr. Biol., 28(15), 2506–2512.e3, doi:10.1016/j.cub.2018.06.010.
  2179. Bennett, N.J., A. Kadfak and P. Dearden, 2016: Community-based scenario planning: a process for vulnerability analysis and adaptation planning to social–ecological change in coastal communities. Environ. Dev. Sustain., 18(6), 1771–1799, doi:10.1007/s10668-015-9707-1.
  2180. Faraco, L.F.D. et al., 2016: Vulnerability Among Fishers in Southern Brazil and its Relation to Marine Protected Areas in a Scenario of Declining Fisheries. Desenvolvimento e Meio Ambiente, 38(1), 51–76, doi:10.5380/dma.v38i0.45850.
  2181. Edgar, G.J. et al., 2014: Global conservation outcomes depend on marine protected areas with five key features. Nature, 506, 216, doi:10.1038/nature13022.
  2182. Sala, E. et al., 2018: Assessing real progress towards effective ocean protection. Mar. Policy, 91, 11–13, doi:10.1016/j.marpol.2018.02.004.
  2183. Himes-Cornell, A. and S. Kasperski, 2015b: Assessing climate change vulnerability in Alaska’s fishing communities. Fish. Res., 162, 1–11, doi:10.1016/j.fishres.2014.09.010.
  2184. Busch, D.S. et al., 2016: Climate science strategy of the US National Marine Fisheries Service. Mar. Policy, 74, 58–67, doi:10.1016/j.marpol.2016.09.001.
  2185. Arroyo Mina, J.S., D.A. Revollo Fernandez, A. Aguilar Ibarra and N. Georgantzis, 2016: Economic behavior of fishers under climate-related uncertainty: Results from field experiments in Mexico and Colombia. Fish. Res., 183, 304–317, doi:10.1016/j.fishres.2016.05.020.
  2186. Belhabib, D., V.W.Y. Lam and W.W.L. Cheung, 2016: Overview of West African fisheries under climate change: Impacts, vulnerabilities and adaptive responses of the artisanal and industrial sectors. Mar. Policy, 71(Supplement C), 15–28, doi:10.1016/j.marpol.2016.05.009.
  2187. Kais, S.M. and M.S. Islam, 2017: Impacts of and resilience to climate change at the bottom of the shrimp commodity chain in Bangladesh: A preliminary investigation. Aquaculture, doi:10.1016/j.aquaculture.2017.05.024.
  2188. Béné, C. et al., 2015: Feeding 9 billion by 2050 – Putting fish back on the menu. Food Secur., 7(2), 261–274, doi:10.1007/s12571-015-0427-z.
  2189. Zougmoré, R. et al., 2016: Toward climate-smart agriculture in West Africa: a review of climate change impacts, adaptation strategies and policy developments for the livestock, fishery and crop production sectors. Agriculture & Food Security, 5(1), 26, doi:10.1186/s40066-016-0075-3.
  2190. Dunstan, P.K. et al., 2018: How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States? Mar. Policy, 88, 295-302. doi:10.1016/j.marpol.2017.09.033.
  2191. Gourlie, D. et al., 2018: Performing “A New Song”: Suggested Considerations for Drafting Effective Coastal Fisheries Legislation Under Climate Change. Mar. Policy, 88, 342–349, doi:10.1016/j.marpol.2017.06.012.
  2192. Mace, 2001: A new role for MSY in single-species and ecosystem approaches to fisheries stock assessment and management. Fish Fish., 2(1), 2–32, doi:10.1046/j.1467-2979.2001.00033.x.
  2193. Hobday, A.J., C.M. Spillman, J. Paige Eveson and J.R. Hartog, 2016b: Seasonal forecasting for decision support in marine fisheries and aquaculture. Fish. Oceanogr., 25(S1), 45–56, doi:doi:10.1111/fog.12083.
  2194. Payne, M.R. et al., 2017: Lessons from the First Generation of Marine Ecological Forecast Products. Front. Mar. Sci., 4(289), doi:10.3389/fmars.2017.00289.
  2195. Heenan, A. et al., 2015: A climate-informed, ecosystem approach to fisheries management. Mar. Policy, 57, 182–192, doi:10.1016/j.marpol.2015.03.018.
  2196. Dubey, S.K. et al., 2017: Farmers’ perceptions of climate change, impacts on freshwater aquaculture and adaptation strategies in climatic change hotspots: A case of the Indian Sundarban delta. Environ. Dev., 21, 38–51, doi:10.1016/j.envdev.2016.12.002.
  2197. Shaffiril, H.A.M., A.A. Samah and J. Lawrence, 2017: Adapting towards climate change impacts: Strategies for small-scale fishermen in Malaysia. Mar. Policy, 81, 196–201.
  2198. Finkbeiner, E.M. et al., 2018: Exploring trade-offs in climate change response in the context of Pacific Island fisheries. Mar. Policy, 88, 359–364, doi:10.1016/j.marpol.2017.09.032.
  2199. Ahmed, N. and J.S. Diana, 2015b: Threatening “white gold”: Impacts of climate change on shrimp farming in coastal Bangladesh. Ocean Coast. Manage., 114, 42–52, doi:10.1016/j.ocecoaman.2015.06.008.
  2200. Ahmed, N. and J.S. Diana, 2015a: Coastal to inland: Expansion of prawn farming for adaptation to climate change in Bangladesh. Aquacult. Rep., 2, 67–76, doi:10.1016/j.aqrep.2015.08.001.
  2201. Bunting, S.W., N. Kundu and N. Ahmed, 2017: Evaluating the contribution of diversified shrimp-rice agroecosystems in Bangladesh and West Bengal, India to social-ecological resilience. Ocean Coast. Manage., 148, 63–74, doi:10.1016/j.ocecoaman.2017.07.010.
  2202. Harkes, I.H.T. et al., 2015: Shrimp aquaculture as a vehicle for Climate Compatible Development in Sri Lanka. The case of Puttalam Lagoon. Mar. Policy, 61, 273–283, doi:10.1016/j.marpol.2015.08.003.
  2203. Bunting, S.W., N. Kundu and N. Ahmed, 2017: Evaluating the contribution of diversified shrimp-rice agroecosystems in Bangladesh and West Bengal, India to social-ecological resilience. Ocean Coast. Manage., 148, 63–74, doi:10.1016/j.ocecoaman.2017.07.010.
  2204. Rodríguez, F. et al., 2017: Canary Islands (NE Atlantic) as a biodiversity ‘hotspot’of Gambierdiscus: Implications for future trends of ciguatera in the area. Harmful Algae, 67, 131–143.
  2205. Galappaththi, I.M., E.K. Galappaththi and S.S. Kodithuwakku, 2017: Can start-up motives influence social-ecological resilience in community-based entrepreneurship setting? Case of coastal shrimp farmers in Sri Lanka. Mar. Policy, 86, 156–163, doi:10.1016/j.marpol.2017.09.024.
  2206. Harkes, I.H.T. et al., 2015: Shrimp aquaculture as a vehicle for Climate Compatible Development in Sri Lanka. The case of Puttalam Lagoon. Mar. Policy, 61, 273–283, doi:10.1016/j.marpol.2015.08.003.
  2207. Barton, A. et al., 2015: Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography, 28(2), 146–159.
  2208. Cooley, S.R., C.R. Ono, S. Melcer and J. Roberson, 2016: Community-Level Actions that Can Address Ocean Acidification. . Front. Mar. Sci.,, 2(128), 1–12.
  2209. Jiao, N. et al., 2014b: Mechanisms of microbial carbon sequestration in the ocean – future research directions. Biogeosciences, 11(19), 5285–5306, doi:10.5194/bg-11-5285-2014.
  2210. Zhang, D. et al., 2016: Reviews of power supply and environmental energy conversions for artificial upwelling. Renew. Sustain. Energy Rev., 56, 659–668, doi:10.1016/j.rser.2015.11.041.
  2211. Pan, Y. and D. Schimel, 2016: Synergy of a warm spring and dry summer. Nature, 534, 483, doi:10.1038/nature18450.
  2212. Jiao, N. et al., 2018a: Unveiling the enigma of refractory carbon in the ocean. Natl. Sci. Rev., 5(4), 459-463. , doi:10.1093/nsr/nwy020.
  2213. Jiao, N., H. Wang, G. Xu and S. Aricò, 2018b: Blue Carbon on the Rise:Challenges and Opportunities. Natl. Sci. Rev., 5(4), 464-468 doi:10.1093/nsr/nwy030.
  2214. Daneri, G. et al., 2012: Wind forcing and short-term variability of phytoplankton and heterotrophic bacterioplankton in the coastal zone of the Concepción upwelling system (Central Chile). Progr. Oceanogr., 92–95(Supplement C), 92–96.
  2215. Rangel-Buitrago, N.G., G. Anfuso and A.T. Williams, 2015: Coastal erosion along the Caribbean coast of Colombia: Magnitudes, causes and management. Ocean Coast. Manage., 114, 129–144, doi:10.1016/j.ocecoaman.2015.06.024.
  2216. Biggs, D., C.C. Hicks, J.E. Cinner and C.M. Hall, 2015: Marine tourism in the face of global change: The resilience of enterprises to crises in Thailand and Australia. Ocean Coast. Manage., 105, 65–74, doi:10.1016/j.ocecoaman.2014.12.019.
  2217. Papageorgiou, M., 2016: Coastal and marine tourism: A challenging factor in Marine Spatial Planning. Ocean Coast. Manage., 129, 44–48, doi:10.1016/j.ocecoaman.2016.05.006.
  2218. Michailidou, A.V., C. Vlachokostas and Ν. Moussiopoulos, 2016b: Interactions between climate change and the tourism sector: Multiple-criteria decision analysis to assess mitigation and adaptation options in tourism areas. Tourism Manage., 55(Supplement C), 1–12.
  2219. Tapsuwan, S. and W. Rongrongmuang, 2015: Climate change perception of the dive tourism industry in Koh Tao island, Thailand. J. Outdoor Recreat. Tour., 11, 58–63, doi:10.1016/j.jort.2015.06.005.
  2220. Tapsuwan, S. and W. Rongrongmuang, 2015: Climate change perception of the dive tourism industry in Koh Tao island, Thailand. J. Outdoor Recreat. Tour., 11, 58–63, doi:10.1016/j.jort.2015.06.005.
  2221. Bujosa, A., A. Riera and C.M. Torres, 2015: Valuing tourism demand attributes to guide climate change adaptation measures efficiently: The case of the Spanish domestic travel market. Tourism Manage., 47, 233–239, doi:10.1016/j.tourman.2014.09.023.
  2222. Aylett, A., 2015: Institutionalizing the urban governance of climate change adaptation: Results of an international survey. Urban Clim., 14, 4–16, doi:10.1016/j.uclim.2015.06.005.
  2223. Buurman, J. and V. Babovic, 2016: Adaptation Pathways and Real Options Analysis: An approach to deep uncertainty in climate change adaptation policies. Policy Soc., 35(2), 137–150, doi:10.1016/j.polsoc.2016.05.002.
  2224. Johnson, D., M. Adelaide Ferreira and E. Kenchington, 2018: Climate change is likely to severely limit the effectiveness of deep sea ABMTs in the North Atlantic. Mar. Policy, 87, 111–122, doi:10.1016/j.marpol.2017.09.034.
  2225. Johnson, D., M. Adelaide Ferreira and E. Kenchington, 2018: Climate change is likely to severely limit the effectiveness of deep sea ABMTs in the North Atlantic. Mar. Policy, 87, 111–122, doi:10.1016/j.marpol.2017.09.034.
  2226. Gallo, N.D., D.G. Victor and L.A. Levin, 2017: Ocean commitments under the Paris Agreement. Nat. Clim. Change, 7(11), 833-838, doi:10.1038/NCLIMATE3422.
  2227. Paterson, S.K. et al., 2017: Size does matter: City scale and the asymmetries of climate change adaptation in three coastal towns. Geoforum, 81, 109–119, doi:10.1016/j.geoforum.2017.02.014.
  2228. Nunn, P.D., W. Aalbersberg, S. Lata and M. Gwilliam, 2014: Beyond the core: community governance for climate-change adaptation in peripheral parts of Pacific Island Countries. Reg. Environ. Change, 14(1), 221–235, doi:10.1007/s10113-013-0486-7.
  2229. Gormley, K.S.G. et al., 2015: Adaptive management, international co-operation and planning for marine conservation hotspots in a changing climate. Mar. Policy, 53, 54–66, doi:10.1016/j.marpol.2014.11.017.
  2230. Porter, J.J., D. Demeritt and S. Dessai, 2015: The right stuff? informing adaptation to climate change in British Local Government. Global Environ. Change, 35, 411–422, doi:10.1016/j.gloenvcha.2015.10.004.
  2231. Gallo, N.D., D.G. Victor and L.A. Levin, 2017: Ocean commitments under the Paris Agreement. Nat. Clim. Change, 7(11), 833-838, doi:10.1038/NCLIMATE3422.
  2232. Rosendo, S., L. Celliers and M. Mechisso, 2018: Doing more with the same: A reality-check on the ability of local government to implement Integrated Coastal Management for climate change adaptation. Mar. Policy, 87, 29–39, doi:10.1016/j.marpol.2017.10.001.
  2233. Sano, M. et al., 2015: Coastal vulnerability and progress in climate change adaptation: An Australian case study. Reg. Stud. Mar. Sci., 2, 113–123, doi:10.1016/j.rsma.2015.08.015.
  2234. Elsharouny, M.R.M.M., 2016: Planning Coastal Areas and Waterfronts for Adaptation to Climate Change in Developing Countries. Procedia Environ. Sci., 34, 348–359, doi:10.1016/j.proenv.2016.04.031.
  2235. Abelshausen, B., T. Vanwing and W. Jacquet, 2015: Participatory integrated coastal zone management in Vietnam: Theory versus practice case study: Thua Thien Hue province. Journal of Marine and Island Cultures, 4(1), 42–53, doi:10.1016/j.imic.2015.06.004.
  2236. Roberts, C.M. et al., 2017: Marine reserves can mitigate and promote adaptation to climate change. PNAS, 114(24), 6167–6175.
  2237. Rosendo, S., L. Celliers and M. Mechisso, 2018: Doing more with the same: A reality-check on the ability of local government to implement Integrated Coastal Management for climate change adaptation. Mar. Policy, 87, 29–39, doi:10.1016/j.marpol.2017.10.001.
  2238. Hopkins, C.R., D.M. Bailey and T. Potts, 2016: Perceptions of practitioners: Managing marine protected areas for climate change resilience. Ocean Coast. Manage., 128, 18–28, doi:10.1016/j.ocecoaman.2016.04.014.
  2239. Johnson, D., M. Adelaide Ferreira and E. Kenchington, 2018: Climate change is likely to severely limit the effectiveness of deep sea ABMTs in the North Atlantic. Mar. Policy, 87, 111–122, doi:10.1016/j.marpol.2017.09.034.
  2240. Gormley, K.S.G. et al., 2015: Adaptive management, international co-operation and planning for marine conservation hotspots in a changing climate. Mar. Policy, 53, 54–66, doi:10.1016/j.marpol.2014.11.017.
  2241. Jones, K.R. et al., 2018: The Location and Protection Status of Earth’s Diminishing Marine Wilderness. Curr. Biol., 28(15), 2506–2512.e3, doi:10.1016/j.cub.2018.06.010.
  2242. Serrao-Neumann, S. et al., 2013: Improving cross-sectoral climate change adaptation for coastal settlements: insights from South East Queensland, Australia. Reg. Environ. Change, 14(2), 489–500, doi:10.1007/s10113-013-0442-6.
  2243. Gerkensmeier, B. and B.M.W. Ratter, 2018: Governing coastal risks as a social process—Facilitating integrative risk management by enhanced multi-stakeholder collaboration. Environ. Sci. Policy, 80, 144–151, doi:10.1016/j.envsci.2017.11.011.
  2244. Rosendo, S., L. Celliers and M. Mechisso, 2018: Doing more with the same: A reality-check on the ability of local government to implement Integrated Coastal Management for climate change adaptation. Mar. Policy, 87, 29–39, doi:10.1016/j.marpol.2017.10.001.
  2245. Abelshausen, B., T. Vanwing and W. Jacquet, 2015: Participatory integrated coastal zone management in Vietnam: Theory versus practice case study: Thua Thien Hue province. Journal of Marine and Island Cultures, 4(1), 42–53, doi:10.1016/j.imic.2015.06.004.
  2246. Clark, A., 2017: Small unmanned aerial systems comparative analysis for the application to coastal erosion monitoring. Geo. Res. J., 13, 175–185, doi:10.1016/j.grj.2017.05.001.
  2247. Mayerle, R. et al., 2016: Development of a coastal information system for the management of Jeddah coastal waters in Saudi Arabia. Comput. Geosci-UK, 89, 71–78, doi:10.1016/j.cageo.2015.12.006.
  2248. Newell, R. and R. Canessa, 2017: Picturing a place by the sea: Geovisualizations as place-based tools for collaborative coastal management. Ocean Coast. Manage., 141, 29–42, doi:10.1016/j.ocecoaman.2017.03.002.
  2249. Conde, D. et al., 2015: Solutions for Sustainable Coastal Lagoon Management. In: Coastal Zones – Solutions for the 21st Century. [Baztan, J., Chouinard, O., Jorgensen, B., Tett, P., Vanderlinden, J-P., Vasseur, L. (eds)]. Elsevier, New York. pp. 217–250. ISBN: 978-0-12-802748-6
  2250. Sheaves, M. et al., 2016: Principles for operationalizing climate change adaptation strategies to support the resilience of estuarine and coastal ecosystems: An Australian perspective. Mar. Policy, 68, 229–240, doi:10.1016/j.marpol.2016.03.014.
  2251. Thorne, K.M. et al., 2017: Are coastal managers ready for climate change? A case study from estuaries along the Pacific coast of the United States. Ocean Coast. Manage., 143, 38–50, doi:10.1016/j.ocecoaman.2017.02.010.
  2252. Rosendo, S., L. Celliers and M. Mechisso, 2018: Doing more with the same: A reality-check on the ability of local government to implement Integrated Coastal Management for climate change adaptation. Mar. Policy, 87, 29–39, doi:10.1016/j.marpol.2017.10.001.
  2253. Gormley, K.S.G. et al., 2015: Adaptive management, international co-operation and planning for marine conservation hotspots in a changing climate. Mar. Policy, 53, 54–66, doi:10.1016/j.marpol.2014.11.017.
  2254. Gerkensmeier, B. and B.M.W. Ratter, 2018: Governing coastal risks as a social process—Facilitating integrative risk management by enhanced multi-stakeholder collaboration. Environ. Sci. Policy, 80, 144–151, doi:10.1016/j.envsci.2017.11.011.
  2255. Rosendo, S., L. Celliers and M. Mechisso, 2018: Doing more with the same: A reality-check on the ability of local government to implement Integrated Coastal Management for climate change adaptation. Mar. Policy, 87, 29–39, doi:10.1016/j.marpol.2017.10.001.
  2256. Johnson, D., M. Adelaide Ferreira and E. Kenchington, 2018: Climate change is likely to severely limit the effectiveness of deep sea ABMTs in the North Atlantic. Mar. Policy, 87, 111–122, doi:10.1016/j.marpol.2017.09.034.
  2257. Aylett, A., 2015: Institutionalizing the urban governance of climate change adaptation: Results of an international survey. Urban Clim., 14, 4–16, doi:10.1016/j.uclim.2015.06.005.
  2258. Serrao-Neumann, S. et al., 2013: Improving cross-sectoral climate change adaptation for coastal settlements: insights from South East Queensland, Australia. Reg. Environ. Change, 14(2), 489–500, doi:10.1007/s10113-013-0442-6.
  2259. Rosendo, S., L. Celliers and M. Mechisso, 2018: Doing more with the same: A reality-check on the ability of local government to implement Integrated Coastal Management for climate change adaptation. Mar. Policy, 87, 29–39, doi:10.1016/j.marpol.2017.10.001.
  2260. Kuhfuss, L. et al., 2016: Evaluating the impacts of sea level rise on coastal wetlands in Languedoc-Roussillon, France. Environ. Sci. Policy, 59, 26–34, doi:10.1016/j.envsci.2016.02.002.
  2261. Cheung, W.W.L., R.D. Brodeur, T.A. Okey and D. Pauly, 2015: Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Progr. Oceanogr., 130, 19–31, doi:10.1016/j.pocean.2014.09.003.
  2262. Cushing, D. A., D. D. Roby and D. B. Irons, 2018: Patterns of distribution, abundance, and change over time in a subarctic marine bird community. Deep Sea Res. Pt. II, 147, 148–163, doi:10.1016/j.dsr2.2017.07.012.
  2263. Islam, M.M., S. Sallu, K. Hubacek and J. Paavola, 2013: Vulnerability of fishery-based livelihoods to the impacts of climate variability and change: insights from coastal Bangladesh. Reg. Environ. Change, 14(1), 281–294, doi:10.1007/s10113-013-0487-6.
  2264. Himes-Cornell, A. and S. Kasperski, 2015b: Assessing climate change vulnerability in Alaska’s fishing communities. Fish. Res., 162, 1–11, doi:10.1016/j.fishres.2014.09.010.
  2265. Peirson, W. et al., 2015: Opportunistic management of estuaries under climate change: A new adaptive decision-making framework and its practical application. J. Environ. Manage., 163, 214–223, doi:10.1016/j.jenvman.2015.08.021.
  2266. Kaplan-Hallam, M., N.J. Bennett and T. Satterfield, 2017: Catching sea cucumber fever in coastal communities: Conceptualizing the impacts of shocks versus trends on social-ecological systems. Global Environ. Change, 45, 89–98, doi:10.1016/j.gloenvcha.2017.05.003.
  2267. McNeeley, S.M. et al., 2017: Expanding vulnerability assessment for public lands: The social complement to ecological approaches. Clim. Risk Manage., 16, 106–119, doi:10.1016/j.crm.2017.01.005.
  2268. Ramm, T.D., C.J. White, A.H.C. Chan and C.S. Watson, 2017: A review of methodologies applied in Australian practice to evaluate long-term coastal adaptation options. Clim. Risk Manage., 17, 35–51, doi:10.1016/j.crm.2017.06.005.
  2269. Mavromatidi, A., E. Briche and C. Claeys, 2018: Mapping and analyzing socioenvironmental vulnerability to coastal hazards induced by climate change: An application to coastal Mediterranean cities in France. Cities, 72, Part A, 189–200, doi:10.1016/j.cities.2017.08.007.
  2270. Payne, M.R. et al., 2017: Lessons from the First Generation of Marine Ecological Forecast Products. Front. Mar. Sci., 4(289), doi:10.3389/fmars.2017.00289.
  2271. Čerkasova, N. et al., 2016: Curonian Lagoon drainage basin modelling and assessment of climate change impact. Oceanologia, 58(2), 90–102, doi:10.1016/j.oceano.2016.01.003.
  2272. Chapman, A. and S. Darby, 2016: Evaluating sustainable adaptation strategies for vulnerable mega-deltas using system dynamics modelling: Rice agriculture in the Mekong Delta’s An Giang Province, Vietnam. Sci. Total Environ., 559, 326–338, doi:10.1016/j.scitotenv.2016.02.162.
  2273. Jiang, J. et al., 2016: Defining the next generation modeling of coastal ecotone dynamics in response to global change. Ecol. Model., 326, 168–176, doi:10.1016/j.ecolmodel.2015.04.013.
  2274. Justic, D. et al., 2016: Chapter 11 – Coastal Ecosystem Modeling in the Context of Climate Change: An Overview With Case Studies. In: Developments in Environmental Modelling, Volume 28 [Sven Erik, J. (ed.)]. Elsevier, Netherlands, pp. 227–260. ISSN: 0167-8892.
  2275. Joyce, J. et al., 2017: Developing a multi-scale modeling system for resilience assessment of green-grey drainage infrastructures under climate change and sea level rise impact. Environ. Modell. Softw., 90, 1–26, doi:10.1016/j.envsoft.2016.11.026.
  2276. Mitchell, S., I. Boateng and F. Couceiro, 2017: Influence of flushing and other characteristics of coastal lagoons using data from Ghana. Ocean Coast. Manage., 143, 26–37, doi:10.1016/j.ocecoaman.2016.10.002.
  2277. Bujosa, A., A. Riera and C.M. Torres, 2015: Valuing tourism demand attributes to guide climate change adaptation measures efficiently: The case of the Spanish domestic travel market. Tourism Manage., 47, 233–239, doi:10.1016/j.tourman.2014.09.023.
  2278. Jones, M.C. and W.W.L. Cheung, 2015: Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci., 72(3), 741–752, doi:10.1093/icesjms/fsu172.
  2279. MacDonald, M.A. et al., 2017: Benefits of coastal managed realignment for society: Evidence from ecosystem service assessments in two UK regions. Estuar. Coast. Shelf Sci., doi:10.1016/j.ecss.2017.09.007.
  2280. Micallef, S., A. Micallef and C. Galdies, 2018: Application of the Coastal Hazard Wheel to assess erosion on the Maltese coast. Ocean Coast. Manage., 156, 209–222, doi:10.1016/j.ocecoaman.2017.06.005.
  2281. Byrne, J.A., A.Y. Lo and Y. Jianjun, 2015: Residents’ understanding of the role of green infrastructure for climate change adaptation in Hangzhou, China. Landscape Urban Plan., 138, 132–143, doi:10.1016/j.landurbplan.2015.02.013.
  2282. Buurman, J. and V. Babovic, 2016: Adaptation Pathways and Real Options Analysis: An approach to deep uncertainty in climate change adaptation policies. Policy Soc., 35(2), 137–150, doi:10.1016/j.polsoc.2016.05.002.
  2283. Dittrich, R., A. Wreford and D. Moran, 2016: A survey of decision-making approaches for climate change adaptation: Are robust methods the way forward? Ecol. Econ., 122, 79–89, doi:10.1016/j.ecolecon.2015.12.006.
  2284. Michailidou, A.V., C. Vlachokostas and N. Moussiopoulos, 2016a: Interactions between climate change and the tourism sector: Multiple-criteria decision analysis to assess mitigation and adaptation options in tourism areas. Tourism Manage., 55, 1–12, doi:10.1016/j.tourman.2016.01.010.
  2285. Osorio-Cano, J.D., A.F. Osorio and D.S. Peláez-Zapata, 2017: Ecosystem management tools to study natural habitats as wave damping structures and coastal protection mechanisms. Ecol. Eng., 130, 282–295, doi:10.1016/j.ecoleng.2017.07.015.
  2286. Cumiskey, L. et al., 2018: A framework to include the (inter)dependencies of Disaster Risk Reduction measures in coastal risk assessment. Coast. Eng., 134, 81–92, doi:10.1016/j.coastaleng.2017.08.009.
  2287. Carapuço, M.M. et al., 2016: Coastal geoindicators: Towards the establishment of a common framework for sandy coastal environments. Earth-Sci. Rev., 154, 183–190, doi:10.1016/j.earscirev.2016.01.002.
  2288. Nguyen, T.T.X., J. Bonetti, K. Rogers and C.D. Woodroffe, 2016: Indicator-based assessment of climate-change impacts on coasts: A review of concepts, methodological approaches and vulnerability indices. Ocean Coast. Manage., 123, 18–43, doi:10.1016/j.ocecoaman.2015.11.022.
  2289. Huxham, M. et al., 2015: Applying Climate Compatible Development and economic valuation to coastal management: A case study of Kenya’s mangrove forests. J. Environ. Manage., 157, 168–181, doi:10.1016/j.jenvman.2015.04.018.
  2290. Endo, H., K. Suehiro, X. Gao and Y. Agatsuma, 2017: Interactive effects of elevated summer temperature, nutrient availability, and irradiance on growth and chemical compositions of juvenile kelp, Eisenia bicyclis. Phycol. Res., 65(2), 118–126, doi:10.1111/pre.12170.
  2291. Thorne, K.M. et al., 2017: Are coastal managers ready for climate change? A case study from estuaries along the Pacific coast of the United States. Ocean Coast. Manage., 143, 38–50, doi:10.1016/j.ocecoaman.2017.02.010.
  2292. Dutra, L.X.C. et al., 2015: Organizational drivers that strengthen adaptive capacity in the coastal zone of Australia. Ocean Coast. Manage., 109, 64–76, doi:10.1016/j.landusepol.2015.09.003.
  2293. Cvitanovic, C. et al., 2016: Linking adaptation science to action to build food secure Pacific Island communities. Clim. Risk Manage., 11, 53–62, doi:10.1016/j.crm.2016.01.003.
  2294. Archer, D. et al., 2014: Moving towards inclusive urban adaptation: approaches to integrating community-based adaptation to climate change at city and national scale. Clim. Dev., 6(4), 345–356, doi:10.1080/17565529.2014.918868.
  2295. Abedin, M.A. and R. Shaw, 2015: The role of university networks in disaster risk reduction: Perspective from coastal Bangladesh. Int. J. Disast. Risk Reduc., 13, 381–389, doi:10.1016/j.ijdrr.2015.08.001.
  2296. Gormley, K.S.G. et al., 2015: Adaptive management, international co-operation and planning for marine conservation hotspots in a changing climate. Mar. Policy, 53, 54–66, doi:10.1016/j.marpol.2014.11.017.
  2297. Williams, G.A. et al., 2016: Meeting the climate change challenge: Pressing issues in southern China and SE Asian coastal ecosystems. Reg. Stud. Mar. Sci., 8, 373–381, doi:10.1016/j.rsma.2016.07.002.
  2298. Hobday, A.J. et al., 2015: Reconciling conflicts in pelagic fisheries under climate change. Deep Sea Res. Pt. II, 113, 291–300, doi:10.1016/j.dsr2.2014.10.024.
  2299. Dalyander, P.S. et al., 2016: Use of structured decision-making to explicitly incorporate environmental process understanding in management of coastal restoration projects: Case study on barrier islands of the northern Gulf of Mexico. J. Environ. Manage., 183(3), 497–509, doi:10.1016/j.jenvman.2016.08.078.
  2300. McNeeley, S.M. et al., 2017: Expanding vulnerability assessment for public lands: The social complement to ecological approaches. Clim. Risk Manage., 16, 106–119, doi:10.1016/j.crm.2017.01.005.
  2301. Osorio-Cano, J.D., A.F. Osorio and D.S. Peláez-Zapata, 2017: Ecosystem management tools to study natural habitats as wave damping structures and coastal protection mechanisms. Ecol. Eng., 130, 282–295, doi:10.1016/j.ecoleng.2017.07.015.
  2302. Merkens, J.-L., L. Reimann, J. Hinkel and A.T. Vafeidis, 2016: Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways. Global Planet. Change, 145, 57–66, doi:10.1016/j.gloplacha.2016.08.009.
  2303. Rumson, A.G., S.H. Hallett and T.R. Brewer, 2017: Coastal risk adaptation: the potential role of accessible geospatial Big Data. Mar. Policy, 83, 100–110, doi:10.1016/j.marpol.2017.05.032.
  2304. Miller, D.D. et al., 2017: Adaptation strategies to climate change in marine systems. Global Change Biol., 24, e1–e14.
  2305. Araos, M. et al., 2016: Climate change adaptation planning in large cities: A systematic global assessment. Environ. Sci. Policy, 66, 375–382, doi:10.1016/j.envsci.2016.06.009.
  2306. Finkbeiner, E.M. et al., 2018: Exploring trade-offs in climate change response in the context of Pacific Island fisheries. Mar. Policy, 88, 359–364, doi:10.1016/j.marpol.2017.09.032.
  2307. Elias, P. and A. Omojola, 2015: Case study: The challenges of climate change for Lagos, Nigeria. Curr. Opin. Environ. Sustain., 13, 74–78, doi:10.1016/j.cosust.2015.02.008.
  2308. Porter, J.J., D. Demeritt and S. Dessai, 2015: The right stuff? informing adaptation to climate change in British Local Government. Global Environ. Change, 35, 411–422, doi:10.1016/j.gloenvcha.2015.10.004.
  2309. Thorne, K.M. et al., 2017: Are coastal managers ready for climate change? A case study from estuaries along the Pacific coast of the United States. Ocean Coast. Manage., 143, 38–50, doi:10.1016/j.ocecoaman.2017.02.010.
  2310. Dutra, L.X.C. et al., 2015: Organizational drivers that strengthen adaptive capacity in the coastal zone of Australia. Ocean Coast. Manage., 109, 64–76, doi:10.1016/j.landusepol.2015.09.003.
  2311. Jiao, N.-Z. et al., 2015: Climate change and anthropogenic impacts on marine ecosystems and countermeasures in China. Advances in Climate Change Research, 6(2), 118–125, doi:10.1016/j.accre.2015.09.010.
  2312. Buurman, J. and V. Babovic, 2016: Adaptation Pathways and Real Options Analysis: An approach to deep uncertainty in climate change adaptation policies. Policy Soc., 35(2), 137–150, doi:10.1016/j.polsoc.2016.05.002.
  2313. Dittrich, R., A. Wreford and D. Moran, 2016: A survey of decision-making approaches for climate change adaptation: Are robust methods the way forward? Ecol. Econ., 122, 79–89, doi:10.1016/j.ecolecon.2015.12.006.
  2314. Barragán, J.M. and M. de Andrés, 2015: Analysis and trends of the world’s coastal cities and agglomerations. Ocean Coast. Manage., 114, 11–20, doi:10.1016/j.ocecoaman.2015.06.004.
  2315. Bell, J.D. et al., 2018b: Adaptations to maintain the contributions of small-scale fisheries to food security in the Pacific Islands. Mar. Policy, 88, 303–314, doi:10.1016/j.marpol.2017.05.019.
  2316. Sheaves, M. et al., 2016: Principles for operationalizing climate change adaptation strategies to support the resilience of estuarine and coastal ecosystems: An Australian perspective. Mar. Policy, 68, 229–240, doi:10.1016/j.marpol.2016.03.014.
  2317. Wise, R.M. et al., 2016: How climate compatible are livelihood adaptation strategies and development programs in rural Indonesia? Clim. Risk Manage., 12, 100–114, doi:10.1016/j.crm.2015.11.001.
  2318. Kuruppu, N. and R. Willie, 2015: Barriers to reducing climate enhanced disaster risks in Least Developed Country-Small Islands through anticipatory adaptation. Weather and Climate Extremes, 7, 72–83, doi:10.1016/j.wace.2014.06.001.
  2319. Torresan, S. et al., 2016: DESYCO: A decision support system for the regional risk assessment of climate change impacts in coastal zones. Ocean Coast. Manage., 120, 49–63, doi:10.1016/j.ocecoaman.2015.11.003.
  2320. Sánchez-Arcilla, A. et al., 2016: Managing coastal environments under climate change: Pathways to adaptation. Sci. Total Environ., 572, 1336–1352, doi:10.1016/j.scitotenv.2016.01.124.
  2321. Pentz, B. and N. Klenk, 2017: The ‘responsiveness gap’ in RFMOs: The critical role of decision-making policies in the fisheries management response to climate change. Ocean Coast. Manage., 145, 44–51, doi:10.1016/j.ocecoaman.2017.05.007.
  2322. Zandvoort, M. et al., 2017: Adaptation pathways in planning for uncertain climate change: Applications in Portugal, the Czech Republic and the Netherlands. Environ. Sci. Policy, 78, 18–26, doi:10.1016/j.envsci.2017.08.017.
  2323. Dutra, L.X.C. et al., 2015: Organizational drivers that strengthen adaptive capacity in the coastal zone of Australia. Ocean Coast. Manage., 109, 64–76, doi:10.1016/j.landusepol.2015.09.003.
  2324. Doherty, M., K. Klima and J.J. Hellmann, 2016: Climate change in the urban environment: Advancing, measuring and achieving resiliency. Environ. Sci. Policy, 66, 310–313, doi:10.1016/j.envsci.2016.09.001.
  2325. Wise, R.M. et al., 2016: How climate compatible are livelihood adaptation strategies and development programs in rural Indonesia? Clim. Risk Manage., 12, 100–114, doi:10.1016/j.crm.2015.11.001.
  2326. Fauville, G. et al., 2011: Virtual Ocean Acidification Laboratory as an Efficient Educational Tool to Address Climate Change Issues in The Economic, Social and Political Elements of Climate Change [W. Filho Leal ed.]. Springer Berlin Heidelberg, pp. 825–836. ISBN: 978-3-642-14776-0
  2327. Marshall, N.A. et al., 2013: Social Vulnerability of Marine Resource Users to Extreme Weather Events. Ecosystems, 16(5), 797–809, doi:10.1007/s10021-013-9651-6.
  2328. Pescaroli, G. and M. Magni, 2015: Flood warnings in coastal areas: how do experience and information influence responses to alert services? Nat. Hazards Earth Syst. Sci., 15(4), 703–714, doi:10.5194/nhess-15-703-2015.
  2329. Tapsuwan, S. and W. Rongrongmuang, 2015: Climate change perception of the dive tourism industry in Koh Tao island, Thailand. J. Outdoor Recreat. Tour., 11, 58–63, doi:10.1016/j.jort.2015.06.005.
  2330. Wynveen, C.J. and S.G. Sutton, 2015: Engaging the public in climate change-related pro-environmental behaviors to protect coral reefs: The role of public trust in the management agency. Mar. Policy, 53, 131–140, doi:10.1016/j.marpol.2014.10.030.
  2331. Wynveen, C.J. and S.G. Sutton, 2015: Engaging the public in climate change-related pro-environmental behaviors to protect coral reefs: The role of public trust in the management agency. Mar. Policy, 53, 131–140, doi:10.1016/j.marpol.2014.10.030.
  2332. Andrachuk, M. and D. Armitage, 2015: Understanding social-ecological change and transformation through community perceptions of system identity. Ecol. Soc., 20(4). 26. http://dx.doi.org/10.5751/ES-07759-200426
  2333. Audefroy, J.F. and B.N.C. Sánchez, 2017: Integrating local knowledge for climate change adaptation in Yucatán, Mexico. Int. J. Sustain. Built Environ., 6(1), 228–237, doi:10.1016/j.ijsbe.2017.03.007.
  2334. Leon, J.X. et al., 2015: Supporting Local and Traditional Knowledge with Science for Adaptation to Climate Change: Lessons Learned from Participatory Three-Dimensional Modeling in BoeBoe, Solomon Islands. Coast. Manage., 43(4), 424–438, doi:10.1080/08920753.2015.1046808.
  2335. Sakakibara, C., 2017: People of the Whales: Climate Change and Cultural Resilience Among Iñupiat of Arctic Alaska. Geogr. Rev., 107(1), 159–184.
  2336. Cinner, J.E. et al., 2018: Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change, 8(2), 117–123, doi:10.1038/s41558-017-0065-x.
  2337. Panikkar, B., B. Lemmond, B. Else and M. Murray, 2018: Ice over troubled waters: navigating the Northwest Passage using Inuit knowledge and scientific information. Clim. Res., 75(1), 81–94.
  2338. Alam, G.M.M., K. Alam and S. Mushtaq, 2016: Influence of institutional access and social capital on adaptation decision: Empirical evidence from hazard-prone rural households in Bangladesh. Ecol. Econ., 130, 243–251, doi:10.1016/j.ecolecon.2016.07.012.
  2339. Novak Colwell, J.M., M. Axelrod, S.S. Salim and S. Velvizhi, 2017: A Gendered Analysis of Fisherfolk’s Livelihood Adaptation and Coping Responses in the Face of a Seasonal Fishing Ban in Tamil Nadu & Puducherry, India. World Dev., 98, 325–337, doi:10.1016/j.worlddev.2017.04.033.
  2340. Audefroy, J.F. and B.N.C. Sánchez, 2017: Integrating local knowledge for climate change adaptation in Yucatán, Mexico. Int. J. Sustain. Built Environ., 6(1), 228–237, doi:10.1016/j.ijsbe.2017.03.007.
  2341. Fatorić, S. and E. Seekamp, 2017: Securing the Future of Cultural Heritage by Identifying Barriers to and Strategizing Solutions for Preservation under Changing Climate Conditions. Sustainability, 9(11), 1-20, doi:10.3390/su9112143.
  2342. Kuruppu, N. and R. Willie, 2015: Barriers to reducing climate enhanced disaster risks in Least Developed Country-Small Islands through anticipatory adaptation. Weather and Climate Extremes, 7, 72–83, doi:10.1016/j.wace.2014.06.001.
  2343. Marshall, N.A. et al., 2013: Social Vulnerability of Marine Resource Users to Extreme Weather Events. Ecosystems, 16(5), 797–809, doi:10.1007/s10021-013-9651-6.
  2344. Metcalf, S.J. et al., 2015: Measuring the vulnerability of marine social-ecological systems: a prerequisite for the identification of climate change adaptations. Ecol. Soc., 20(2): 35, doi:10.5751/ES-07509-200235.
  2345. Marshall, N.A. et al., 2013: Social Vulnerability of Marine Resource Users to Extreme Weather Events. Ecosystems, 16(5), 797–809, doi:10.1007/s10021-013-9651-6.
  2346. Kittinger, J.N., E.M. Finkbeiner, E.W. Glazier and L.B. Crowder, 2012: Human dimensions of coral reef social-ecological systems. Ecol. Soc., 17(4).
  2347. Hinkel, J. et al., 2014: Coastal flood damage and adaptation costs under 21st century sea level rise. PNAS, (9) 3292-3297, doi:10.1073/pnas.1222469111
  2348. Zougmoré, R. et al., 2016: Toward climate-smart agriculture in West Africa: a review of climate change impacts, adaptation strategies and policy developments for the livestock, fishery and crop production sectors. Agriculture & Food Security, 5(1), 26, doi:10.1186/s40066-016-0075-3.
  2349. Rosegrant, M.W., M.M. Dey, R. Valmonte-Santos and O.L. Chen, 2016: Economic impacts of climate change and climate change adaptation strategies in Vanuatu and Timor-Leste. Mar. Policy, 67, 179–188, doi:10.1016/j.marpol.2015.12.010.
  2350. Campbell, J.R., 2017: Climate Change Impacts on Atolls and Island Nations in the South Pacific. Encyclopedia of the Anthropocene: Volume 2. [Dellasala, D.A., Goldstein, M.I. (eds.)] Elsevier, New York. p. 227-232. ISBN: 978-0-12-813576-1.
  2351. Hess, J. and I. Kelman, 2017: Tourism Industry Financing of Climate Change Adaptation: Exploring the Potential in Small Island Developing States. Clim. Disast. Dev. J., 2(2), 33–45.
  2352. Byrne, J.A., A.Y. Lo and Y. Jianjun, 2015: Residents’ understanding of the role of green infrastructure for climate change adaptation in Hangzhou, China. Landscape Urban Plan., 138, 132–143, doi:10.1016/j.landurbplan.2015.02.013.
  2353. Balmford, A. et al., 2004: The worldwide costs of marine protected areas. PNAS, 101(26), 9694–9697, doi:10.1073/pnas.0403239101.
  2354. Dittrich, R., A. Wreford and D. Moran, 2016: A survey of decision-making approaches for climate change adaptation: Are robust methods the way forward? Ecol. Econ., 122, 79–89, doi:10.1016/j.ecolecon.2015.12.006.
  2355. Beck, M.W. et al., 2018: The global flood protection savings provided by coral reefs. Nat. Commun., 9(1), 2186, doi:10.1038/s41467-018-04568-z.
  2356. Roberts, C.M. et al., 2017: Marine reserves can mitigate and promote adaptation to climate change. PNAS, 114(24), 6167–6175.
  2357. Sutton-Grier, A.E., K. Wowk and H. Bamford, 2015: Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy, 51, 137–148, doi:10.1016/j.envsci.2015.04.006.
  2358. Robins, P.E. et al., 2016: Impact of climate change on UK estuaries: A review of past trends and potential projections. Estuar. Coast. Shelf Sci., 169, 119–135, doi:10.1016/j.ecss.2015.12.016.
  2359. Sánchez-Arcilla, A. et al., 2016: Managing coastal environments under climate change: Pathways to adaptation. Sci. Total Environ., 572, 1336–1352, doi:10.1016/j.scitotenv.2016.01.124.
  2360. Ahmed, N., W.W.L. Cheung, S. Thompson and M. Glaser, 2017: Solutions to blue carbon emissions: Shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Mar. Policy, 82, 68–75, doi:10.1016/j.marpol.2017.05.007.
  2361. Peña-Alonso, C., L. Hernández-Calvento, E. Pérez-Chacón and E. Ariza-Solé, 2017: The relationship between heritage, recreational quality and geomorphological vulnerability in the coastal zone: A case study of beach systems in the Canary Islands. Ecol. Indic., 82, 420–432, doi:10.1016/j.ecolind.2017.07.014.
  2362. Salgado, K. and M.L. Martinez, 2017: Is ecosystem-based coastal defense a realistic alternative? Exploring the evidence. J. Coast. Conserv., 21(6), 837–848, doi:10.1007/s11852-017-0545-1.
  2363. Triyanti, A., M. Bavinck, J. Gupta and M.A. Marfai, 2017: Social capital, interactive governance and coastal protection: The effectiveness of mangrove ecosystem-based strategies in promoting inclusive development in Demak, Indonesia. Ocean Coast. Manage., 150, 3–11, doi:10.1016/j.ocecoaman.2017.10.017.
  2364. Schuerch, M. et al., 2018: Future response of global coastal wetlands to sea level rise. Nature, 561(7722), 231–234, doi:10.1038/s41586-018-0476-5.
  2365. Beetham, E., P.S. Kench and S. Popinet, 2017: Future Reef Growth Can Mitigate Physical Impacts of Sea level Rise on Atoll Islands. Earth’s Future, 5(10), 1002–1014, doi:10.1002/2017ef000589.
  2366. Elliff, C.I. and I.R. Silva, 2017: Coral reefs as the first line of defense: Shoreline protection in face of climate change. Mar. Environ. Res., 127, 148–154, doi:10.1016/j.marenvres.2017.03.007.
  2367. Joyce, J. et al., 2017: Developing a multi-scale modeling system for resilience assessment of green-grey drainage infrastructures under climate change and sea level rise impact. Environ. Modell. Softw., 90, 1–26, doi:10.1016/j.envsoft.2016.11.026.
  2368. van Oppen, M.J.H. et al., 2017a: Shifting paradigms in restoration of the world’s coral reefs. Global Change Biol., 23(9), 3437–3448, doi:10.1111/gcb.13647.
  2369. Miller, D.D. et al., 2017: Adaptation strategies to climate change in marine systems. Global Change Biol., 24, e1–e14.
  2370. Wigand, C. et al., 2017: A climate change adaptation strategy for management of coastal marsh systems. Estuar. Coast., 40(3), 682–693.
  2371. Gracia, A., N. Rangel-Buitrago, J.A. Oakley and A.T. Williams, 2018: Use of ecosystems in coastal erosion management. Ocean Coast. Manage., 156, 277–289, doi:10.1016/j.ocecoaman.2017.07.009.
  2372. Salgado, K. and M.L. Martinez, 2017: Is ecosystem-based coastal defense a realistic alternative? Exploring the evidence. J. Coast. Conserv., 21(6), 837–848, doi:10.1007/s11852-017-0545-1.
  2373. Nehren, U. et al., 2017: Sand Dunes and Mangroves for Disaster Risk Reduction and Climate Change Adaptation in the Coastal Zone of Quang Nam Province, Vietnam. In: Land Use and Climate Change Interactions in Central Vietnam: LUCCi [Nauditt, A. and L. Ribbe (eds.)]. Springer Singapore, Singapore, pp. 201–222. ISBN: 978-981-10-2624-9.
  2374. Salgado, K. and M.L. Martinez, 2017: Is ecosystem-based coastal defense a realistic alternative? Exploring the evidence. J. Coast. Conserv., 21(6), 837–848, doi:10.1007/s11852-017-0545-1.
  2375. Miller, D.D. et al., 2017: Adaptation strategies to climate change in marine systems. Global Change Biol., 24, e1–e14.
  2376. Wynveen, C.J. and S.G. Sutton, 2015: Engaging the public in climate change-related pro-environmental behaviors to protect coral reefs: The role of public trust in the management agency. Mar. Policy, 53, 131–140, doi:10.1016/j.marpol.2014.10.030.
  2377. Romañach, S.S. et al., 2018: Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manage., 154, 72–82.
  2378. Sánchez-Arcilla, A. et al., 2016: Managing coastal environments under climate change: Pathways to adaptation. Sci. Total Environ., 572, 1336–1352, doi:10.1016/j.scitotenv.2016.01.124.
  2379. Miller, D.D. et al., 2017: Adaptation strategies to climate change in marine systems. Global Change Biol., 24, e1–e14.
  2380. Wigand, C. et al., 2017: A climate change adaptation strategy for management of coastal marsh systems. Estuar. Coast., 40(3), 682–693.
  2381. Sutton-Grier, A.E., K. Wowk and H. Bamford, 2015: Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy, 51, 137–148, doi:10.1016/j.envsci.2015.04.006.
  2382. Thorne, K.M. et al., 2017: Are coastal managers ready for climate change? A case study from estuaries along the Pacific coast of the United States. Ocean Coast. Manage., 143, 38–50, doi:10.1016/j.ocecoaman.2017.02.010.
  2383. Nguyen, T.P., T.T. Luom and K.E. Parnell, 2017: Mangrove allocation for coastal protection and livelihood improvement in Kien Giang province, Vietnam: Constraints and recommendations. Land Use Policy, 63, 401–407, doi:10.1016/j.landusepol.2017.01.048.
  2384. Comte, A. and L.H. Pendleton, 2018: Management strategies for coral reefs and people under Global Environ. Change: 25 years of scientific research. J. Environ. Manage., 209, 462–474, doi:10.1016/j.jenvman.2017.12.051.
  2385. Nguyen, T.P., T.T. Luom and K.E. Parnell, 2017: Mangrove allocation for coastal protection and livelihood improvement in Kien Giang province, Vietnam: Constraints and recommendations. Land Use Policy, 63, 401–407, doi:10.1016/j.landusepol.2017.01.048.
  2386. Miller, D.D. et al., 2017: Adaptation strategies to climate change in marine systems. Global Change Biol., 24, e1–e14.
  2387. Gallagher, R.V., R.O. Makinson, P.M. Hogbin and N. Hancock, 2015: Assisted colonization as a climate change adaptation tool. Austral Ecol.., 40(1), 12–20, doi:10.1111/aec.12163.
  2388. Gracia, A., N. Rangel-Buitrago, J.A. Oakley and A.T. Williams, 2018: Use of ecosystems in coastal erosion management. Ocean Coast. Manage., 156, 277–289, doi:10.1016/j.ocecoaman.2017.07.009.
  2389. Nehren, U. et al., 2017: Sand Dunes and Mangroves for Disaster Risk Reduction and Climate Change Adaptation in the Coastal Zone of Quang Nam Province, Vietnam. In: Land Use and Climate Change Interactions in Central Vietnam: LUCCi [Nauditt, A. and L. Ribbe (eds.)]. Springer Singapore, Singapore, pp. 201–222. ISBN: 978-981-10-2624-9.
  2390. Salgado, K. and M.L. Martinez, 2017: Is ecosystem-based coastal defense a realistic alternative? Exploring the evidence. J. Coast. Conserv., 21(6), 837–848, doi:10.1007/s11852-017-0545-1.
  2391. Vikolainen, V., J. Flikweert, H. Bressers and K. Lulofs, 2017: Governance context for coastal innovations in England: The case of Sandscaping in North Norfolk. Ocean Coast. Manage., 145, 82–93, doi:10.1016/j.ocecoaman.2017.05.012.
  2392. Gracia, A., N. Rangel-Buitrago, J.A. Oakley and A.T. Williams, 2018: Use of ecosystems in coastal erosion management. Ocean Coast. Manage., 156, 277–289, doi:10.1016/j.ocecoaman.2017.07.009.
  2393. Sutton-Grier, A.E., K. Wowk and H. Bamford, 2015: Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy, 51, 137–148, doi:10.1016/j.envsci.2015.04.006.
  2394. Wigand, C. et al., 2017: A climate change adaptation strategy for management of coastal marsh systems. Estuar. Coast., 40(3), 682–693.
  2395. Romañach, S.S. et al., 2018: Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manage., 154, 72–82.
  2396. Perkins, M.J. et al., 2015: Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures? Estuar. Coast. Shelf Sci., 167, 504–515, doi:10.1016/j.ecss.2015.10.033.
  2397. Robins, P.E. et al., 2016: Impact of climate change on UK estuaries: A review of past trends and potential projections. Estuar. Coast. Shelf Sci., 169, 119–135, doi:10.1016/j.ecss.2015.12.016.
  2398. Thorne, K.M. et al., 2017: Are coastal managers ready for climate change? A case study from estuaries along the Pacific coast of the United States. Ocean Coast. Manage., 143, 38–50, doi:10.1016/j.ocecoaman.2017.02.010.
  2399. Vikolainen, V., J. Flikweert, H. Bressers and K. Lulofs, 2017: Governance context for coastal innovations in England: The case of Sandscaping in North Norfolk. Ocean Coast. Manage., 145, 82–93, doi:10.1016/j.ocecoaman.2017.05.012.
  2400. Schaeffer-Novelli, Y. et al., 2016: Climate changes in mangrove forests and salt marshes. Brazilian J. Oceanogr., 64((spe2)), 37–52.
  2401. Wigand, C. et al., 2017: A climate change adaptation strategy for management of coastal marsh systems. Estuar. Coast., 40(3), 682–693.
  2402. Romañach, S.S. et al., 2018: Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manage., 154, 72–82.
  2403. Comte, A. and L.H. Pendleton, 2018: Management strategies for coral reefs and people under Global Environ. Change: 25 years of scientific research. J. Environ. Manage., 209, 462–474, doi:10.1016/j.jenvman.2017.12.051.
  2404. Ward, R.D., D.A. Friess, R.H. Day and R.A. MacKenzie, 2016: Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Health Sustain., 2(4), e01211, doi:10.1002/ehs2.1211.
  2405. Roberts, C.M. et al., 2017: Marine reserves can mitigate and promote adaptation to climate change. PNAS, 114(24), 6167–6175.
  2406. Narayan, S. et al., 2016: The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences. PLoS One, 11(5), e0154735, doi:10.1371/journal.pone.0154735.
  2407. Mackey, B. and D. Ware, 2018: Limits to Capital Works Adaptation in the Coastal Zones and Islands: Lessons for the Pacific. In: Limits to Climate Change Adaptation [Leal Filho, W. and J. Nalau (eds.)]. Springer International Publishing, Cham, pp. 301–323.ISBN: 978-3-319-64599-5
  2408. Islam, M.M., S. Sallu, K. Hubacek and J. Paavola, 2013: Vulnerability of fishery-based livelihoods to the impacts of climate variability and change: insights from coastal Bangladesh. Reg. Environ. Change, 14(1), 281–294, doi:10.1007/s10113-013-0487-6.
  2409. Evans, L.S. et al., 2016: Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region. PLoS One, 11(3), e0150575.
  2410. Evans, L.S. et al., 2016: Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region. PLoS One, 11(3), e0150575.
  2411. Oulahen, G. et al., 2018: Barriers and Drivers of Planning for Climate Change Adaptation across Three Levels of Government in Canada. Planning Theory & Practice, 19(3), 405–421, doi:10.1080/14649357.2018.1481993.
  2412. Esteban, M. et al., 2017: Awareness of coastal floods in impoverished subsiding coastal communities in Jakarta: Tsunamis, typhoon storm surges and dyke-induced tsunamis. Int. J. Disast. Risk Reduc., 23, 70–79, doi:10.1016/j.ijdrr.2017.04.007.
  2413. Fischer, A.P., 2018: Pathways of adaptation to external stressors in coastal natural-resource-dependent communities: Implications for climate change. World Dev., 108, 235–248, doi:10.1016/j.worlddev.2017.12.007.
  2414. Esteban, M. et al., 2017: Awareness of coastal floods in impoverished subsiding coastal communities in Jakarta: Tsunamis, typhoon storm surges and dyke-induced tsunamis. Int. J. Disast. Risk Reduc., 23, 70–79, doi:10.1016/j.ijdrr.2017.04.007.
  2415. Islam, M.M., S. Sallu, K. Hubacek and J. Paavola, 2013: Vulnerability of fishery-based livelihoods to the impacts of climate variability and change: insights from coastal Bangladesh. Reg. Environ. Change, 14(1), 281–294, doi:10.1007/s10113-013-0487-6.
  2416. Nanlohy, H., A.N. Bambang, Ambariyanto and S. Hutabarat, 2015: Coastal Communities Knowledge Level on Climate Change as a Consideration in Mangrove Ecosystems Management in the Kotania Bay, West Seram Regency. Procedia Environ. Sci., 23, 157–163, doi:10.1016/j.proenv.2015.01.024.
  2417. Lohmann, H., 2016: Comparing vulnerability and adaptive capacity to climate change in individuals of coastal Dominican Republic. Ocean Coast. Manage., 132, 111–119, doi:10.1016/j.ocecoaman.2016.08.009.
  2418. Koya, M. et al., 2017: Vulnerability of coastal fisher households to climate change: a case study fom Gujarat, India. Turkish Journal of Fisheries and Aquatic Sciences, 17, 193–203, doi:10.4194/1303-2712-v17_1_21.
  2419. Senapati, S. and V. Gupta, 2017: Socioeconomic vulnerability due to climate change: Deriving indicators for fishing communities in Mumbai. Mar. Policy, 76, 90–97, doi:10.1016/j.marpol.2016.11.023.
  2420. Cumiskey, L. et al., 2018: A framework to include the (inter)dependencies of Disaster Risk Reduction measures in coastal risk assessment. Coast. Eng., 134, 81–92, doi:10.1016/j.coastaleng.2017.08.009.
  2421. Nicholls, R. et al., 2015: Chapter 2 – Developing a Holistic Approach to Assessing and Managing Coastal Flood Risk. In: Coastal Risk Management in a Changing Climate. [Zanuttigh, B., Nicholls, R.J., Vanderlinden, J-P, Burcharth, H.F. and Thompson, R.C. (eds.)]. Butterworth-Heinemann, Boston, pp. 9–53. ISBN: 978-0-12-397310-8.
  2422. Peirson, W. et al., 2015: Opportunistic management of estuaries under climate change: A new adaptive decision-making framework and its practical application. J. Environ. Manage., 163, 214–223, doi:10.1016/j.jenvman.2015.08.021.
  2423. Sánchez-Arcilla, A. et al., 2016: Managing coastal environments under climate change: Pathways to adaptation. Sci. Total Environ., 572, 1336–1352, doi:10.1016/j.scitotenv.2016.01.124.
  2424. van der Nat, A., P. Vellinga, R. Leemans and E. van Slobbe, 2016: Ranking coastal flood protection designs from engineered to nature-based. Ecol. Eng., 87, 80–90, doi:10.1016/j.ecoleng.2015.11.007.
  2425. Francesch-Huidobro, M. et al., 2017: Governance challenges of flood-prone delta cities: Integrating flood risk management and climate change in spatial planning. Progr. Plan., 114, 1–27, doi:10.1016/j.progress.2015.11.001.
  2426. Khamis, Z.A., R. Kalliola and N. Käyhkö, 2017: Geographical characterization of the Zanzibar coastal zone and its management perspectives. Ocean Coast. Manage., 149, 116–134, doi:10.1016/j.ocecoaman.2017.10.003.
  2427. Galland, G., E. Harrould-Kolieb and D. Herr, 2012: The ocean and climate change policy. Clim. Policy, 12(6), 764–771, doi:10.1080/14693062.2012.692207.
  2428. Stephens, T., 2015: Ocean acidification.[Rayfuse, R. (ed.)]. Edward Elgar Publishing, 106, 406.
  2429. Fennel, K. and D.L. VanderZwaag, 2016: Ocean acidification: Scientific surges, lagging law and policy responses in Routledge handbook of maritime regulation and enforcement [R. Warner and S. Kaye eds]. Routledge 1st eddition, pp. 342-362. London, UK.
  2430. Diamond, S.E., 2018: Contemporary climate-driven range shifts: Putting evolution back on the table. Funct. Ecol., 32(7), 1652–1665, doi:10.1111/1365-2435.13095.
  2431. Galaz, V. et al., 2012: Polycentric systems and interacting planetary boundaries – Emerging governance of climate change-ocean acidification-marine biodiversity. Ecol. Econ., 81, 21–32, doi:10.1016/j.ecolecon.2011.11.012.
  2432. Oral, N., 2018: Ocean Acidification: Falling Between the Legal Cracks of UNCLOS and the UNFCCC. Ecology Law Quarterly, 45(1), 9.
  2433. Levin, L.A. and N. Le Bris, 2015: The deep ocean under climate change. Science, 350(6262), 766–768, doi:10.1126/science.aad0126.
  2434. Warner, R.M., 2018: Oceans in Transition: Incorporating Climate-Change Impacts into Environmental Impact Assessment for Marine Areas Beyond National Jurisdiction. Ecology Law Quarterly, 45(1), https://doi.org/10.15779/Z38M61BQ0J
  2435. UNEP, 2016: Regional Seas Programmes and other UNEP Activities Relevant toMarine Biodiversity in Areas beyond National Jurisdiction. Development of an international legally-binding instrument on the conservation and sustainable use of marine biodiversity of areas beyond national jurisdiction under the United Nations Convention on Law of the Sea, 8 pp, https://www.un.org/depts/los/biodiversity/prepcom_files/UNEP_and_BBNJ_PrepCom2.pdf.
  2436. Bennett, N.J., P. Dearden, G. Murray and A. Kadfak, 2014: The capacity to adapt?: communities in a changing climate, environment, and economy on the northern Andaman coast of Thailand. Ecol. Soc., 19(2), doi:10.5751/ES-06315-190205.
  2437. Salik, K.M., S. Jahangir, W.u.Z. Zahdi and S.u. Hasson, 2015: Climate change vulnerability and adaptation options for the coastal communities of Pakistan. Ocean Coast. Manage., 112, 61–73, doi:10.1016/j.ocecoaman.2015.05.006.
  2438. Weng, K.C., E. Glazier, S.J. Nicol and A.J. Hobday, 2015: Fishery management, development and food security in the Western and Central Pacific in the context of climate change. Deep Sea Res. Pt. II, 113, 301–311, doi:10.1016/j.dsr2.2014.10.025.
  2439. Karim, M.S. and M.M. Uddin, 2019: Swatch-of-no-ground marine protected area for sharks, dolphins, porpoises and whales: Legal and institutional challenges. Mar. Pollut. Bull., 139, 275–281, doi:10.1016/j.marpolbul.2018.12.037.
  2440. Sarkodie, S.A. and V. Strezov, 2019: Economic, social and governance adaptation readiness for mitigation of climate change vulnerability: Evidence from 192 countries. Sci. Total Environ., 656, 150–164, doi:10.1016/j.scitotenv.2018.11.349.
  2441. Redgwell, C., 2012: UNCLOS and Climate Change. Proceedings of the Annual Meeting (American Society of International Law), 106, 406, doi:10.5305/procannmeetasil.106.0406.
  2442. Karim, M.S., 2015: Prevention of Pollution of the Marine Environment from Vessels. Springer International Publishing, Cham.ISBN 978-3-319-10608-3
  2443. Dixon, T., J. Garrett and E. Kleverlaan, 2014: Update on the London Protocol – Developments on Transboundary CCS and on Geoengineering. 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12, 63(Supplement C), 6623–6628, doi:10.1016/j.egypro.2014.11.698.
  2444. Herr, D., K. Isensee, E. Harrould-Kolieb and C. Turley, 2014: Ocean Acidification, iv. IUCN, Gland, Switzerland, 52 pp.
  2445. Williams, G.A. et al., 2016: Meeting the climate change challenge: Pressing issues in southern China and SE Asian coastal ecosystems. Reg. Stud. Mar. Sci., 8, 373–381, doi:10.1016/j.rsma.2016.07.002.
  2446. Heron, S.F., 2017: Impacts of Climate Change on World Heritage Coral Reefs : A First Global Scientic Assessment. UNESCO World Heritage Centre, Paris, 16 pp.
  2447. Galland, G., E. Harrould-Kolieb and D. Herr, 2012: The ocean and climate change policy. Clim. Policy, 12(6), 764–771, doi:10.1080/14693062.2012.692207.
  2448. Redgwell, C., 2012: UNCLOS and Climate Change. Proceedings of the Annual Meeting (American Society of International Law), 106, 406, doi:10.5305/procannmeetasil.106.0406.
  2449. Herr, D., K. Isensee, E. Harrould-Kolieb and C. Turley, 2014: Ocean Acidification, iv. IUCN, Gland, Switzerland, 52 pp.
  2450. Magnan, A.K. et al., 2016: Implications of the Paris Agreement for the ocean. Nat. Clim. Change, 6(8), 732–735.
  2451. Gallo, N.D., D.G. Victor and L.A. Levin, 2017: Ocean commitments under the Paris Agreement. Nat. Clim. Change, 7(11), 833-838, doi:10.1038/NCLIMATE3422.
  2452. Heron, S.F., 2017: Impacts of Climate Change on World Heritage Coral Reefs : A First Global Scientic Assessment. UNESCO World Heritage Centre, Paris, 16 pp.
  2453. Gallo, N.D., D.G. Victor and L.A. Levin, 2017: Ocean commitments under the Paris Agreement. Nat. Clim. Change, 7(11), 833-838, doi:10.1038/NCLIMATE3422.
  2454. Karim, M.S., 2015: Prevention of Pollution of the Marine Environment from Vessels. Springer International Publishing, Cham.ISBN 978-3-319-10608-3
  2455. Blasiak, R. et al., 2017: Climate change and marine fisheries: Least developed countries top global index of vulnerability. PLoS One, 12(6), e0179632, doi:10.1371/journal.pone.0179632.
  2456. Brooke, S. et al., 2013: Temperature tolerance of the deep sea coral Lophelia pertusa from the southeastern United States. Deep sea Res. Pt. II, 92, 240–248.
  2457. Ojea, E., I. Pearlman, S.D. Gaines and S.E. Lester, 2017: Fisheries regulatory regimes and resilience to climate change. Ambio, 46(4), 399–412.
  2458. Pentz, B. and N. Klenk, 2017: The ‘responsiveness gap’ in RFMOs: The critical role of decision-making policies in the fisheries management response to climate change. Ocean Coast. Manage., 145, 44–51, doi:10.1016/j.ocecoaman.2017.05.007.
  2459. Pinsky, M.L. et al., 2018: Preparing ocean governance for species on the move. Science, 360(6394), 1189.
  2460. Aqorau, T., J. Bell and J.N. Kittinger, 2018: Good governance for migratory species. Science, 361(6408), 1208, doi:10.1126/science.aav2051.
  2461. Heenan, A. et al., 2015: A climate-informed, ecosystem approach to fisheries management. Mar. Policy, 57, 182–192, doi:10.1016/j.marpol.2015.03.018.
  2462. Gourlie, D. et al., 2017: Performing “A New Song”: Suggested Considerations for Drafting Effective Coastal Fisheries Legislation Under Climate Change. Mar. Policy, 88; 342-349, doi:10.1016/j.marpol.2017.06.012.
  2463. Gaines, S.D. et al., 2018: Improved fisheries management could offset many negative effects of climate change. Sci. Adv., 4(8), eaao1378, doi:10.1126/sciadv.aao1378.
  2464. Blasiak, R. et al., 2017: Climate change and marine fisheries: Least developed countries top global index of vulnerability. PLoS One, 12(6), e0179632, doi:10.1371/journal.pone.0179632.
  2465. Ojea, E., I. Pearlman, S.D. Gaines and S.E. Lester, 2017: Fisheries regulatory regimes and resilience to climate change. Ambio, 46(4), 399–412.
  2466. Pentz, B. and N. Klenk, 2017: The ‘responsiveness gap’ in RFMOs: The critical role of decision-making policies in the fisheries management response to climate change. Ocean Coast. Manage., 145, 44–51, doi:10.1016/j.ocecoaman.2017.05.007.
  2467. Aqorau, T., J. Bell and J.N. Kittinger, 2018: Good governance for migratory species. Science, 361(6408), 1208, doi:10.1126/science.aav2051.
  2468. Pinsky, M.L. et al., 2018: Preparing ocean governance for species on the move. Science, 360(6394), 1189.
  2469. Hiwasaki, L., E. Luna, Syamsidik and R. Shaw, 2014: Process for integrating local and indigenous knowledge with science for hydro-meteorological disaster risk reduction and climate change adaptation in coastal and small island communities. Int. J. Disast. Risk Reduc., 10, 15–27, doi:10.1016/j.ijdrr.2014.07.007.
  2470. Kettle, N.P. et al., 2014: Integrating scientific and local knowledge to inform risk-based management approaches for climate adaptation. Clim. Risk Manage., 4–5, 17–31, doi:10.1016/j.crm.2014.07.001.
  2471. Hernández-Delgado, E.A., 2015: The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies. Mar. Pollut. Bull., 101(1), 5–28, doi:10.1016/j.marpolbul.2015.09.018.
  2472. Himes-Cornell, A. and S. Kasperski, 2015a: Assessing climate change vulnerability in Alaska’s fishing communities. Fish. Res., 162, 1–11, doi:10.1016/j.fishres.2014.09.010.
  2473. Pittman, J. et al., 2015: Governance fit for climate change in a Caribbean coastal-marine context. Mar. Policy, 51, 486–498, doi:10.1016/j.marpol.2014.08.009.
  2474. Colburn, L.L. et al., 2016: Indicators of climate change and social vulnerability in fishing dependent communities along the Eastern and Gulf Coasts of the United States. Mar. Policy, 74, 323–333, doi:10.1016/j.marpol.2016.04.030.
  2475. Creighton, C., A.J. Hobday, M. Lockwood and G.T. Pecl, 2016: Adapting Management of Marine Environments to a Changing Climate: A Checklist to Guide Reform and Assess Progress. Ecosystems, 19(2), 187–219, doi:10.1007/s10021-015-9925-2.
  2476. Hobday, A.J. et al., 2016a: Planning adaptation to climate change in fast-warming marine regions with seafood-dependent coastal communities. Rev. Fish Biol. Fisher., 26(2), 249–264, doi:10.1007/s11160-016-9419-0.
  2477. Audefroy, J.F. and B.N.C. Sánchez, 2017: Integrating local knowledge for climate change adaptation in Yucatán, Mexico. Int. J. Sustain. Built Environ., 6(1), 228–237, doi:10.1016/j.ijsbe.2017.03.007.
  2478. Gissi, E., S. Fraschetti and F. Micheli, 2019: Incorporating change in marine spatial planning: A review. Environ. Sci. Policy, 92, 191–200, doi:10.1016/j.envsci.2018.12.002.
  2479. Tuda, A.O., S. Kark and A. Newton, 2019: Exploring the prospects for adaptive governance in marine transboundary conservation in East Africa. Mar. Policy, 104, 75–84, doi:10.1016/j.marpol.2019.02.051.
  2480. UNFCCC, 2015: Adoption of the Paris Agreement. United Nations Framework Convention on Climate Change, Twenty-first Session of Conference of the Parties, https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
  2481. Herr, D., K. Isensee, E. Harrould-Kolieb and C. Turley, 2014: Ocean Acidification, iv. IUCN, Gland, Switzerland, 52 pp.
  2482. Harrould-Kolieb, E.R. and O. Hoegh-Guldberg, 2019: A governing framework for international ocean acidification policy. Mar. Policy, 102, 10–20, doi:10.1016/j.marpol.2019.02.004.
  2483. Fennel, K. and D.L. VanderZwaag, 2016: Ocean acidification: Scientific surges, lagging law and policy responses in Routledge handbook of maritime regulation and enforcement [R. Warner and S. Kaye eds]. Routledge 1st eddition, pp. 342-362. London, UK.
  2484. Jagers, S.C. et al., 2018: Societal causes of, and responses to, ocean acidification. Ambio, (48)8, 816–830, doi:10.1007/s13280-018-1103-2
  2485. Newton, J. et al., 2015: Global ocean acidification observing network: requirements and governance plan. Global Ocean Acidification Observing Network: Requirements and Governance Plan, 57 p.
  2486. Osborn, D., S. Dupont, L. Hansson and M. Metian, 2017: Ocean acidification: Impacts and governance. In: Handbook on the Economics and Management of Sustainable Oceans [Nunes, P.A.L.D., L.E. Svensson and A. Marikandya (eds.)], Cheltenham, UK,pp. 396–415. ISBN: 978-1-78643-071-7
  2487. Watson-Wright, W. and J.L. Valdés, 2018: Fragmented governance of our one global ocean. In: The Future of Ocean Governance and Capacity Development [Institute, I.O. (ed.)]. Brill, Leiden, Netherland. 562 pp. ISBN: 978-90-04-38027-1
  2488. Harrould-Kolieb, E.R. and D. Herr, 2012: Ocean acidification and climate change: synergies and challenges of addressing both under the UNFCCC. Clim. Policy, 12(3), 378–389, doi:10.1080/14693062.2012.620788.
  2489. Herr, D., K. Isensee, E. Harrould-Kolieb and C. Turley, 2014: Ocean Acidification, iv. IUCN, Gland, Switzerland, 52 pp.
  2490. Harrould-Kolieb, E.R. and D. Herr, 2012: Ocean acidification and climate change: synergies and challenges of addressing both under the UNFCCC. Clim. Policy, 12(3), 378–389, doi:10.1080/14693062.2012.620788.
  2491. Hughes, T.P. et al., 2013: Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol. Evol., 28(3), 149–155, doi:10.1016/j.tree.2012.08.022.
  2492. Good, P. et al., 2018: Recent progress in understanding climate thresholds: Ice sheets, the Atlantic meridional overturning circulation, tropical forests and responses to ocean acidification. Prog. Phys. Geog., 42(1), 24–60, doi:10.1177/0309133317751843.
  2493. Steinacher, M., F. Joos and T.F. Stocker, 2013: Allowable carbon emissions lowered by multiple climate targets. Nature, 499, 197, doi:10.1038/nature12269.
  2494. Black, B.A. et al., 2014: Six centuries of variability and extremes in a coupled marine-terrestrial ecosystem. Science, 345(6203), 1498.
  2495. Williamson, P. and C. Turley, 2012: Ocean acidification in a geoengineering context. Philos. Trans. Roy. Soc. A., 370(1974), 4317.
  2496. Keller, D.P., E.Y. Feng and A. Oschlies, 2014a: Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat. Commun., 5, 3304, doi:10.1038/ncomms4304.
  2497. Kelly, R.P. et al., 2011: Mitigating Local Causes of Ocean Acidification with Existing Laws. Science, 332(6033), 1036.
  2498. Billé, R. et al., 2013: Taking Action Against Ocean Acidification: A Review of Management and Policy Options. Environ. Manage., 52(4), 761–779, doi:10.1007/s00267-013-0132-7.
  2499. Strong, A.L. et al., 2014: Ocean Acidification 2.0: Managing our Changing Coastal Ocean Chemistry. BioScience, 64(7), 581–592, doi:10.1093/biosci/biu072.
  2500. Albright, R. et al., 2016a: Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study. J. Environ. Manage., 182, 641–650, doi:10.1016/j.jenvman.2016.07.038.
  2501. Sabine, C.L., 2018: Good news and bad news of blue carbon. PNAS, 115(15), 3745–3746.