Special Report: Special Report on the Ocean and Cryosphere in a Changing Climate
Ch 03

Polar regions

Coordinating Lead Authors:

  • Michael Meredith (United Kingdom)
  • Martin Sommerkorn (Norway, Germany)

Lead Authors:

  • Sandra Cassotta (Denmark)
  • Chris Derksen (Canada)
  • Alexey Ekaykin (Russia)
  • Anne Hollowed (United States)
  • Gary Kofinas (United States)
  • Andrew Mackintosh (Australia, New Zealand)
  • Jess Melbourne-Thomas (Australia)
  • Mônica M.C. Muelbert (Brazil)
  • Geir Ottersen (Norway)
  • Hamish Pritchard (United Kingdom)
  • Edward A.G. Schuur (United States)

Contributing Authors:

  • Nerilie Abram (Australia)
  • Julie Arblaster (Australia)
  • Kevin Arrigo (United States)
  • Kumiko Azetzu-Scott (Canada)
  • David Barber (Canada)
  • Inka Bartsch (Germany)
  • Jeremy Bassis (United Kingdom)
  • Dorothea Bauch (Germany)
  • Fikret Berkes (Canada)
  • Philip Boyd (Australia)
  • Angelika Brandt (Germany)
  • Lijing Cheng (China)
  • Steven Chown (Australia)
  • Alison Cook (United Kingdom)
  • Jackie Dawson (Canada)
  • (United States)
  • Thorben Dunse (Norway, Germany)
  • Andrea Dutton (United States)
  • Tamsin Edwards (United Kingdom)
  • Laura Eerkes-Medrano (Canada)
  • Arne Eide (Norway)
  • Howard Epstein (United States)
  • F. Stuart Chapin III (United States)
  • ()
  • ()
  • Jeremy Fyke (Canada)
  • Andrey Glazovsky (Russia)
  • Jacqueline Grebmeier (United States)
  • Guido Grosse ()
  • Anne Gunn (Canada)
  • Sherilee Harper (Canada)
  • Jan Hjort (Finland)
  • Will Hobbs (Australia)
  • Eric P. Hoberg (United States)
  • Indi Hodgson-Johnston (Australia)
  • David Holland (United States)
  • (United Kingdom)
  • Russell Hopcroft (United States)
  • George Hunt (United States)
  • Henry Huntington (United States)
  • ()
  • (Norway)
  • Gita Ljubicic (Canada)
  • Michael Loranty (United States)
  • Michelle Mack ()
  • ()
  • Benoit Meyssignac (France)
  • Hans Meltofte (Denmark)
  • Alexander Milner ()
  • (South Africa)
  • Lawrence Mudryk (Canada)
  • Mark Nuttall (Canada)
  • Jamie Oliver ()
  • ()
  • Keith Reid (United Kingdom)
  • Vladimir Romanovsky (United States, Russia)
  • (Canada)
  • Christina Schaedel (United States, Switzerland)
  • Lars H. Smedsrud (Norway)
  • ()
  • Alessandro Tagliabue (United Kingdom)
  • Mary-Louise Timmermans (United States)
  • Merritt Turetsky (Canada)
  • Michiel van den Broeke (Netherlands)
  • Roderik Van De Wal (Netherlands)
  • Isabella Velicogna (United States, Italy)
  • Jemma Wadham (United Kingdom)
  • Michelle Walvoord (United States)
  • Gongjie Wang (China)
  • Dee Williams (United States)
  • (United States)
  • ()

Review Editors:

  • Oleg Anisimov (Russia)
  • Gregory Flato (Canada)
  • Cunde Xiao (China)

Chapter Scientist:

  • Shengping He (Norway, China)
  • Victoria Peck (United Kingdom)

FAQ 3.1: How do changes in the Polar Regions affect other parts of the world?

Climate change in the Arctic and Antarctic affect people outside of the polar regions in two key ways. First, physical and ecosystem changes in the polar regions have socioeconomic impacts that extend across the globe. Second, physical changes in the Arctic and Antarctic influence processes that are important for global climate and sea level.

Among the risks to societies and economies, aspects of food provision, transport and access to non-renewable resources are of great importance. Fisheries in the polar oceans support regional and global food security and are important for the economies of many countries around the world, but climate change alters Arctic and Antarctic marine habitats, and affects the ability of polar species and ecosystems to withstand or adapt to physical changes. This has consequences for where, when, and how many fish can be captured. Impacts will vary between regions, depending on the degree of climate change and the effectiveness of human responses. While management in some polar fisheries is among the most developed, scientists are exploring modifications to existing precautionary, ecosystem-based management approaches to increase the scope for adaptation to climate change impacts on marine ecosystems and fisheries.

New shipping routes through the Arctic offer cost savings because they are shorter than traditional passages via the Suez or Panama Canals. Ship traffic has already increased and is projected to become more feasible in the coming decades as further reductions in sea ice cover make Arctic routes more accessible. Increased Arctic shipping has significant socioeconomic and political implications for global trade, northern nations and economies strongly linked to traditional shipping corridors, while also increasing environmental risk in the Arctic. Reduced Arctic sea ice cover allows greater access to offshore petroleum resources and ports supporting resource extraction on land.

The polar regions influence the global climate through a number of processes. As spring snow and summer sea ice cover decrease, more heat is absorbed at the surface. There is growing evidence that ongoing changes in the Arctic, primarily sea ice loss, can potentially influence mid-latitude weather. As temperatures increase in the Arctic, permafrost soils in northern regions store less carbon. The release of carbon dioxide and methane from the land to the atmosphere further contributes to global warming.

Melting ice sheets and glaciers in the polar regions cause sea levels to rise, affecting coastal regions and their large populations and economies. At present, the Greenland Ice Sheet (GIS) and polar glaciers are contributing more to sea level rise than the Antarctic Ice Sheet (AIS). However, ice loss from the AIS has continued to accelerate, driven primarily by increased melting of the underside of floating ice shelves, which has caused glaciers to flow faster. Even though it remains difficult to project the amount of ice loss from Antarctica after the second half of the 21st century, it is expected to contribute significantly to future sea level rise.

The Southern Ocean that surrounds Antarctica is the main region globally where waters at depth rise to the surface. Here, they become transformed into cold, dense waters that sink back to the deep ocean, storing significant amounts of human-produced heat and dissolved carbon for decades to centuries or longer, and helping to slow the rate of global warming in the atmosphere. Future changes in the strength of this ocean circulation can so far only be projected with limited certainty.

Footnotes

  1.  In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: Virtually certain 99–100% probability, Very likely 90–100%, Likely 66–100%, About as likely as not 33–66%, Unlikely 0–33%, Very unlikely 0–10%, and Exceptionally unlikely 0–1%. Additional terms (Extremely likely: 95–100%, More likely than not >50–100%, and Extremely unlikely 0–5%) may also be used when appropriate. Assessed likelihood is typeset in italics, e.g., very likely (see Section 1.9.2 and Figure 1.4 for more details). This Report also uses the term ‘likely range’ to indicate that the assessed likelihood of an outcome lies within the 17-83% probability range.
  2. In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; and for the degree of agreement: low, medium, or high. A level of confidence is expressed using five qualifiers: very low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and agreement statement, different confidence levels can be assigned, but increasing levels of evidence and degrees of agreement are correlated with increasing confidence (see Section 1.9.2 and Figure 1.4 for more details).
  3. Projections for ice sheets and glaciers in the polar regions are summarized in Chapters 4 and 2, respectively.
  4. For context, total annual anthropogenic CO2 emissions were 10.8 ± 0.8 GtC yr–1 (39.6 ± 2.9 GtCO2 yr–1) on average over the period 2008–2017. Total annual anthropogenic methane emissions were 0.35 ± 0.01 GtCH4 yr–1, on average over the period 2003–2012 (Saunois et al., 2016; Le Quéré et al., 2018).

References

  1. CCAMLR, 2017c: Map of the CAMLR Convention Area. 2017, http://www.ccamlr.org/node/86816 [Available at: http://www.ccamlr.org/node/86816; Access Date: 05 December, 2018].
  2. PAME, 2013: Large Marine Ecosystems (LMEs) of the Arctic area. Revision of the Arctic LME map. . PAME Secretariat, Akureyri, Iceland.
  3. Notz, D. and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354 (6313), 747-750, doi:10.1126/science.aag2345.
  4. Richter-Menge, J., J. E. Overland, J. T. Mathis and E. E. Osborne, 2017: Arctic Report Card 2017. [Available at: http://www.arctic.noaa.gov/Report-Card%5D.
  5. Fyfe, J. C. et al., 2013: One hundred years of Arctic surface temperature variation due to anthropogenic influence. Scientific Reports, 3, 2645, doi:10.1038/srep02645
  6. Najafi, M. R., F. W. Zwiers and N. P. Gillett, 2015: Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nature Climate Change, 5 (3), 246-249, doi:10.1038/nclimate2524.
  7. Overland, J. et al., 2018a: The urgency of Arctic change. Polar Science, doi:10.1016/j.polar.2018.11.008.
  8. Serreze, M. C., A. P. Barrett and J. Stroeve, 2012: Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. Journal of Geophysical Research: Atmospheres, 117 (D10), n/a-n/a, doi:10.1029/2011jd017421.
  9. Pithan, F. and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7, 181, doi:10.1038/ngeo2071.
  10. Goosse, H. et al., 2018: Quantifying climate feedbacks in polar regions. Nature Communications, 9 (1), 1919, doi:10.1038/s41467-018-04173-0.
  11. Stuecker, M. F. et al., 2018: Polar amplification dominated by local forcing and feedbacks. Nature Climate Change, 8 (12), 1076–1081 doi:10.1038/s41558-018-0339-y.
  12. Overland, J. E. et al., 2018b: Surface air temperature. [in Arctic Report Card 2018] [Available at: https://arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/783/Surface-Air-Temperature%5D.
  13. Overland, J. et al., 2018a: The urgency of Arctic change. Polar Science, doi:10.1016/j.polar.2018.11.008.
  14. Overland, J. E. and M. Y. Wang, 2016: Recent Extreme Arctic Temperatures are due to a Split Polar Vortex. Journal of Climate, 29 (15), 5609-5616, doi:10.1175/jcli-d-16-0320.1.
  15. Kim, B.-M. et al., 2017: Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Scientific Reports, 7, 40051, doi:10.1038/srep40051.
  16. Overland, J. et al., 2018a: The urgency of Arctic change. Polar Science, doi:10.1016/j.polar.2018.11.008.
  17. AMAP, 2017d: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Council Secretariat, Oslo, Norway, xiv + 269 pp [Available at: https://www.amap.no/documents/download/2987/inline; Access Date: 10 October 2018].
  18. Walsh, J. E., F. Fetterer, J. Scott Stewart and W. L. Chapman, 2017: A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107 (1), 89-107, doi:10.1111/j.1931-0846.2016.12195.x.
  19. Nicolas, J. P. and D. H. Bromwich, 2014: New reconstruction of antarctic near-surface temperatures: Multidecadal trends and reliability of global reanalyses. Journal of Climate, 27 (21), 8070-8093, doi:10.1175/JCLI-D-13-00733.1.
  20. Jones, J. M. et al., 2016: Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nature Climate Change, 6, 917, doi:10.1038/nclimate3103.
  21. Turner, J. et al., 2016: Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535 (7612), 411-415, doi:10.1038/nature18645.
  22. Collins, M. et al., 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Long-term climate change: Projections, commitments and irreversibility, Cambridge University Press, Cambridge, UK and New York, USA.
  23. Abram, N. J. et al., 2014: Evolution of the Southern Annular Mode during the past millennium. Nature Climate Change, 4 (7), 564-569, doi:10.1038/nclimate2235.
  24. Dätwyler, C. et al., 2017: Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium. Climate Dynamics, 51 (5-6), 2321-2339, doi:10.1007/s00382-017-4015-0.
  25. Schneider, D. P., C. Deser and T. Fan, 2015: Comparing the Impacts of Tropical SST Variability and Polar Stratospheric Ozone Loss on the Southern Ocean Westerly Winds. Journal of Climate, 28 (23), 9350-9372, doi:10.1175/jcli-d-15-0090.1.
  26. Waugh, D. W., C. I. Garfinkel and L. M. Polvani, 2015: Drivers of the Recent Tropical Expansion in the Southern Hemisphere: Changing SSTs or Ozone Depletion? Journal of Climate, 28 (16), 6581-6586, doi:10.1175/jcli-d-15-0138.1.
  27. Karpechko, A. et al., 2018: Scientific Assessment of Ozone Depletion: 2018 [Cagnazzo, C. and L. Polvani (eds.)]. Stratospheric Ozone and Climate, Chapter 5, World Meteorological Organization, G. S., Geneva, Switzerland [Available at: https://www.esrl.noaa.gov/csd/assessments/ozone/2018/report/Chapter5_2018OzoneAssessment.pdf%5D.
  28. Li, X., D. M. Holland, E. P. Gerber and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538, doi:10.1038/nature12945.
  29. Turner, J. et al., 2016: Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535 (7612), 411-415, doi:10.1038/nature18645.
  30. Clem, K. R., J. A. Renwick and J. McGregor, 2017: Relationship between eastern tropical Pacific cooling and recent trends in the Southern Hemisphere zonal-mean circulation. Climate Dynamics, 49 (1-2), 113-129, doi:10.1007/s00382-016-3329-7.
  31. Smith, A. J. et al., 2017a: Beluga whale summer habitat associations in the Nelson River estuary, western Hudson Bay, Canada. Plos One, 12 (8), e0181045, doi:10.1371/journal.pone.0181045.
  32. Li, X., D. M. Holland, E. P. Gerber and C. Yoo, 2015a: Rossby Waves Mediate Impacts of Tropical Oceans on West Antarctic Atmospheric Circulation in Austral Winter. Journal of Climate, 28 (20), 8151-8164, doi:10.1175/jcli-d-15-0113.1.
  33. Raphael, M. N. et al., 2016: The Amundsen Sea Low Variability, Change, and Impact on Antarctic Climate. Bulletin of the American Meteorological Society, 97 (1), 111-121, doi:10.1175/bams-d-14-00018.1.
  34. Turner, D. R., I.-M. Hassellöv, E. Ytreberg and A. Rutgersson, 2017a: Shipping and the environment: Smokestack emissions, scrubbers and unregulated oceanic consequences. Elem Sci Anth, 5, 45, doi:http://doi.org/10.1525/elementa.167.
  35. Evtushevsky, O. M., A. V. Grytsai and G. P. Milinevsky, 2018: Decadal changes in the central tropical Pacific teleconnection to the Southern Hemisphere extratropics. Climate Dynamics, 52 (7-8), 4027-4055, doi:10.1007/s00382-018-4354-5.
  36. Yuan, X., M. R. Kaplan and M. A. Cane, 2018: The Interconnected Global Climate System—A Review of Tropical–Polar Teleconnections. Journal of Climate, 31 (15), 5765-5792, doi:10.1175/jcli-d-16-0637.1.
  37. Schneider, D. P., C. Deser and T. Fan, 2015: Comparing the Impacts of Tropical SST Variability and Polar Stratospheric Ozone Loss on the Southern Ocean Westerly Winds. Journal of Climate, 28 (23), 9350-9372, doi:10.1175/jcli-d-15-0090.1.
  38. Clem, K. R., J. A. Renwick and J. McGregor, 2017: Relationship between eastern tropical Pacific cooling and recent trends in the Southern Hemisphere zonal-mean circulation. Climate Dynamics, 49 (1-2), 113-129, doi:10.1007/s00382-016-3329-7.
  39. Rayner, N. A., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108 (D14), 4407, doi:10.1029/2002jd002670.
  40. Reynolds, R. W. et al., 2002: An Improved In Situ and Satellite SST Analysis for Climate. Journal of Climate, 15 (13), 1609-1625, doi:10.1175/1520-0442.
  41. Barber, D. et al., 2017: Arctic Sea Ice. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme, Oslo, 103-136.
  42. Comiso, J. C., W. N. Meier and R. Gersten, 2017b: Variability and trends in the Arctic Sea ice cover: Results from different techniques. Journal of Geophysical Research: Oceans, 122 (8), 6883-6900, doi:10.1002/2017jc012768.
  43. Stroeve, J. and D. Notz, 2018: Changing state of Arctic sea ice across all seasons. Environmental Research Letters, 13 (10), 103001, doi:10.1088/1748-9326/aade56.
  44. Onarheim, I. H., T. Eldevik, L. H. Smedsrud and J. C. Stroeve, 2018: Seasonal and regional manifestation of Arctic sea ice loss. Journal of Climate, 31 (12), 4917-4932, doi:10.1175/jcli-d-17-0427.1.
  45. Onarheim, I. H., T. Eldevik, L. H. Smedsrud and J. C. Stroeve, 2018: Seasonal and regional manifestation of Arctic sea ice loss. Journal of Climate, 31 (12), 4917-4932, doi:10.1175/jcli-d-17-0427.1.
  46. Onarheim, I. H. and M. Årthun, 2017: Toward an ice-free Barents Sea. Geophysical Research Letters, 44 (16), 8387-8395, doi:10.1002/2017GL074304.
  47. Walsh, J. E., F. Fetterer, J. Scott Stewart and W. L. Chapman, 2017: A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107 (1), 89-107, doi:10.1111/j.1931-0846.2016.12195.x.
  48. Polyak, L. et al., 2010: History of sea ice in the Arctic. Quaternary Science Reviews, 29 (15-16), 1757-1778, doi:10.1016/j.quascirev.2010.02.010.
  49. Kinnard, C. et al., 2011: Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature, 479 (7374), 509-12, doi:10.1038/nature10581.
  50. Halfar, J. et al., 2013: Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy. Proc Natl Acad Sci U S A, 110 (49), 19737-41, doi:10.1073/pnas.1313775110.
  51. Kay, J. E., M. M. Holland and A. Jahn, 2011: Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophysical Research Letters, 38 (15), L15708, doi:10.1029/2011gl048008.
  52. Notz, D. and J. Marotzke, 2012: Observations reveal external driver for Arctic sea-ice retreat. Geophysical Research Letters, 39 (8), L08502, doi:10.1029/2012gl051094.
  53. Perovich, D. K. and C. Polashenski, 2012: Albedo evolution of seasonal Arctic sea ice. Geophysical Research Letters, 39 (8), L08501, doi:10.1029/2012gl051432.
  54. Serreze, M. C., J. Stroeve, A. P. Barrett and L. N. Boisvert, 2016: Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: A cautionary tale. Journal of Geophysical Research: Atmospheres, 121 (19), 11,463-11,485, doi:10.1002/2016jd025161.
  55. Haine, T. W. N. and T. Martin, 2017: The Arctic-Subarctic sea ice system is entering a seasonal regime: Implications for future Arctic amplification. Sci Rep, 7 (1), 4618, doi:10.1038/s41598-017-04573-0.
  56. Boisvert, L. N., A. A. Petty and J. C. Stroeve, 2016: The Impact of the Extreme Winter 2015/16 Arctic Cyclone on the Barents–Kara Seas. Monthly Weather Review, 144 (11), 4279-4287, doi:10.1175/mwr-d-16-0234.1.
  57. Cullather, R. I. et al., 2016: Analysis of the warmest Arctic winter, 2015-2016. Geophysical Research Letters, 43 (20), 10,808-10,816, doi:10.1002/2016gl071228.
  58. Kapsch, M.-L., R. G. Graversen, M. Tjernström and R. Bintanja, 2016: The Effect of Downwelling Longwave and Shortwave Radiation on Arctic Summer Sea Ice. Journal of Climate, 29 (3), 1143-1159, doi:10.1175/jcli-d-15-0238.1.
  59. Mortin, J. et al., 2016: Melt onset over Arctic sea ice controlled by atmospheric moisture transport. Geophysical Research Letters, 43 (12), 6636-6642, doi:10.1002/2016gl069330.
  60. Graham, R. M. et al., 2017: Increasing frequency and duration of Arctic winter warming events. Geophysical Research Letters, 44 (13), 6974-6983, doi:10.1002/2017gl073395.
  61. Hegyi, B. M. and P. C. Taylor, 2018: The Unprecedented 2016–2017 Arctic Sea Ice Growth Season: The Crucial Role of Atmospheric Rivers and Longwave Fluxes. Geophysical Research Letters, 45 (10), 5204-5212, doi:10.1029/2017gl076717.
  62. Kapsch, M.-L., R. G. Graversen and M. Tjernström, 2013: Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nature Climate Change, 3, 744, doi:10.1038/nclimate1884.
  63. Pithan, F. and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7, 181, doi:10.1038/ngeo2071.
  64. Hegyi, B. M. and Y. Deng, 2016: Dynamical and Thermodynamical Impacts of High- and Low-Frequency Atmospheric Eddies on the Initial Melt of Arctic Sea Ice. Journal of Climate, 30 (3), 865-883, doi:10.1175/jcli-d-15-0366.1.
  65. Morrison, A. L. et al., 2018: Isolating the Liquid Cloud Response to Recent Arctic Sea Ice Variability Using Spaceborne Lidar Observations. Journal of Geophysical Research: Atmospheres, 123 (1), 473-490, doi:10.1002/2017jd027248.
  66. Serreze, M. C., A. P. Barrett and J. Stroeve, 2012: Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. Journal of Geophysical Research: Atmospheres, 117 (D10), n/a-n/a, doi:10.1029/2011jd017421.
  67. Taylor, P., B. Hegyi, R. Boeke and L. Boisvert, 2018: On the Increasing Importance of Air-Sea Exchanges in a Thawing Arctic: A Review. Atmosphere, 9 (2), doi:10.3390/atmos9020041.
  68. Serreze, M. C., J. Stroeve, A. P. Barrett and L. N. Boisvert, 2016: Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: A cautionary tale. Journal of Geophysical Research: Atmospheres, 121 (19), 11,463-11,485, doi:10.1002/2016jd025161.
  69. Ding, Q. et al., 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nature Climate Change, 7, 289, doi:10.1038/nclimate3241
  70. Meehl, G. A. et al., 2018: Tropical Decadal Variability and the Rate of Arctic Sea Ice Decrease. Geophysical Research Letters, 45 (20), 11,326-11,333, doi:10.1029/2018gl079989.
  71. Flanner, M. G. et al., 2011: Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nature Geoscience, 4 (3), 151-155, doi:10.1038/ngeo1062.
  72. Pistone, K., I. Eisenman and V. Ramanathan, 2014: Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proceedings of the National Academy of Sciences, 111 (9), 3322-3326.
  73. Sturm, M. and R. A. Massom, 2016: Snow in the sea ice system: friend or foe? In: Sea Ice [Thomas, D. N. (ed.)]. Wiley-Blackwell, 652.
  74. Armour, K. C. et al., 2011: The reversibility of sea ice loss in a state-of-the-art climate model. Geophysical Research Letters, 38 (16), L16705, doi:10.1029/2011gl048739.
  75. Ludescher, J., N. Yuan and A. Bunde, 2018: Detecting the statistical significance of the trends in the Antarctic sea ice extent: an indication for a turning point. Climate Dynamics, 53 (1-2), 237-244, doi:10.1007/s00382-018-4579-3.
  76. Comiso, J. C. et al., 2017a: Positive Trend in the Antarctic Sea Ice Cover and Associated Changes in Surface Temperature. Journal of Climate, 30 (6), 2251-2267, doi:10.1175/Jcli-D-16-0408.1.
  77. Turner, J. et al., 2017b: Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophysical Research Letters, 44 (13), 6868-6875, doi:10.1002/2017gl073656.
  78. Kusahara, K. et al., 2018: An ocean-sea ice model study of the unprecedented Antarctic sea ice minimum in 2016. Environmental Research Letters, 13 (8), 084020, doi:10.1088/1748-9326/aad624.
  79. Meehl, G. A. et al., 2019: Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat Commun, 10 (1), 14, doi:10.1038/s41467-018-07865-9.
  80. Wang, G. et al., 2019: Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nat Commun, 10 (1), 13, doi:10.1038/s41467-018-07689-7.
  81. Holland, P. R., 2014: The seasonality of Antarctic sea ice trends. Geophysical Research Letters, 41, 4230-4237, doi:10.1002/2014GL060172.
  82. Holland, P. R., 2014: The seasonality of Antarctic sea ice trends. Geophysical Research Letters, 41, 4230-4237, doi:10.1002/2014GL060172.
  83. Matear, R. J., T. J. O’Kane, J. S. Risbey and M. Chamberlain, 2015: Sources of heterogeneous variability and trends in Antarctic sea-ice. Nature Communications, 6, 8656, doi:10.1038/Ncomms9656.
  84. Hobbs, W. R. et al., 2016b: A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global and Planetary Change, 143, 228-250, doi:10.1016/j.gloplacha.2016.06.008.
  85. Holland, P. R. and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nature Geoscience, 5 (12), 872-875, doi:Doi 10.1038/Ngeo1627.
  86. Haumann, F. A., D. Notz and H. Schmidt, 2014: Anthropogenic influence on recent circulation-driven Antarctic sea ice changes. Geophysical Research Letters, 41 (23), 8429-8437, doi:10.1002/2014gl061659.
  87. Holland, P. R. and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nature Geoscience, 5 (12), 872-875, doi:Doi 10.1038/Ngeo1627.
  88. Kusahara, K. et al., 2017: Roles of wind stress and thermodynamic forcing in recent trends in Antarctic sea ice and Southern Ocean SST: An ocean-sea ice model study. Global and Planetary Change, 158, 103-118, doi:10.1016/j.gloplacha.2017.09.012.
  89. Coggins, J. H. J. and A. J. McDonald, 2015: The influence of the Amundsen Sea Low on the winds in the Ross Sea and surroundings: Insights from a synoptic climatology. Journal of Geophysical Research-Atmospheres, 120 (6), 2167-2189, doi:10.1002/2014JD022830.
  90. Meehl, G. A. et al., 2016: Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nature Geoscience, 9 (8), 590–595, doi:10.1038/Ngeo2751.
  91. Purich, A. et al., 2016b: Tropical Pacific SST Drivers of Recent Antarctic Sea Ice Trends. Journal of Climate, 29 (24), 8931-8948, doi:10.1175/jcli-d-16-0440.1.
  92. Fogt, R. L. and E. A. Zbacnik, 2014: Sensitivity of the Amundsen Sea Low to Stratospheric Ozone Depletion. Journal of Climate, 27 (24), 9383-9400, doi:10.1175/JCLI-D-13-00657.1.
  93. England, M. R. et al., 2016: Robust response of the Amundsen Sea Low to stratospheric ozone depletion. Geophysical Research Letters, 43 (15), 8207-8213, doi:10.1002/2016gl070055.
  94. Landrum, L. L., M. M. Holland, M. N. Raphael and L. M. Polvani, 2017: Stratospheric Ozone Depletion: An Unlikely Driver of the Regional Trends in Antarctic Sea Ice in Austral Fall in the Late Twentieth Century. Geophysical Research Letters, 44 (21), 11062-11070, doi:10.1002/2017gl075618.
  95. Armour, K. C. et al., 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9 (7), 549, doi:10.1038/Ngeo2731.
  96. Goosse, H. et al., 2018: Quantifying climate feedbacks in polar regions. Nature Communications, 9 (1), 1919, doi:10.1038/s41467-018-04173-0.
  97. Meehl, G. A. et al., 2019: Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat Commun, 10 (1), 14, doi:10.1038/s41467-018-07865-9.
  98. Murphy, E. J., A. Clarke, N. J. Abram and J. Turner, 2014: Variability of sea-ice in the northern Weddell Sea during the 20th century. Journal of Geophysical Research: Oceans, 119 (7), 4549-4572, doi:10.1002/2013jc009511.
  99. Abram, N. J., E. W. Wolff and M. A. J. Curran, 2013b: A review of sea ice proxy information from polar ice cores. Quaternary Science Reviews, 79, 168-183, doi:10.1016/j.quascirev.2013.01.011.
  100. Edinburgh, T. and J. J. Day, 2016: Estimating the extent of Antarctic summer sea ice during the Heroic Age of Antarctic Exploration. The Cryosphere, 10 (6), 2721-2730, doi:10.5194/tc-10-2721-2016.
  101. Gallaher, D. W., G. G. Campbell and W. N. Meier, 2014: Anomalous Variability in Antarctic Sea Ice Extents During the 1960s With the Use of Nimbus Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 881-887, doi:10.1109/jstars.2013.2264391.
  102. Gagné, M. È., N. P. Gillett and J. C. Fyfe, 2015: Observed and simulated changes in Antarctic sea ice extent over the past 50 years. Geophysical Research Letters, 42 (1), 90-95, doi:10.1002/2014gl062231.
  103. Hobbs, W., M. Curran, N. Abram and E. R. Thomas, 2016a: Century-scale perspectives on observed and simulated Southern Ocean sea ice trends from proxy reconstructions. Journal of Geophysical Research: Oceans, 121 (10), 7804-7818, doi:10.1002/2016jc012111.
  104. Stroeve, J. and D. Notz, 2018: Changing state of Arctic sea ice across all seasons. Environmental Research Letters, 13 (10), 103001, doi:10.1088/1748-9326/aade56.
  105. Laxon, S. W. et al., 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophysical Research Letters, 40 (4), 732-737, doi:10.1002/grl.50193.
  106. Kwok, R., 2018: Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environmental Research Letters, 13 (10), 105005, doi:10.1088/1748-9326/aae3ec.
  107. Chevallier, M. et al., 2017: Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project. Climate Dynamics, 49 (3), 1107-1136, doi:10.1007/s00382-016-2985-y.
  108. Renner, A. H. H. et al., 2014: Evidence of Arctic sea ice thinning from direct observations. Geophysical Research Letters, 41 (14), 5029-5036, doi:10.1002/2014gl060369.
  109. Haas, C. et al., 2017: Ice and Snow Thickness Variability and Change in the High Arctic Ocean Observed by In Situ Measurements. Geophysical Research Letters, 44 (20), 10,462-10,469, doi:10.1002/2017gl075434.
  110. Lindsay, R. and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9 (1), 269-283, doi:10.5194/tc-9-269-2015.
  111. Lindsay, R. and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9 (1), 269-283, doi:10.5194/tc-9-269-2015.
  112. Schweiger, A. J., K. R. Wood and J. Zhang, 2019: Arctic sea ice volume variability over 1901–2010: A model-based reconstruction. Journal of Climate, 32 (15), 4731-4752, doi:10.1175/jcli-d-19-0008.1.
  113. Kaleschke, L. et al., 2016: SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone. Remote Sensing of Environment, 180, 264-273, doi:10.1016/j.rse.2016.03.009.
  114. Ricker, R. et al., 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. The Cryosphere, 11 (4), 1607-1623, doi:10.5194/tc-11-1607-2017.
  115. Nicolaus, M., C. Katlein, J. Maslanik and S. Hendricks, 2012: Changes in Arctic sea ice result in increasing light transmittance and absorption. Geophysical Research Letters, 39 (24), L24501, doi:10.1029/2012gl053738.
  116. Zhang, J., R. Lindsay, A. Schweiger and M. Steele, 2013: The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophysical Research Letters, 40 (4), 720-726, doi:10.1002/grl.50190.
  117. Thompson, A. F. and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by Standing Meanders. Journal of Physical Oceanography, 44 (7), 1811-1828, doi:10.1175/JPO-D-13-0163.1.
  118. Worby, A. P. et al., 2008: Thickness distribution of Antarctic sea ice. Journal of Geophysical Research-Oceans, 113 (C5), C05s92, doi:10.1029/2007jc004254.
  119. Massonnet, F. et al., 2013: A model reconstruction of the Antarctic sea ice thickness and volume changes over 1980-2008 using data assimilation. Ocean Modelling, 64, 67-75, doi:DOI 10.1016/j.ocemod.2013.01.003.
  120. Holland, P. R., 2014: The seasonality of Antarctic sea ice trends. Geophysical Research Letters, 41, 4230-4237, doi:10.1002/2014GL060172.
  121. Paul, S. et al., 2018: Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative. The Cryosphere, 12 (7), 2437-2460, doi:10.5194/tc-12-2437-2018.
  122. Stroeve, J. and D. Notz, 2018: Changing state of Arctic sea ice across all seasons. Environmental Research Letters, 13 (10), 103001, doi:10.1088/1748-9326/aade56.
  123. Stroeve, J. C. et al., 2012b: The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110 (3), 1005-1027, doi:10.1007/s10584-011-0101-1.
  124. Serreze, M. C., J. Stroeve, A. P. Barrett and L. N. Boisvert, 2016: Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: A cautionary tale. Journal of Geophysical Research: Atmospheres, 121 (19), 11,463-11,485, doi:10.1002/2016jd025161.
  125. Perovich, D. K. and C. Polashenski, 2012: Albedo evolution of seasonal Arctic sea ice. Geophysical Research Letters, 39 (8), L08501, doi:10.1029/2012gl051432.
  126. Stroeve, J. C. et al., 2014b: Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters, 41 (4), 1216-1225, doi:10.1002/2013gl058951.
  127. Liu, J., M. Song, M. H. Radley and Y. Hu, 2015a: Revisiting the potential of melt pond fraction as a predictor for the seasonal Arctic sea ice extent minimum. Environmental Research Letters, 10 (5), 054017, doi:10.1088/1748-9326/10/5/054017/meta.
  128. Laidler, G. J. et al., 2010: Mapping Sea-Ice Knowledge, Use, and Change in Nunavut, Canada (Cape Dorset, Igloolik, Pangnirtung). SIKU: Knowing Our Ice, Documenting Inuit Sea-Ice Knowledge and Use, Springer, Dordrecht.
  129. Eisner, W. R., K. M. Hinkel, C. J. Cuomo and R. A. Beck, 2013: Environmental, cultural, and social change in Arctic Alaska as observed by Iñupiat elders over their lifetimes: a GIS synthesis. Polar Geography, 36 (3), 221-231, doi:10.1080/1088937x.2012.724463.
  130. Fall, J. A. et al., 2013: Continuity and change in subsistence harvests in five Bering Sea communities: Akutan, Emmonak, Savoonga, St. Paul, and Togiak. Deep-Sea Research Part II, 94, 274-291, doi:10.1016/j.dsr2.2013.03.010.
  131. Ignatowski, J. and J. Rosales, 2013: Identifying the exposure of two subsistence villages in Alaska to climate change using traditional ecological knowledge. Climatic Change, 121 (2), 285-299, doi:10.1007/s10584-013-0883-4.
  132. Stammerjohn, S., R. Massom, D. Rind and D. Martinson, 2012: Regions of rapid sea ice change: An inter‐hemispheric seasonal comparison. Geophysical Research Letters, 39 (6), L06501, doi:10.1029/2012GL050874.
  133. Dewey, S. et al., 2018: Arctic Ice‐Ocean Coupling and Gyre Equilibration Observed With Remote Sensing. Geophysical Research Letters, 45 (3), 1499-1508, doi:10.1002/2017gl076229.
  134. Meneghello, G. et al., 2018: The Ice-Ocean Governor: Ice-Ocean Stress Feedback Limits Beaufort Gyre Spin-Up. Geophysical Research Letters, 45 (20), 11,293-11,299, doi:10.1029/2018gl080171.
  135. Vihma, T., P. Tisler and P. Uotila, 2012: Atmospheric forcing on the drift of Arctic sea ice in 1989–2009. Geophysical Research Letters, 39 (2), doi:10.1029/2011gl050118.
  136. Rampal, P., J. Weiss and D. Marsan, 2009: Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007. Journal of Geophysical Research: Oceans, 114 (C5), C05013, doi:10.1029/2008jc005066.
  137. Krumpen, T. et al., 2019: Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci Rep, 9 (1), 5459, doi:10.1038/s41598-019-41456-y.
  138. Spreen, G., R. Kwok and D. Menemenlis, 2011: Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophysical Research Letters, 38 (19), L19501, doi:10.1029/2011gl048970.
  139. Olason, E. and D. Notz, 2014: Drivers of variability in Arctic sea-ice drift speed. Journal of Geophysical Research: Oceans, 119 (9), 5755-5775, doi:10.1002/2014jc009897.
  140. Kwok, R., G. Spreen and S. Pang, 2013: Arctic sea ice circulation and drift speed: Decadal trends and ocean currents. Journal of Geophysical Research: Oceans, 118 (5), 2408-2425, doi:10.1002/jgrc.20191.
  141. Krumpen, T. et al., 2016: Recent summer sea ice thickness surveys in Fram Strait and associated ice volume fluxes. The Cryosphere, 10 (2), 523-534, doi:10.5194/tc-10-523-2016.
  142. Smedsrud, L. H. et al., 2017: Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. The Cryosphere, 11 (1), 65-79, doi:10.5194/tc-11-65-2017.
  143. Zamani, B., T. Krumpen, L. H. Smedsrud and R. Gerdes, 2019: Fram Strait sea ice export affected by thinning: comparing high-resolution simulations and observations. Climate Dynamics, 53 (5-6), 3257-3270, doi:10.1007/s00382-019-04699-z.
  144. Ricker, R., F. Girard-Ardhuin, T. Krumpen and C. Lique, 2018: Satellite-derived sea ice export and its impact on Arctic ice mass balance. The Cryosphere, 12 (9), 3017-3032, doi:10.5194/tc-12-3017-2018.
  145. Itkin, P. et al., 2017: Thin ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE2015. Journal of Geophysical Research: Oceans, 122 (6), 4661-4674, doi:10.1002/2016jc012403.
  146. Holland, P. R. and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nature Geoscience, 5 (12), 872-875, doi:Doi 10.1038/Ngeo1627.
  147. Haumann, F. A. et al., 2016: Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537 (7618), 89-92, doi:10.1038/nature19101.
  148. Gerland, S. et al., 2008: Decrease of sea ice thickness at Hopen, Barents Sea, during 1966–2007. Geophysical Research Letters, 35 (6), doi:10.1029/2007gl032716.
  149. Polyak, L. et al., 2010: History of sea ice in the Arctic. Quaternary Science Reviews, 29 (15-16), 1757-1778, doi:10.1016/j.quascirev.2010.02.010.
  150. Howell, S. E. L. et al., 2016: Landfast ice thickness in the Canadian Arctic Archipelago from observations and models. The Cryosphere, 10 (4), 1463-1475, doi:10.5194/tc-10-1463-2016.
  151. Yu, Y. et al., 2013: Interannual Variability of Arctic Landfast Ice between 1976 and 2007. Journal of Climate, 27 (1), 227-243, doi:10.1175/jcli-d-13-00178.1.
  152. Yu, Y. et al., 2013: Interannual Variability of Arctic Landfast Ice between 1976 and 2007. Journal of Climate, 27 (1), 227-243, doi:10.1175/jcli-d-13-00178.1.
  153. Mahoney, A. R., H. Eicken, A. G. Gaylord and R. Gens, 2014: Landfast sea ice extent in the Chukchi and Beaufort Seas: The annual cycle and decadal variability. Cold Regions Science and Technology, 103 (Supplement C), 41-56, doi:10.1016/j.coldregions.2014.03.003.
  154. Pope, S., L. Copland and B. Alt, 2017: Recent changes in sea ice plugs along the northern Canadian Arctic Archipelago. In: Arctic Ice Shelves and Ice Islands [Copland, L. and D. Mueller (eds.)]. Springer Nature, Dordrecht, 317-342.
  155. Gall, A. E., T. C. Morgan, R. H. Day and K. J. Kuletz, 2017: Ecological shift from piscivorous to planktivorous seabirds in the Chukchi Sea, 1975-2012. Polar Biology, 40 (1), 61-78, doi:10.1007/s00300-016-1924-z.
  156. Yu, Y. et al., 2013: Interannual Variability of Arctic Landfast Ice between 1976 and 2007. Journal of Climate, 27 (1), 227-243, doi:10.1175/jcli-d-13-00178.1.
  157. Howell, S. E. L. et al., 2013: Recent changes in the exchange of sea ice between the Arctic Ocean and the Canadian Arctic Archipelago. Journal of Geophysical Research: Oceans, 118 (7), 3595-3607, doi:10.1002/jgrc.20265.
  158. Eisner, W. R., K. M. Hinkel, C. J. Cuomo and R. A. Beck, 2013: Environmental, cultural, and social change in Arctic Alaska as observed by Iñupiat elders over their lifetimes: a GIS synthesis. Polar Geography, 36 (3), 221-231, doi:10.1080/1088937x.2012.724463.
  159. Fall, J. A. et al., 2013: Continuity and change in subsistence harvests in five Bering Sea communities: Akutan, Emmonak, Savoonga, St. Paul, and Togiak. Deep-Sea Research Part II, 94, 274-291, doi:10.1016/j.dsr2.2013.03.010.
  160. Huntington, H. P., L. T. Quakenbush and M. Nelson, 2017: Evaluating the Effects of Climate Change on Indigenous Marine Mammal Hunting in Northern and Western Alaska Using Traditional Knowledge. Frontiers in Marine Science, 4, 319, doi:10.3389/fmars.2017.00319.
  161. Laidler, G. J. et al., 2010: Mapping Sea-Ice Knowledge, Use, and Change in Nunavut, Canada (Cape Dorset, Igloolik, Pangnirtung). SIKU: Knowing Our Ice, Documenting Inuit Sea-Ice Knowledge and Use, Springer, Dordrecht.
  162. Inuit Circumpolar Council, 2014: The Sea Ice Never Stops. Circumpolar Inuit Reflections on Sea Ice Use and Shipping in Inuit Nunaat. (ICC), I. C. C., Canada [Available at: http://hdl.handle.net/11374/1478%5D.
  163. Rosales, J. and L. J. Chapman, 2015: Perceptions of Obvious and Disruptive Climate Change: Community-Based Risk Assessment for Two Native Villages in Alaska. Climate, 3 (4), 812-832, doi:10.3390/cli3040812.
  164. Gearheard, S. F. et al., 2013: The meaning of ice: People and sea ice in three Arctic communities. International Polar Institute, Montreal.
  165. Stammerjohn, S. and T. Maksym, 2016: Gaining (and losing) Antarctic sea ice: variability, trends and mechanisms. In: Sea Ice. John Wiley & Sons, Ltd, 261-289.
  166. Fraser, A. D. et al., 2011: East Antarctic Landfast Sea Ice Distribution and Variability, 2000–08. Journal of Climate, 25 (4), 1137-1156, doi:10.1175/jcli-d-10-05032.1.
  167. Sturm, M. and R. A. Massom, 2016: Snow in the sea ice system: friend or foe? In: Sea Ice [Thomas, D. N. (ed.)]. Wiley-Blackwell, 652.
  168. Mundy, C. J., J. K. Ehn, D. G. Barber and C. Michel, 2007: Influence of snow cover and algae on the spectral dependence of transmitted irradiance through Arctic landfast first-year sea ice. Journal of Geophysical Research: Oceans, 112 (C3), C03007, doi:10.1029/2006jc003683.
  169. Maksym, T. and T. Markus, 2008: Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth. Journal of Geophysical Research: Oceans, 113 (C2), C02S12, doi:10.1029/2006jc004085.
  170. Merkouriadi, I. et al., 2017: Critical Role of Snow on Sea Ice Growth in the Atlantic Sector of the Arctic Ocean. Geophysical Research Letters, 44 (20), 10,479-10,485, doi:10.1002/2017gl075494.
  171. Olsen, L. M. et al., 2017: The seeding of ice algal blooms in Arctic pack ice: The multiyear ice seed repository hypothesis. Journal of Geophysical Research: Biogeosciences, 122 (7), 1529-1548, doi:10.1002/2016jg003668.
  172. Granskog, M. A., I. Fer, A. Rinke and H. Steen, 2018: Atmosphere-Ice-Ocean-Ecosystem Processes in a Thinner Arctic Sea Ice Regime: The Norwegian Young Sea ICE (N-ICE2015) Expedition. Journal of Geophysical Research: Oceans, 123 (3), 1586-1594, doi:10.1002/2017jc013328.
  173. Webster, M. et al., 2018: Snow in the changing sea-ice systems. Nature Climate Change, 8 (11), 946-953, doi:10.1038/s41558-018-0286-7.
  174. Webster, M. A. et al., 2014: Interdecadal changes in snow depth on Arctic sea ice. Journal of Geophysical Research: Oceans, 119 (8), 5395-5406, doi:10.1002/2014jc009985.
  175. Warren, S. G. et al., 1999: Snow Depth on Arctic Sea Ice. Journal of Climate, 12 (6), 1814-1829, doi:10.1175/1520-0442(1999)012<1814:sdoasi>2.0.co;2.
  176. Stroeve, J. and D. Notz, 2018: Changing state of Arctic sea ice across all seasons. Environmental Research Letters, 13 (10), 103001, doi:10.1088/1748-9326/aade56.
  177. Webster, M. A. et al., 2014: Interdecadal changes in snow depth on Arctic sea ice. Journal of Geophysical Research: Oceans, 119 (8), 5395-5406, doi:10.1002/2014jc009985.
  178. Kurtz, N. T. and S. L. Farrell, 2011: Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge. Geophysical Research Letters, 38 (20), L20505, doi:10.1029/2011gl049216.
  179. Webster, M. A. et al., 2014: Interdecadal changes in snow depth on Arctic sea ice. Journal of Geophysical Research: Oceans, 119 (8), 5395-5406, doi:10.1002/2014jc009985.
  180. Boisvert, L. N. et al., 2018: Intercomparison of Precipitation Estimates over the Arctic Ocean and Its Peripheral Seas from Reanalyses. Journal of Climate, 31 (20), 8441-8462, doi:10.1175/jcli-d-18-0125.1.
  181. Haas, C. et al., 2017: Ice and Snow Thickness Variability and Change in the High Arctic Ocean Observed by In Situ Measurements. Geophysical Research Letters, 44 (20), 10,462-10,469, doi:10.1002/2017gl075434.
  182. Rösel, A. et al., 2018: Thin Sea Ice, Thick Snow, and Widespread Negative Freeboard Observed During N-ICE2015 North of Svalbard. Journal of Geophysical Research: Oceans, 123 (2), 1156-1176, doi:10.1002/2017jc012865.
  183. Kern, S. and B. Ozsoy-Çiçek, 2016: Satellite Remote Sensing of Snow Depth on Antarctic Sea Ice: An Inter-Comparison of Two Empirical Approaches. Remote Sensing, 8 (6), 450, doi:10.3390/rs8060450.
  184. Kwok, R. and T. Maksym, 2014: Snow depth of the Weddell and Bellingshausen sea ice covers from IceBridge surveys in 2010 and 2011: An examination. Journal of Geophysical Research: Oceans, 119 (7), 4141-4167, doi:10.1002/2014jc009943.
  185. Massom, R. A. et al., 2001: Snow on Antarctic sea ice. Reviews of Geophysics, 39 (3), 413-445, doi:10.1029/2000rg000085.
  186. Worby, A. P. et al., 2008: Thickness distribution of Antarctic sea ice. Journal of Geophysical Research-Oceans, 113 (C5), C05s92, doi:10.1029/2007jc004254.
  187. Jung, T. et al., 2015: Polar Lower-Latitude Linkages and Their Role in Weather and Climate Prediction. Bulletin of the American Meteorological Society, 96 (11), Es197-Es200, doi:10.1175/Bams-D-15-00121.1.
  188. Routson, C. C. et al., 2019: Mid-latitude net precipitation decreased with Arctic warming during the Holocene. Nature, 568 (7750), 83-87, doi:10.1038/s41586-019-1060-3.
  189. National Research Council, 2014: Linkages Between Arctic Warming and Mid-Latitude Weather Patterns: Summary of a Workshop. The National Academies Press, Washington, DC, 85 pp.
  190. Barnes, E. A. and L. M. Polvani, 2015: CMIP5 Projections of Arctic Amplification, of the North American/North Atlantic Circulation, and of Their Relationship. Journal of Climate, 28 (13), 5254-5271, doi:10.1175/jcli-d-14-00589.1.
  191. Francis, D., C. Eayrs, J. Cuesta and D. Holland, 2019: Polar Cyclones at the Origin of the Reoccurrence of the Maud Rise Polynya in Austral Winter 2017. Journal of Geophysical Research-Atmospheres, 124 (10), 5251-5267, doi:10.1029/2019jd030618.
  192. Grotjahn, R. et al., 2016: North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends. Climate Dynamics, 46 (3-4), 1151-1184, doi:10.1007/s00382-015-2638-6.
  193. Messori, G., R. Caballero and M. Gaetani, 2016: On cold spells in North America and storminess in western Europe. Geophysical Research Letters, 43 (12), 6620-6628, doi:10.1002/2016gl069392.
  194. Overland, J. et al., 2018a: The urgency of Arctic change. Polar Science, doi:10.1016/j.polar.2018.11.008.
  195. Overland, J. E. et al., 2018b: Surface air temperature. [in Arctic Report Card 2018] [Available at: https://arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/783/Surface-Air-Temperature%5D.
  196. Kim, B. M. et al., 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat Commun, 5, 4646, doi:10.1038/ncomms5646.
  197. Kretschmer, M., D. Coumou, J. F. Donges and J. Runge, 2016: Using Causal Effect Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation. Journal of Climate, 29 (11), 4069-4081, doi:10.1175/jcli-d-15-0654.1.
  198. Kug, J. S. et al., 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience, 8 (10), 759, doi:10.1038/ngeo2517.
  199. Ballinger, T. J. et al., 2018: Greenland coastal air temperatures linked to Baffin Bay and Greenland Sea ice conditions during autumn through regional blocking patterns. Climate Dynamics, 50 (1), 83-100, doi:10.1007/s00382-017-3583-3.
  200. Overland, J. et al., 2018a: The urgency of Arctic change. Polar Science, doi:10.1016/j.polar.2018.11.008.
  201. Cohen, J., K. Pfeiffer and J. A. Francis, 2018: Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Nature Communications, 9 (1), 869, doi:10.1038/s41467-018-02992-9.
  202. Screen, J. A., T. J. Bracegirdle and I. Simmonds, 2018: Polar Climate Change as Manifest in Atmospheric Circulation. Curr Clim Change Rep, 4 (4), 383-395, doi:10.1007/s40641-018-0111-4.
  203. Ayarzaguena, B. and J. A. Screen, 2016: Future Arctic sea ice loss reduces severity of cold air outbreaks in midlatitudes. Geophysical Research Letters, 43 (6), 2801-2809, doi:10.1002/2016gl068092.
  204. Trenary, L., T. DelSole, M. K. Tippett and B. Doty, 2016: Extreme eastern U.S. winter of 2015 not symptomatic of climate change [in “Explaining Extreme Events of 2015 from a Climate Perspective”]. . 97, S31-S35, doi:10.1175/BAMS-D-16-0156.1.
  205. Honda, M., J. Inoue and S. Yamane, 2009: Influence of low Arctic sea‐ice minima on anomalously cold Eurasian winters. Geophysical Research Letters, 36 (8), L08707, doi:10.1029/2008gl037079.
  206. Chen, H. W., F. Zhang and R. B. Alley, 2016a: The Robustness of Midlatitude Weather Pattern Changes due to Arctic Sea Ice Loss. Journal of Climate, 29 (21), 7831-7849, doi:10.1175/jcli-d-16-0167.1.
  207. McKenna, C. M. et al., 2018: Arctic Sea Ice Loss in Different Regions Leads to Contrasting Northern Hemisphere Impacts. Geophysical Research Letters, 45 (2), 945-954, doi:10.1002/2017gl076433.
  208. Cohen, J. L. et al., 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environmental Research Letters, 7 (1), 014007, doi:10.1088/1748-9326/7/1/014007.
  209. Nakamura, T. et al., 2016: The stratospheric pathway for Arctic impacts on midlatitude climate. Geophysical Research Letters, 43 (7), 3494-3501, doi:10.1002/2016gl068330.
  210. Zhang, P. et al., 2018b: A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Sci Adv, 4 (7), eaat6025, doi:10.1126/sciadv.aat6025.
  211. Screen, J. A., T. J. Bracegirdle and I. Simmonds, 2018: Polar Climate Change as Manifest in Atmospheric Circulation. Curr Clim Change Rep, 4 (4), 383-395, doi:10.1007/s40641-018-0111-4.
  212. Kidston, J., A. S. Taschetto, D. W. J. Thompson and M. H. England, 2011: The influence of Southern Hemisphere sea-ice extent on the latitude of the mid-latitude jet stream. Geophysical Research Letters, 38, 5, doi:10.1029/2011gl048056.
  213. Raphael, M. N., W. Hobbs and I. Wainer, 2011: The effect of Antarctic sea ice on the Southern Hemisphere atmosphere during the southern summer. Climate Dynamics, 36 (7-8), 1403-1417, doi:10.1007/s00382-010-0892-1.
  214. Bader, J. et al., 2013: Atmospheric winter response to a projected future Antarctic sea-ice reduction: a dynamical analysis. Climate Dynamics, 40 (11), 2707-2718, doi:10.1007/s00382-012-1507-9.
  215. Smith, D. M. et al., 2017b: Atmospheric Response to Arctic and Antarctic Sea Ice: The Importance of Ocean–Atmosphere Coupling and the Background State. Journal of Climate, 30 (12), 4547-4565, doi:10.1175/JCLI-D-16-0564.1.
  216. England, M., L. Polvani and L. Sun, 2018: Contrasting the Antarctic and Arctic Atmospheric Responses to Projected Sea Ice Loss in the Late Twenty-First Century. Journal of Climate, 31 (16), 6353-6370, doi:10.1175/jcli-d-17-0666.1.
  217. England, M., L. Polvani and L. Sun, 2018: Contrasting the Antarctic and Arctic Atmospheric Responses to Projected Sea Ice Loss in the Late Twenty-First Century. Journal of Climate, 31 (16), 6353-6370, doi:10.1175/jcli-d-17-0666.1.
  218. Steele, M. and S. Dickinson, 2016: The phenology of Arctic Ocean surface warming. J Geophys Res Oceans, 121 (9), 6847-6861, doi:10.1002/2016JC012089.
  219. Timmermans, M.-L., C. Ladd and K. Wood, 2017: Sea surface temperature [NOAA (ed.)]. Arctic Report Card, NOAA, https://arctic.noaa.gov/Report-Card/Report-Card-2017/ArtMID/7798/ArticleID/698/Sea-Surface-Temperature).
  220. Perovich, D. K., 2016: Sea ice and sunlight. In: Sea Ice [Thomas, D. N. (ed.)]. Wiley Online Library, 110-137.
  221. Pistone, K., I. Eisenman and V. Ramanathan, 2014: Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proceedings of the National Academy of Sciences, 111 (9), 3322-3326.
  222. Timmermans, M. L., 2015: The impact of stored solar heat on Arctic sea ice growth. Geophysical Research Letters, 42 (15), 6399-6406, doi:10.1002/2015GL064541.
  223. Ivanov, V. et al., 2016: Arctic Ocean heat impact on regional ice decay: A suggested positive feedback. Journal of Physical Oceanography, 46 (5), 1437-1456, doi:10.1175/JPO-D-15-0144.1.
  224. Polyakov, I. V. et al., 2017: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 356 (6335), 285-291, doi:10.1126/science.aai8204
  225. Arthun, M. et al., 2012: Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat. Journal of Climate, 25 (13), 4736-4743, doi:10.1175/Jcli-D-11-00466.1.
  226. Lind, S., R. B. Ingvaldsen and T. Furevik, 2018: Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nature Climate Change, 8 (7), 634–639, doi:10.1038/s41558-018-0205-y.
  227. Polyakov, I. V. et al., 2017: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 356 (6335), 285-291, doi:10.1126/science.aai8204
  228. Timmermans, M. L. et al., 2014: Mechanisms of Pacific summer water variability in the Arctic’s Central Canada basin. Journal of Geophysical Research: Oceans, 119 (11), 7523-7548, doi:10.1002/2014JC010273.
  229. Timmermans, M.-L., J. Toole and R. Krishfield, 2018: Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins. Science Advances, 4 (8), doi:10.1126/sciadv.aat6773.
  230. Woodgate, R. A., 2018: Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Progress in Oceanography, 160, 124-154, doi:10.1016/j.pocean.2017.12.007.
  231. Woodgate, R. A., 2018: Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Progress in Oceanography, 160, 124-154, doi:10.1016/j.pocean.2017.12.007.
  232. Frölicher, T. L. et al., 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. Journal of Climate, 28 (2), 862-886, doi:10.1175/JCLI-D-14-00117.1.
  233. Shi, J.-R., S.-P. Xie and L. D. Talley, 2018: Evolving Relative Importance of the Southern Ocean and North Atlantic in Anthropogenic Ocean Heat Uptake. Journal of Climate, 31 (18), 7459-7479, doi:10.1175/jcli-d-18-0170.1.
  234. Frölicher, T. L. et al., 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. Journal of Climate, 28 (2), 862-886, doi:10.1175/JCLI-D-14-00117.1.
  235. Armour, K. C. et al., 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9 (7), 549, doi:10.1038/Ngeo2731.
  236. Shi, J.-R., S.-P. Xie and L. D. Talley, 2018: Evolving Relative Importance of the Southern Ocean and North Atlantic in Anthropogenic Ocean Heat Uptake. Journal of Climate, 31 (18), 7459-7479, doi:10.1175/jcli-d-18-0170.1.
  237. Swart, N. C., S. T. Gille, J. C. Fyfe and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience, 11 (11), 836-841, doi:10.1038/s41561-018-0226-1.
  238. Irving, D. B., S. Wijffels and J. A. Church, 2019: Anthropogenic Aerosols, Greenhouse Gases, and the Uptake, transport, and Storage of Excess Heat in the Climate System. Geophysical Research Letters, 46 (9), 4894-4903, doi:10.1029/2019gl082015.
  239. Armour, K. C. et al., 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9 (7), 549, doi:10.1038/Ngeo2731.
  240. Armour, K. C. et al., 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9 (7), 549, doi:10.1038/Ngeo2731.
  241. Swart, N. C., S. T. Gille, J. C. Fyfe and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience, 11 (11), 836-841, doi:10.1038/s41561-018-0226-1.
  242. Desbruyeres, D., E. L. McDonagh, B. A. King and V. Thierry, 2017: Global and Full-Depth Ocean Temperature Trends during the Early Twenty-First Century from Argo and Repeat Hydrography. Journal of Climate, 30 (6), 1985-1997, doi:10.1175/JCLI-D-16-0396.1.
  243. Gao, L., S. R. Rintoul and W. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nature Climate Change, 8 (1), 58, doi:10.1038/s41558-017-0022-8.
  244. Schmidtko, S., K. J. Heywood, A. F. Thompson and S. Aoki, 2014: Multidecadal warming of Antarctic waters. Science, 346 (6214), 1227-1231.
  245. Spence, P. et al., 2014: Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophysical Research Letters, 41 (13), 4601-4610, doi:10.1002/2014gl060613.
  246. Jenkins, A. et al., 2018: West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nature Geoscience, 11 (10), 733-738, doi:10.1038/s41561-018-0207-4.
  247. Roemmich, D. et al., 2015: Unabated planetary warming and its ocean structure since 2006. Nature Climate Change, 5 (3), 240, doi:10.1038/nclimate2513.
  248. Frölicher, T. L. et al., 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. Journal of Climate, 28 (2), 862-886, doi:10.1175/JCLI-D-14-00117.1.
  249. Talley, L. D. et al., 2016: Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. Ann Rev Mar Sci, 8, 185-215, doi:10.1146/annurev-marine-052915-100829.
  250. Desbruyeres, D., E. L. McDonagh, B. A. King and V. Thierry, 2017: Global and Full-Depth Ocean Temperature Trends during the Early Twenty-First Century from Argo and Repeat Hydrography. Journal of Climate, 30 (6), 1985-1997, doi:10.1175/JCLI-D-16-0396.1.
  251. Purkey, S. G. and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. Journal of Climate, 26 (16), 6105-6122, doi:10.1175/JCLI-D-12-00834.1.
  252. Purkey, S. G. and G. C. Johnson, 2012: Global Contraction of Antarctic Bottom Water between the 1980s and 2000s*. Journal of Climate, 25 (17), 5830-5844, doi:10.1175/jcli-d-11-00612.1.
  253. Desbruyeres, D., E. L. McDonagh, B. A. King and V. Thierry, 2017: Global and Full-Depth Ocean Temperature Trends during the Early Twenty-First Century from Argo and Repeat Hydrography. Journal of Climate, 30 (6), 1985-1997, doi:10.1175/JCLI-D-16-0396.1.
  254. Purkey, S. G. and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. Journal of Climate, 26 (16), 6105-6122, doi:10.1175/JCLI-D-12-00834.1.
  255. Purkey, S. G. and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. Journal of Climate, 26 (16), 6105-6122, doi:10.1175/JCLI-D-12-00834.1.
  256. Meneghello, G., J. Marshall, S. T. Cole and M.-L. Timmermans, 2017: Observational Inferences of Lateral Eddy Diffusivity in the Halocline of the Beaufort Gyre. Geophysical Research Letters, 44 (24), 12,331-12,338, doi:10.1002/2017gl075126.
  257. Purkey, S. G. and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. Journal of Climate, 26 (16), 6105-6122, doi:10.1175/JCLI-D-12-00834.1.
  258. Rabe, B. et al., 2014: Arctic Ocean basin liquid freshwater storage trend 1992–2012. Geophysical Research Letters, 41 (3), 961-968, doi:10.1002/2013GL058121.
  259. Haine, T. W. N. et al., 2015: Arctic freshwater export: Status, mechanisms, and prospects. Global and Planetary Change, 125 (Supplement C), 13-35, doi:10.1016/j.gloplacha.2014.11.013.
  260. Carmack, E. C. et al., 2016: Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. Journal of Geophysical Research: Biogeosciences, 121 (3), 675-717, doi:10.1002/2015JG003140.
  261. Krishfield, R. A. et al., 2014: Deterioration of perennial sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic freshwater cycle. Journal of Geophysical Research: Oceans, 119 (2), 1271-1305, doi:10.1002/2013JC008999.
  262. Proshutinsky, A. et al., 2015: Arctic circulation regimes. Phil. Trans. R. Soc. A, 373 (2052), 20140160, doi:10.1098/rsta.2014.0160.
  263. Armitage, T. W. et al., 2016: Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003–2014. Journal of Geophysical Research: Oceans, 121 (6), 4303-4322, doi:10.1002/2015JC011579.
  264. Lind, S., R. B. Ingvaldsen and T. Furevik, 2018: Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nature Climate Change, 8 (7), 634–639, doi:10.1038/s41558-018-0205-y.
  265. Woodgate, R. A., 2018: Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Progress in Oceanography, 160, 124-154, doi:10.1016/j.pocean.2017.12.007.
  266. Swart, N. C., S. T. Gille, J. C. Fyfe and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience, 11 (11), 836-841, doi:10.1038/s41561-018-0226-1.
  267. Skliris, N. et al., 2014: Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Climate Dynamics, 43 (3-4), 709-736, doi:10.1007/s00382-014-2131-7.
  268. Skliris, N. et al., 2014: Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Climate Dynamics, 43 (3-4), 709-736, doi:10.1007/s00382-014-2131-7.
  269. Schmidtko, S., K. J. Heywood, A. F. Thompson and S. Aoki, 2014: Multidecadal warming of Antarctic waters. Science, 346 (6214), 1227-1231.
  270. Pauling, A. G., C. M. Bitz, I. J. Smith and P. J. Langhorne, 2016: The Response of the Southern Ocean and Antarctic Sea Ice to Freshwater from Ice Shelves in an Earth System Model. Journal of Climate, 29 (5), 1655-1672, doi:10.1175/jcli-d-15-0501.1.
  271. Skliris, N. et al., 2014: Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Climate Dynamics, 43 (3-4), 709-736, doi:10.1007/s00382-014-2131-7.
  272. Haumann, F. A. et al., 2016: Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537 (7618), 89-92, doi:10.1038/nature19101.
  273. Abernathey, R. P. et al., 2016: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nature Geoscience, 9, 596, doi:10.1038/ngeo2749.
  274. Pellichero, V., J.-B. Sallée, C. C. Chapman and S. M. Downes, 2018: The southern ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes. Nature Communications, 9 (1), 1789, doi:10.1038/s41467-018-04101-2.
  275. Swart, N. C., S. T. Gille, J. C. Fyfe and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience, 11 (11), 836-841, doi:10.1038/s41561-018-0226-1.
  276. Bellerby, R. et al., 2018: Arctic Ocean acidification: an update. AMAP Assessment 2018 Arctic Monitoring and Assessment Programme (AMAP), AMAP, Tromsø, Norway., vi+187pp.
  277. Robbins, L. L. et al., 2013: Baseline Monitoring of the Western Arctic Ocean Estimates 20% of Canadian Basin Surface Waters Are Undersaturated with Respect to Aragonite. Plos One, 8 (9), 15, doi:10.1371/journal.pone.0073796.
  278. Qi, D. et al., 2017: Increase in acidifying water in the western Arctic Ocean. Nature Climate Change, 7 (3), 195, doi:10.1038/nclimate3228.
  279. Semiletov, I. et al., 2016: Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon (vol 9, pg 361, 2016). Nature Geoscience, 9 (9), 1, doi:10.1038/ngeo2799.
  280. Anderson, L. G. et al., 2017a: Export of calcium carbonate corrosive waters from the East Siberian Sea. Biogeosciences, 14 (7), 1811-1823, doi:10.5194/bg-14-1811-2017.
  281. Tank, S. E. et al., 2012: A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean. Global Biogeochemical Cycles, 26 (4), GB4018, doi:10.1029/2011gb004192.
  282. Azetsu-Scott, K., M. Starr, Z. Mei and M. Granskog, 2014: Low calcium carbonate saturation state in an Arctic inland sea having large and varying fluvial inputs: The Hudson Bay system. Journal of Geophysical Research-Oceans, 119 (9), 6210-6220, doi:10.1002/2014jc009948.
  283. Ericson, Y. et al., 2014: Increasing carbon inventory of the intermediate layers of the Arctic Ocean. Journal of Geophysical Research-Oceans, 119 (4), 2312-2326, doi:10.1002/2013jc009514.
  284. MacGilchrist, G. A. et al., 2014: The Arctic Ocean carbon sink. Deep-Sea Research Part I-Oceanographic Research Papers, 86, 39-55, doi:10.1016/j.dsr.2014.01.002.
  285. Yamamoto-Kawai, M., T. Mifune, T. Kikuchi and S. Nishino, 2016: Seasonal variation of CaCO3 saturation state in bottom water of a biological hotspot in the Chukchi Sea, Arctic Ocean. Biogeosciences, 13 (22), 6155-6169, doi:10.5194/bg-13-6155-2016.
  286. Rysgaard, S. et al., 2013: Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics. Cryosphere, 7 (2), 707-718, doi:10.5194/tc-7-707-2013.
  287. Bates, N. R. et al., 2014: Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed-layer properties and rates of net community production under sea ice. Biogeosciences, 11 (23), 6769-6789, doi:10.5194/bg-11-6769-2014.
  288. Geilfus, N. X. et al., 2016: Estimates of ikaite export from sea ice to the underlying seawater in a sea ice-seawater mesocosm. Cryosphere, 10 (5), 2173-2189, doi:10.5194/tc-10-2173-2016.
  289. Francis, D., C. Eayrs, J. Cuesta and D. Holland, 2019: Polar Cyclones at the Origin of the Reoccurrence of the Maud Rise Polynya in Austral Winter 2017. Journal of Geophysical Research-Atmospheres, 124 (10), 5251-5267, doi:10.1029/2019jd030618.
  290. Azetsu-Scott, K., M. Starr, Z. Mei and M. Granskog, 2014: Low calcium carbonate saturation state in an Arctic inland sea having large and varying fluvial inputs: The Hudson Bay system. Journal of Geophysical Research-Oceans, 119 (9), 6210-6220, doi:10.1002/2014jc009948.
  291. Yamamoto-Kawai, M., T. Mifune, T. Kikuchi and S. Nishino, 2016: Seasonal variation of CaCO3 saturation state in bottom water of a biological hotspot in the Chukchi Sea, Arctic Ocean. Biogeosciences, 13 (22), 6155-6169, doi:10.5194/bg-13-6155-2016.
  292. Krause-Jensen, D. et al., 2016: Long photoperiods sustain high pH in Arctic kelp forests. Science Advances, 2 (12), 8, doi:10.1126/sciadv.1501938.
  293. McNeil, B. I. and R. J. Matear, 2013: The non-steady state oceanic CO2 signal: its importance, magnitude and a novel way to detect it. Biogeosciences, 10 (4), 2219-2228, doi:10.5194/bg-10-2219-2013.
  294. Landa, C. S. et al., 2014: Recruitment, distribution boundary and habitat temperature of an arcto-boreal gadoid in a climatically changing environment: a case study on Northeast Arctic haddock (Melanogrammus aeglefinus). Fisheries Oceanography, 23 (6), 506-520, doi:10.1111/fog.12085.
  295. Landschützer, P. et al., 2015: The reinvigoration of the Southern Ocean carbon sink. Science, 349 (6253), 1221-1224, doi:10.1126/science.aab2620
  296. Gregor, L., S. Kok and P. M. S. Monteiro, 2017: Empirical methods for the estimation of Southern Ocean CO2: support vector and random forest regression. Biogeosciences, 14 (23), 5551-5569, doi:10.1002/2016GB005541.
  297. Ritter, R. et al., 2017: Observation-Based Trends of the Southern Ocean Carbon Sink. Geophysical Research Letters, 44 (24), 12,339-12,348, doi:papers2://publication/doi/10.1175/JTECH-D-13-00137.1.
  298. Keppler, L. and P. Landschutzer, 2019: Regional Wind Variability Modulates the Southern Ocean Carbon Sink. Sci Rep, 9 (1), 7384, doi:10.1038/s41598-019-43826-y.
  299. Landschützer, P. et al., 2015: The reinvigoration of the Southern Ocean carbon sink. Science, 349 (6253), 1221-1224, doi:10.1126/science.aab2620
  300. Landschützer, P. et al., 2015: The reinvigoration of the Southern Ocean carbon sink. Science, 349 (6253), 1221-1224, doi:10.1126/science.aab2620
  301. Munro, D. R. et al., 2015: Recent evidence for a strengthening CO2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002-2015). Geophysical Research Letters, 42 (18), 7623-7630, doi:10.1002/2015GL065194.
  302. Williams, N. L. et al., 2017: Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH: An uncertainty analysis. Global Biogeochemical Cycles, 31 (3), 591-604, doi:10.1002/2016GB005541.
  303. Keppler, L. and P. Landschutzer, 2019: Regional Wind Variability Modulates the Southern Ocean Carbon Sink. Sci Rep, 9 (1), 7384, doi:10.1038/s41598-019-43826-y.
  304. Landschützer, P. et al., 2015: The reinvigoration of the Southern Ocean carbon sink. Science, 349 (6253), 1221-1224, doi:10.1126/science.aab2620
  305. Gregor, L., S. Kok and P. M. S. Monteiro, 2017: Empirical methods for the estimation of Southern Ocean CO2: support vector and random forest regression. Biogeosciences, 14 (23), 5551-5569, doi:10.1002/2016GB005541.
  306. Keppler, L. and P. Landschutzer, 2019: Regional Wind Variability Modulates the Southern Ocean Carbon Sink. Sci Rep, 9 (1), 7384, doi:10.1038/s41598-019-43826-y.
  307. Ritter, R. et al., 2017: Observation-Based Trends of the Southern Ocean Carbon Sink. Geophysical Research Letters, 44 (24), 12,339-12,348, doi:papers2://publication/doi/10.1175/JTECH-D-13-00137.1.
  308. Fay, A. R. et al., 2018: Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2. Biogeosciences, 15 (12), 3841-3855, doi:10.5194/bg-15-3841-2018.
  309. Gruber, N., P. Landschutzer and N. S. Lovenduski, 2019b: The Variable Southern Ocean Carbon Sink. Ann Rev Mar Sci, 11, 159-186, doi:10.1146/annurev-marine-121916-063407.
  310. Williams, N. L. et al., 2017: Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH: An uncertainty analysis. Global Biogeochemical Cycles, 31 (3), 591-604, doi:10.1002/2016GB005541.
  311. Gray, A. R. et al., 2018: Autonomous Biogeochemical Floats Detect Significant Carbon Dioxide Outgassing in the High-Latitude Southern Ocean. Geophysical Research Letters, 45 (17), 9049-9057, doi:10.1029/2018gl078013.
  312. DeVries, T., M. Holzer and F. Primeau, 2017: Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542 (7640), 215, doi:10.1038/nature21068.
  313. Tanhua, T. et al., 2017: Temporal changes in ventilation and the carbonate system in the Atlantic sector of the Southern Ocean. Deep-Sea Research Part II, 138, 26-38, doi:10.1016/j.dsr2.2016.10.004.
  314. Swart, N. C., J. C. Fyfe, O. A. Saenko and M. Eby, 2014: Wind-driven changes in the ocean carbon sink. Biogeosciences, 11 (21), 6107-6117, doi:10.5194/bg-11-6107-2014.
  315. Swart, N. C., J. C. Fyfe, N. Gillett and G. J. Marshall, 2015a: Comparing Trends in the Southern Annular Mode and Surface Westerly Jet. Journal of Climate, 28 (22), 8840-8859, doi:10.1175/JCLI-D-14-00716.s1.
  316. Tanhua, T. et al., 2017: Temporal changes in ventilation and the carbonate system in the Atlantic sector of the Southern Ocean. Deep-Sea Research Part II, 138, 26-38, doi:10.1016/j.dsr2.2016.10.004.
  317. Gruber, N. et al., 2019a: The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363 (6432), 1193-1199, doi:10.1126/science.aau5153.
  318. Swart, N. C., J. C. Fyfe, O. A. Saenko and M. Eby, 2014: Wind-driven changes in the ocean carbon sink. Biogeosciences, 11 (21), 6107-6117, doi:10.5194/bg-11-6107-2014.
  319. Lange, B. A. et al., 2017: Pan-Arctic sea ice-algal chl a biomass and suitable habitat are largely underestimated for multiyear ice. Glob Chang Biol, 23 (11), 4581-4597, doi:10.1111/gcb.13742.
  320. Freeman, N. M. and N. S. Lovenduski, 2015: Decreased calcification in the Southern Ocean over the satellite record. Nature Geoscience, 42 (6), 1834-1840, doi:papers2://publication/uuid/E879F895-C356-42B6-B1DE-7E33D4676735.
  321. McNeil, B. I. and T. P. Sasse, 2016: Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature, 529 (7586), 383-6, doi:10.1038/nature16156.
  322. Conrad, C. J. and N. S. Lovenduski, 2015: Climate-Driven Variability in the Southern Ocean Carbonate System. Journal of Climate, 28 (13), 5335-5350, doi:papers2://publication/doi/10.1175/JCLI-D-14-00481.1.
  323. Armitage, T. W. et al., 2017: Arctic Ocean surface geostrophic circulation 2003–2014. The Cryosphere, 11 (4), 1767, doi:10.5194/tc-11-1767-2017.
  324. Armitage, T. W. et al., 2017: Arctic Ocean surface geostrophic circulation 2003–2014. The Cryosphere, 11 (4), 1767, doi:10.5194/tc-11-1767-2017.
  325. Woodgate, R. A., 2018: Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Progress in Oceanography, 160, 124-154, doi:10.1016/j.pocean.2017.12.007.
  326. Meneghello, G., J. Marshall, S. T. Cole and M.-L. Timmermans, 2017: Observational Inferences of Lateral Eddy Diffusivity in the Halocline of the Beaufort Gyre. Geophysical Research Letters, 44 (24), 12,331-12,338, doi:10.1002/2017gl075126.
  327. Zhao, M. et al., 2014: Characterizing the eddy field in the Arctic Ocean halocline. Journal of Geophysical Research: Oceans, 119 (12), 8800-8817.
  328. Zhao, M. et al., 2016: Evolution of the eddy field in the Arctic Ocean’s Canada Basin, 2005–2015. Geophysical Research Letters, 43 (15), 8106-8114, doi:10.1002/2016GL069671.
  329. Armitage, T. W. et al., 2017: Arctic Ocean surface geostrophic circulation 2003–2014. The Cryosphere, 11 (4), 1767, doi:10.5194/tc-11-1767-2017.
  330. Regan, H. C., C. Lique and T. W. K. Armitage, 2019: The Beaufort Gyre Extent, Shape, and Location Between 2003 and 2014 From Satellite Observations. Journal of Geophysical Research: Oceans, 124 (2), 844-862, doi:10.1029/2018jc014379.
  331. Donohue, K. et al., 2016: Mean Antarctic Circumpolar Current transport measured in Drake Passage. Geophysical Research Letters, 43 (22).
  332. Swart, N. C., J. C. Fyfe, N. Gillett and G. J. Marshall, 2015a: Comparing Trends in the Southern Annular Mode and Surface Westerly Jet. Journal of Climate, 28 (22), 8840-8859, doi:10.1175/JCLI-D-14-00716.s1.
  333. Chidichimo, M. P., K. A. Donohue, D. R. Watts and K. L. Tracey, 2014: Baroclinic transport time series of the Antarctic Circumpolar Current measured in Drake Passage. Journal of Physical Oceanography, 44 (7), 1829-1853, doi:10.1175/JPO-D-13-071.1.
  334. Koenig, L. S., C. Miège, R. R. Forster and L. Brucker, 2014: Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer. Geophysical Research Letters, 41 (1), 81-85, doi:10.1002/2013GL058083.
  335. Donohue, K. et al., 2016: Mean Antarctic Circumpolar Current transport measured in Drake Passage. Geophysical Research Letters, 43 (22).
  336. McCave, I. N. et al., 2013: Minimal change in Antarctic Circumpolar Current flow speed between the last glacial and Holocene. Nature Geoscience, 7, 113, doi:10.1038/ngeo2037.
  337. Munday, D. R., H. L. Johnson and D. P. Marshall, 2013: Eddy Saturation of Equilibrated Circumpolar Currents. Journal of Physical Oceanography, 43 (3), 507-532, doi:10.1175/JPO-D-12-095.1.
  338. Hogg, A. M. et al., 2015: Recent trends in the Southern Ocean eddy field. Journal of Geophysical Research: Oceans, 120 (1), 257-267, doi:10.1002/2014JC010470.
  339. Patara, L., C. W. Böning and A. Biastoch, 2016: Variability and trends in Southern Ocean eddy activity in 1/12 ocean model simulations. Geophysical Research Letters, 43 (9), 4517-4523, doi:10.1002/2016GL069026.
  340. Thompson, A. F. and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by Standing Meanders. Journal of Physical Oceanography, 44 (7), 1811-1828, doi:10.1175/JPO-D-13-0163.1.
  341. Meijers, A. J. S. et al., 2019: The role of ocean dynamics in king penguin range estimation. Nature Climate Change, 9 (2), 120-121, doi:10.1038/s41558-018-0388-2.
  342. Swart, N. C., J. C. Fyfe, N. Gillett and G. J. Marshall, 2015a: Comparing Trends in the Southern Annular Mode and Surface Westerly Jet. Journal of Climate, 28 (22), 8840-8859, doi:10.1175/JCLI-D-14-00716.s1.
  343. Gille, S. T., 2014: Meridional displacement of the Antarctic Circumpolar Current. Phil. Trans. R. Soc. A, 372 (2019), 20130273, doi:10.1098/rsta.2013.0273.
  344. Chapman, C. C., 2017: New perspectives on frontal variability in the Southern Ocean. Journal of Physical Oceanography, 47 (5), 1151-1168, doi:10.1175/JPO-D-16-0222.1.
  345. Chambers, D. P., 2018: Using kinetic energy measurements from altimetry to detect shifts in the positions of fronts in the Southern Ocean. Ocean Science, 14 (1), 105, doi:10.5194/os-14-105-2018.
  346. Chapman, C. C., 2014: Southern Ocean jets and how to find them: Improving and comparing common jet detection methods. Journal of Geophysical Research: Oceans, 119 (7), 4318-4339, doi:10.1002/2014JC009810.
  347. Gille, S. T., 2014: Meridional displacement of the Antarctic Circumpolar Current. Phil. Trans. R. Soc. A, 372 (2019), 20130273, doi:10.1098/rsta.2013.0273.
  348. Gille, S. T., 2014: Meridional displacement of the Antarctic Circumpolar Current. Phil. Trans. R. Soc. A, 372 (2019), 20130273, doi:10.1098/rsta.2013.0273.
  349. Waugh, D. W., 2014: Changes in the ventilation of the southern oceans. Phil. Trans. R. Soc. A, 372 (2019), 20130269, doi:10.1126/science.1225411
  350. Waugh, D. W., 2014: Changes in the ventilation of the southern oceans. Phil. Trans. R. Soc. A, 372 (2019), 20130269, doi:10.1126/science.1225411
  351. Ting, Y.-H. and M. Holzer, 2017: Decadal changes in Southern Ocean ventilation inferred from deconvolutions of repeat hydrographies. Geophysical Research Letters, 44 (11), 5655-5664, doi:10.1002/2017gl073788.
  352. DeVries, T., M. Holzer and F. Primeau, 2017: Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542 (7640), 215, doi:10.1038/nature21068.
  353. Purkey, S. G. and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. Journal of Climate, 26 (16), 6105-6122, doi:10.1175/JCLI-D-12-00834.1.
  354. Desbruyeres, D., E. L. McDonagh, B. A. King and V. Thierry, 2017: Global and Full-Depth Ocean Temperature Trends during the Early Twenty-First Century from Argo and Repeat Hydrography. Journal of Climate, 30 (6), 1985-1997, doi:10.1175/JCLI-D-16-0396.1.
  355. Azaneu, M., R. Kerr, M. M. Mata and C. A. Garcia, 2013: Trends in the deep Southern Ocean (1958–2010): Implications for Antarctic Bottom Water properties and volume export. Journal of Geophysical Research: Oceans, 118 (9), 4213-4227.
  356. Bracegirdle, T. J. et al., 2013: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. Journal of Geophysical Research: Atmospheres, 118 (2), 547-562, doi:10.1002/jgrd.50153.
  357. Downes, S. M. and A. M. Hogg, 2013: Southern Ocean circulation and eddy compensation in CMIP5 models. Journal of Climate, 26 (18), 7198-7220, doi:10.1175/JCLI-D-12-00504.1.
  358. Morrison, A. K. and A. McC. Hogg, 2013: On the Relationship between Southern Ocean Overturning and ACC Transport. Journal of Physical Oceanography, 43 (1), 140-148, doi:10.1175/jpo-d-12-057.1.
  359. Munday, D. R., H. L. Johnson and D. P. Marshall, 2013: Eddy Saturation of Equilibrated Circumpolar Currents. Journal of Physical Oceanography, 43 (3), 507-532, doi:10.1175/JPO-D-12-095.1.
  360. Abernathey, R. and D. Ferreira, 2015: Southern Ocean isopycnal mixing and ventilation changes driven by winds. Geophysical Research Letters, 42 (23), 10,357-10,365, doi:10.1002/2015gl066238.
  361. Meijers, A. J. S. et al., 2012: Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. Journal of Geophysical Research: Oceans, 117 (C12), 19pp, doi:10.1029/2012JC008412.
  362. Downes, S. M. and A. M. Hogg, 2013: Southern Ocean circulation and eddy compensation in CMIP5 models. Journal of Climate, 26 (18), 7198-7220, doi:10.1175/JCLI-D-12-00504.1.
  363. Sallée, J.-B. et al., 2013a: Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 118 (4), 1845-1862, doi:10.1002/jgrc.20157.
  364. Bracegirdle, T. J. et al., 2013: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. Journal of Geophysical Research: Atmospheres, 118 (2), 547-562, doi:10.1002/jgrd.50153.
  365. Russell, J. L. et al., 2018: Metrics for the Evaluation of the Southern Ocean in Coupled Climate Models and Earth System Models. Journal of Geophysical Research: Oceans, 123 (5), 3120-3143, doi:10.1002/2017JC013461.
  366. Sallée, J.-B. et al., 2013b: Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 118 (4), 1830-1844, doi:10.1002/jgrc.20135.
  367. Downes, S. M. and A. M. Hogg, 2013: Southern Ocean circulation and eddy compensation in CMIP5 models. Journal of Climate, 26 (18), 7198-7220, doi:10.1175/JCLI-D-12-00504.1.
  368. Gent, P. R., 2016: Effects of Southern Hemisphere wind changes on the meridional overturning circulation in ocean models. Annual Review of Marine Science, 8, 79-94, doi:10.1146/annurev-marine-122414-033929.
  369. Downes, S., P. Spence and A. Hogg, 2018: Understanding variability of the Southern Ocean overturning circulation in CORE-II models. Ocean Modelling, 123, 98-109, doi:10.1016/j.ocemod.2018.01.005.
  370. Heuzé, C., K. J. Heywood, D. P. Stevens and J. K. Ridley, 2015: Changes in global ocean bottom properties and volume transports in CMIP5 models under climate change scenarios. Journal of Climate, 28 (8), 2917-2944, doi:10.1175/JCLI-D-14-00381.1.
  371. Bronselaer, B. et al., 2018: Change in future climate due to Antarctic meltwater. Nature, 564 (7734), 53-58, doi:10.1038/s41586-018-0712-z.
  372. Masson-Delmotte, V. et al., 2012: Greenland climate change: from the past to the future. Wiley Interdisciplinary Reviews: Climate Change, 3 (5), 427-449, doi:10.1002/wcc.186.
  373. Stroeve, J. C. et al., 2012a: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39 (16), L16502, doi:10.1029/2012gl052676.
  374. Stroeve, J., A. Barrett, M. Serreze and A. Schweiger, 2014a: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness. The Cryosphere, 8 (5), 1839-1854, doi:10.5194/tc-8-1839-2014.
  375. Stroeve, J. and D. Notz, 2015: Insights on past and future sea-ice evolution from combining observations and models. Global and Planetary Change, 135 (Supplement C), 119-132, doi:10.1016/j.gloplacha.2015.10.011.
  376. Jahn, A. et al., 2012: Late-Twentieth-Century Simulation of Arctic Sea Ice and Ocean Properties in the CCSM4. Journal of Climate, 25 (5), 1431-1452, doi:10.1175/jcli-d-11-00201.1.
  377. Stroeve, J., A. Barrett, M. Serreze and A. Schweiger, 2014a: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness. The Cryosphere, 8 (5), 1839-1854, doi:10.5194/tc-8-1839-2014.
  378. Tandon, N. F. et al., 2018: Reassessing Sea Ice Drift and Its Relationship to Long-Term Arctic Sea Ice Loss in Coupled Climate Models. Journal of Geophysical Research: Oceans, 123 (6), 4338-4359, doi:10.1029/2017jc013697.
  379. Notz, D. and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354 (6313), 747-750, doi:10.1126/science.aag2345.
  380. Gagné, M.-È. et al., 2017: Aerosol-driven increase in Arctic sea ice over the middle of the twentieth century. Geophysical Research Letters, 44 (14), 7338-7346, doi:10.1002/2016gl071941.
  381. Niederdrenk, A. L. and D. Notz, 2018: Arctic Sea Ice in a 1.5°C Warmer World. Geophysical Research Letters, 45 (4), 1963-1971, doi:10.1002/2017gl076159.
  382. Rosenblum, E. and I. Eisenman, 2017: Sea Ice Trends in Climate Models Only Accurate in Runs with Biased Global Warming. Journal of Climate, 30 (16), 6265-6278, doi:10.1175/jcli-d-16-0455.1.
  383. Swart, N. C. et al., 2015b: Influence of internal variability on Arctic sea-ice trends. Nature Climate Change, 5, 86, doi:10.1038/nclimate2483.
  384. Ding, Q. et al., 2018: Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. Nature Geoscience, 12 (1), 28-33, doi:10.1038/s41561-018-0256-8.
  385. Notz, D. and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354 (6313), 747-750, doi:10.1126/science.aag2345.
  386. Masson-Delmotte, V. et al., 2012: Greenland climate change: from the past to the future. Wiley Interdisciplinary Reviews: Climate Change, 3 (5), 427-449, doi:10.1002/wcc.186.
  387. Stroeve, J. C. et al., 2012a: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39 (16), L16502, doi:10.1029/2012gl052676.
  388. Overland, J. E. and M. Y. Wang, 2013: When will the summer Arctic be nearly sea ice free? Geophysical Research Letters, 40 (10), 2097-2101, doi:10.1002/grl.50316.
  389. Notz, D., 2015: How well must climate models agree with observations? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373 (2052), 20140164, doi:10.1098/rsta.2014.0164.
  390. Swart, N. C. et al., 2015b: Influence of internal variability on Arctic sea-ice trends. Nature Climate Change, 5, 86, doi:10.1038/nclimate2483.
  391. Screen, J. A. and C. Deser, 2019: Pacific Ocean Variability Influences the Time of Emergence of a Seasonally Ice‐Free Arctic Ocean. Geophysical Research Letters, 46 (4), 2222-2231, doi:10.1029/2018gl081393.
  392. Stroeve, J. C. et al., 2012a: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39 (16), L16502, doi:10.1029/2012gl052676.
  393. Liu, J., M. Song, R. M. Horton and Y. Hu, 2013: Reducing spread in climate model projections of a September ice-free Arctic. Proceedings of the National Academy of Sciences, 110 (31), 12571-12576, doi:10.1073/pnas.1219716110.
  394. Rampal, P., J. Weiss, C. Dubois and J.-M. Campin, 2011: IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline. Journal of Geophysical Research: Oceans, 116 (C8), C00D07, doi:10.1029/2011JC007110.
  395. Tandon, N. F. et al., 2018: Reassessing Sea Ice Drift and Its Relationship to Long-Term Arctic Sea Ice Loss in Coupled Climate Models. Journal of Geophysical Research: Oceans, 123 (6), 4338-4359, doi:10.1029/2017jc013697.
  396. Massonnet, F. et al., 2018: Arctic sea-ice change tied to its mean state through thermodynamic processes. Nature Climate Change, 8 (7), 599-603, doi:10.1038/s41558-018-0204-z.
  397. Notz, D., 2015: How well must climate models agree with observations? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373 (2052), 20140164, doi:10.1098/rsta.2014.0164.
  398. Jahn, A., 2018: Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming. Nature Climate Change, 8 (5), 409-413, doi:10.1038/s41558-018-0127-8.
  399. Notz, D. and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354 (6313), 747-750, doi:10.1126/science.aag2345.
  400. Sanderson, B. M. et al., 2017: Community climate simulations to assess avoided impacts in 1.5 and 2  °C futures. Earth Syst. Dynam., 8 (3), 827-847, doi:10.5194/esd-8-827-2017.
  401. Jahn, A., 2018: Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming. Nature Climate Change, 8 (5), 409-413, doi:10.1038/s41558-018-0127-8.
  402. Sigmond, M., J. C. Fyfe and N. C. Swart, 2018: Ice-free Arctic projections under the Paris Agreement. Nature Climate Change, 8 (5), 404–408, doi:10.1038/s41558-018-0124-y.
  403. Mahlstein, I. and R. Knutti, 2012: September Arctic sea ice predicted to disappear near 2°C global warming above present. Journal of Geophysical Research: Atmospheres, 117 (D6), D06104, doi:10.1029/2011jd016709.
  404. Jahn, A., J. E. Kay, M. M. Holland and D. M. Hall, 2016: How predictable is the timing of a summer ice-free Arctic? Geophysical Research Letters, 43 (17), 9113-9120, doi:10.1002/2016gl070067.
  405. Notz, D. and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354 (6313), 747-750, doi:10.1126/science.aag2345.
  406. Armour, K. C. et al., 2011: The reversibility of sea ice loss in a state-of-the-art climate model. Geophysical Research Letters, 38 (16), L16705, doi:10.1029/2011gl048739.
  407. Ridley, J. K., J. A. Lowe and H. T. Hewitt, 2012: How reversible is sea ice loss? The Cryosphere, 6 (1), 193-198, doi:10.5194/tc-6-193-2012.
  408. Li, C., D. Notz, S. Tietsche and J. Marotzke, 2013: The Transient versus the Equilibrium Response of Sea Ice to Global Warming. Journal of Climate, 26 (15), 5624-5636, doi:10.1175/jcli-d-12-00492.1.
  409. Turner, J. et al., 2013: An Initial Assessment of Antarctic Sea Ice Extent in the CMIP5 Models. Journal of Climate, 26 (5), 1473-1484, doi:10.1175/jcli-d-12-00068.1.
  410. Shu, Q., Z. Song and F. Qiao, 2015: Assessment of sea ice simulations in the CMIP5 models. Cryosphere, 9 (1), 399-409, doi:10.5194/tc-9-399-2015.
  411. Zunz, V., H. Goosse and F. Massonnet, 2013: How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? The Cryosphere, 7 (2), 451-468, doi:10.5194/tc-7-451-2013.
  412. Polvani, L. M. and K. L. Smith, 2013: Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophysical Research Letters, 40 (12), 3195-3199, doi:10.1002/grl.50578.
  413. Zunz, V., H. Goosse and F. Massonnet, 2013: How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? The Cryosphere, 7 (2), 451-468, doi:10.5194/tc-7-451-2013.
  414. Rosenblum, E. and I. Eisenman, 2017: Sea Ice Trends in Climate Models Only Accurate in Runs with Biased Global Warming. Journal of Climate, 30 (16), 6265-6278, doi:10.1175/jcli-d-16-0455.1.
  415. Hobbs, W. R., N. L. Bindoff and M. N. Raphael, 2015: New Perspectives on Observed and Simulated Antarctic Sea Ice Extent Trends Using Optimal Fingerprinting Techniques. Journal of Climate, 28 (4), 1543-1560, doi:10.1175/Jcli-D-14-00367.1.
  416. Hobbs, W. R., N. L. Bindoff and M. N. Raphael, 2015: New Perspectives on Observed and Simulated Antarctic Sea Ice Extent Trends Using Optimal Fingerprinting Techniques. Journal of Climate, 28 (4), 1543-1560, doi:10.1175/Jcli-D-14-00367.1.
  417. Ivanov, V. et al., 2016: Arctic Ocean heat impact on regional ice decay: A suggested positive feedback. Journal of Physical Oceanography, 46 (5), 1437-1456, doi:10.1175/JPO-D-15-0144.1.
  418. Sallée, J.-B. et al., 2013a: Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 118 (4), 1845-1862, doi:10.1002/jgrc.20157.
  419. Bintanja, R., G. J. Van Oldenborgh and C. A. Katsman, 2015: The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Annals of Glaciology, 56 (69), 120-126, doi:10.3189/2015AoG69A001.
  420. Schneider, D. P., C. Deser and T. Fan, 2015: Comparing the Impacts of Tropical SST Variability and Polar Stratospheric Ozone Loss on the Southern Ocean Westerly Winds. Journal of Climate, 28 (23), 9350-9372, doi:10.1175/jcli-d-15-0090.1.
  421. Hyder, P. et al., 2018: Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nat Commun, 9 (1), 3625, doi:10.1038/s41467-018-05634-2.
  422. Purich, A., W. J. Cai, M. H. England and T. Cowan, 2016a: Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nature Communications, 7, 10409, doi:10.1038/ncomms10409.
  423. Purich, A. et al., 2016b: Tropical Pacific SST Drivers of Recent Antarctic Sea Ice Trends. Journal of Climate, 29 (24), 8931-8948, doi:10.1175/jcli-d-16-0440.1.
  424. Schroeter, S., W. Hobbs and N. L. Bindoff, 2017: Interactions between Antarctic sea ice and large-scale atmospheric modes in CMIP5 models. Cryosphere, 11 (2), 789-803, doi:10.5194/tc-11-789-2017.
  425. Purich, A. et al., 2018: Impacts of Broad-Scale Surface Freshening of the Southern Ocean in a Coupled Climate Model. Journal of Climate, 31 (7), 2613-2632, doi:10.1175/jcli-d-17-0092.1.
  426. Zhang, L., T. L. Delworth, W. Cooke and X. Yang, 2018a: Natural variability of Southern Ocean convection as a driver of observed climate trends. Nature Climate Change, 9 (1), 59-65, doi:10.1038/s41558-018-0350-3.
  427. Bracegirdle, T. J., D. B. Stephenson, J. Turner and T. Phillips, 2015: The importance of sea ice area biases in 21st century multimodel projections of Antarctic temperature and precipitation. Geophysical Research Letters, 42 (24), 10832-10839, doi:10.1002/2015gl067055.
  428. Bracegirdle, T. J., P. Hyder and C. R. Holmes, 2018: CMIP5 Diversity in Southern Westerly Jet Projections Related to Historical Sea Ice Area: Strong Link to Strengthening and Weak Link to Shift. Journal of Climate, 31 (1), 195-211, doi:10.1175/jcli-d-17-0320.1.
  429. England, M., L. Polvani and L. Sun, 2018: Contrasting the Antarctic and Arctic Atmospheric Responses to Projected Sea Ice Loss in the Late Twenty-First Century. Journal of Climate, 31 (16), 6353-6370, doi:10.1175/jcli-d-17-0666.1.
  430. Damm, E. et al., 2018: The Transpolar Drift conveys methane from the Siberian Shelf to the central Arctic Ocean. Sci Rep, 8 (1), 4515, doi:10.1038/s41598-018-22801-z.
  431. Barber, D. G. et al., 2012: Consequences of change and variability in sea ice on marine ecosystem and biogeochemical processes during the 2007–2008 Canadian International Polar Year program. Climatic Change, 115 (1), 135-159, doi:10.1007/s10584-012-0482-9.
  432. Damm, E. et al., 2018: The Transpolar Drift conveys methane from the Siberian Shelf to the central Arctic Ocean. Sci Rep, 8 (1), 4515, doi:10.1038/s41598-018-22801-z.
  433. Bauch, D. et al., 2012: Impact of Siberian coastal polynyas on shelf-derived Arctic Ocean halocline waters. Journal of Geophysical Research: Oceans, 117 (C9), doi:10.1029/2011JC007282.
  434. Janout, M. et al., 2015: Episodic warming of near-bottom waters under the Arctic sea ice on the central Laptev Sea shelf. Geophysical Research Letters, 43 (1), 264-272, doi:10.1002/2015GL066565.
  435. Bauch, D. et al., 2012: Impact of Siberian coastal polynyas on shelf-derived Arctic Ocean halocline waters. Journal of Geophysical Research: Oceans, 117 (C9), doi:10.1029/2011JC007282.
  436. Barnes, E. A. and L. M. Polvani, 2015: CMIP5 Projections of Arctic Amplification, of the North American/North Atlantic Circulation, and of Their Relationship. Journal of Climate, 28 (13), 5254-5271, doi:10.1175/jcli-d-14-00589.1.
  437. Onarheim, I. H., T. Eldevik, L. H. Smedsrud and J. C. Stroeve, 2018: Seasonal and regional manifestation of Arctic sea ice loss. Journal of Climate, 31 (12), 4917-4932, doi:10.1175/jcli-d-17-0427.1.
  438. Krumpen, T. et al., 2019: Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci Rep, 9 (1), 5459, doi:10.1038/s41598-019-41456-y.
  439. Damm, E. et al., 2018: The Transpolar Drift conveys methane from the Siberian Shelf to the central Arctic Ocean. Sci Rep, 8 (1), 4515, doi:10.1038/s41598-018-22801-z.
  440. Stirling, I., 1997: The importance of polynyas, ice edges, and leads to marine mammals and birds. Journal of Marine Systems, 10 (1), 9-21, doi:10.1016/S0924-7963(96)00054-1.
  441. Arrigo, K. R. and G. L. van Dijken, 2004: Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic. Geophysical Research Letters, 31 (8), doi:10.1029/2003gl018978.
  442. Karnovsky, N. J., K. A. Hobson, Z. W. Brown and G. L. Hunt, 2009: Distribution and diet of Ivory Gulls ( Pagophila eburnea ) in the North Water Polynya. Arctic, 62, 65-74, doi:10.14430/arctic113
  443. Asselin, N. C. et al., 2011: Beluga (Delphinapterus leucas) habitat selection in the eastern Beaufort Sea in spring, 1975–1979. Polar Biology, 34 (12), 1973-1988, doi:10.1007/s00300-011-0990-5.
  444. Barber, D. G. et al., 2012: Consequences of change and variability in sea ice on marine ecosystem and biogeochemical processes during the 2007–2008 Canadian International Polar Year program. Climatic Change, 115 (1), 135-159, doi:10.1007/s10584-012-0482-9.
  445. Nihashi, S. and K. I. Ohshima, 2015: Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: relationship and variability. Journal of Climate, 28, 3650-3670, doi:10.1175/JCLI-D-14-00369.1.
  446. Tamura, T., K. I. Ohshima, A. D. Fraser and G. D. Williams, 2016: Sea ice production variability in Antarctic coastal polynyas. Journal of Geophysical Research: Oceans, 121 (5), 2967-2979, doi:10.1002/2015jc011537.
  447. Jacobs, S. S., 2004: Bottom water production and its links with the thermohaline circulation. Antarctic Science, 16 (4), 427-437, doi:10.1017/S095410200400224x.
  448. Nicholls, K. W., L. Boehme, M. Biuw and M. A. Fedak, 2008: Wintertime ocean conditions over the southern Weddell Sea continental shelf, Antarctica. Geophysical Research Letters, 35 (21), L21605, doi:10.1029/2008gl035742.
  449. Orsi, A. H. and C. L. Wiederwohl, 2009: A recount of Ross Sea waters. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 56 (13-14), 778-795, doi:10.1016/j.dsr2.2008.10.033.
  450. Ohshima, K. I. et al., 2013: Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nature Geoscience, 6, 235, doi:10.1038/ngeo1738.
  451. Drucker, R., S. Martin and R. Kwok, 2011: Sea ice production and export from coastal polynyas in the Weddell and Ross Seas. Geophysical Research Letters, 38, L17502, doi:10.1029/2011gl048668.
  452. Nihashi, S. and K. I. Ohshima, 2015: Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: relationship and variability. Journal of Climate, 28, 3650-3670, doi:10.1175/JCLI-D-14-00369.1.
  453. Tamura, T., K. I. Ohshima, A. D. Fraser and G. D. Williams, 2016: Sea ice production variability in Antarctic coastal polynyas. Journal of Geophysical Research: Oceans, 121 (5), 2967-2979, doi:10.1002/2015jc011537.
  454. Ainley, D. G. et al., 2015: Trophic cascades in the western Ross Sea, Antarctica: revisited. Marine Ecology Progress Series, 534, 1-16, doi:10.3354/meps11394.
  455. Arrigo, K. R. and G. L. van Dijken, 2015: Continued increases in Arctic Ocean primary production. Progress in Oceanography, 136, 60-70, doi:10.1016/j.pocean.2015.05.002.
  456. Park, J. et al., 2017: Light availability rather than Fe controls the magnitude of massive phytoplankton bloom in the Amundsen Sea polynyas, Antarctica. Limnology and Oceanography, 62 (5), 2260-2276, doi:10.1002/lno.10565.
  457. Gerringa, L. J. A. et al., 2015: Sources of iron in the Ross Sea Polynya in early summer. Marine Chemistry, 177, 447-459, doi:10.1016/j.marchem.2015.06.002.
  458. Arrigo, K. R. and G. L. van Dijken, 2015: Continued increases in Arctic Ocean primary production. Progress in Oceanography, 136, 60-70, doi:10.1016/j.pocean.2015.05.002.
  459. McGillicuddy, D. J. et al., 2015: Iron supply and demand in an Antarctic shelf ecosystem. Geophysical Research Letters, 42 (19), 8088-8097, doi:10.1002/2015gl065727.
  460. Hatta, M. et al., 2017: The relative roles of modified circumpolar deep water and benthic sources in supplying iron to the recurrent phytoplankton blooms above Pennell and Mawson Banks, Ross Sea, Antarctica. Journal of Marine Systems, 166, 61-72, doi:10.1016/j.jmarsys.2016.07.009.
  461. Cape, M., R., M. Vernet, M. Kahru and G. Spreen, 2013: Polynya dynamics drive primary production in the Larsen A and B embayments following ice shelf collapse. Journal of Geophysical Research: Oceans, 119 (1), 572-594, doi:10.1002/2013jc009441.
  462. Fogwill, C. J. et al., 2016: Brief communication: Impacts of a developing polynya off Commonwealth Bay, East Antarctica, triggered by grounding of iceberg B09B. The Cryosphere, 10 (6), 2603-2609, doi:10.5194/tc-10-2603-2016.
  463. Shadwick, E. H., B. Tilbrook and K. I. Currie, 2017: Late‐summer biogeochemistry in the Mertz Polynya: East Antarctica. Journal of Geophysical Research: Oceans, 122 (9), 7380-7394, doi:10.1002/2017jc013015.
  464. Raymond, B. et al., 2014: Important marine habitat off east Antarctica revealed by two decades of multi‐species predator tracking. Ecography, 38 (2), 121-129, doi:10.1111/ecog.01021.
  465. Malpress, V. et al., 2017: Bio-physical characterisation of polynyas as a key foraging habitat for juvenile male southern elephant seals (Mirounga leonina) in Prydz Bay, East Antarctica. Plos One, 12 (9), e0184536, doi:10.1371/journal.pone.0184536.
  466. Shadwick, E. H., B. Tilbrook and K. I. Currie, 2017: Late‐summer biogeochemistry in the Mertz Polynya: East Antarctica. Journal of Geophysical Research: Oceans, 122 (9), 7380-7394, doi:10.1002/2017jc013015.
  467. Lee, S. et al., 2017b: Evidence of minimal carbon sequestration in the productive Amundsen Sea polynya. Geophysical Research Letters, 44 (15), 7892-7899, doi:10.1002/2017gl074646.
  468. Gerringa, L. J. A. et al., 2015: Sources of iron in the Ross Sea Polynya in early summer. Marine Chemistry, 177, 447-459, doi:10.1016/j.marchem.2015.06.002.
  469. Rickard, G. and E. Behrens, 2016: CMIP5 Earth System Models with biogeochemistry: a Ross Sea assessment. Antarctic Science, 28 (5), 327-346, doi:10.1017/s0954102016000122.
  470. Kaufman, D. E. et al., 2017: Climate change impacts on southern Ross Sea phytoplankton composition, productivity, and export. Journal of Geophysical Research: Oceans, 122 (3), 2339-2359, doi:10.1002/2016jc012514.
  471. Arrigo, K. R. and G. L. van Dijken, 2015: Continued increases in Arctic Ocean primary production. Progress in Oceanography, 136, 60-70, doi:10.1016/j.pocean.2015.05.002.
  472. Carsey, F. D., 1980: Microwave Observation of the Weddell Polynya. Monthly Weather Review, 108 (12), 2032-2044, doi:10.1175/1520-0493(1980)108.
  473. Campbell, E. C. et al., 2019: Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies. Nature, in press, doi:10.1038/s41586-019-1294-0.
  474. Jena, B., M. Ravichandran and J. Turner, 2019: Recent Reoccurrence of Large Open-Ocean Polynya on the Maud Rise Seamount. Geophysical Research Letters, 46 (8), 4320-4329, doi:10.1029/2018gl081482.
  475. Holland, D. M., 2001: Explaining the Weddell Polynya – a large ocean eddy shed at Maud Rise. Science, 292 (5522), 1697-1700, doi:10.1126/science.1059322.
  476. Campbell, E. C. et al., 2019: Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies. Nature, in press, doi:10.1038/s41586-019-1294-0.
  477. Francis, D., C. Eayrs, J. Cuesta and D. Holland, 2019: Polar Cyclones at the Origin of the Reoccurrence of the Maud Rise Polynya in Austral Winter 2017. Journal of Geophysical Research-Atmospheres, 124 (10), 5251-5267, doi:10.1029/2019jd030618.
  478. Wilson, E. A., S. C. Riser, E. C. Campbell and A. P. S. Wong, 2019: Winter Upper-Ocean Stability and Ice–Ocean Feedbacks in the Sea Ice–Covered Southern Ocean. Journal of Physical Oceanography, 49 (4), 1099-1117, doi:10.1175/jpo-d-18-0184.1.
  479. Campbell, E. C. et al., 2019: Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies. Nature, in press, doi:10.1038/s41586-019-1294-0.
  480. Smedsrud, L. H., 2005: Warming of the deep water in the Weddell Sea along the Greenwich meridian: 1977-2001. Deep-Sea Research Part I-Oceanographic Research Papers, 52 (2), 241-258, doi:10.1016/j.dsr.2004.10.004.
  481. Bernardello, R. et al., 2014: Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model. Geophysical Research Letters, 41 (20), 7262-7269, doi:10.1002/2014gl061313.
  482. Reintges, A., T. Martin, M. Latif and N. S. Keenlyside, 2017: Uncertainty in twenty-first century projections of the Atlantic Meridional Overturning Circulation in CMIP3 and CMIP5 models. Climate Dynamics, 49 (5-6), 1495-1511, doi:10.1007/s00382-016-3180-x.
  483. Reintges, A., T. Martin, M. Latif and N. S. Keenlyside, 2017: Uncertainty in twenty-first century projections of the Atlantic Meridional Overturning Circulation in CMIP3 and CMIP5 models. Climate Dynamics, 49 (5-6), 1495-1511, doi:10.1007/s00382-016-3180-x.
  484. Ding, Y. N. et al., 2016: Seasonal heat and freshwater cycles in the Arctic Ocean in CMIP5 coupled models. Journal of Geophysical Research-Oceans, 121 (4), 2043-2057, doi:10.1002/2015jc011124.
  485. Koenig, L. S., C. Miège, R. R. Forster and L. Brucker, 2014: Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer. Geophysical Research Letters, 41 (1), 81-85, doi:10.1002/2013GL058083.
  486. Koenig, L. S., C. Miège, R. R. Forster and L. Brucker, 2014: Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer. Geophysical Research Letters, 41 (1), 81-85, doi:10.1002/2013GL058083.
  487. Årthun, M., T. Eldevik and L. H. Smedsrud, 2019: The role of Atlantic heat transport in future Arctic winter sea ice loss. Journal of Climate, 32 (11), 3327-3341, doi:10.1175/jcli-d-18-0750.1.
  488. Onarheim, I. H. and M. Årthun, 2017: Toward an ice-free Barents Sea. Geophysical Research Letters, 44 (16), 8387-8395, doi:10.1002/2017GL074304.
  489. Smedsrud, L. H. et al., 2013: The Role of the Barents Sea in the Arctic Climate System. Reviews of Geophysics, 51 (3), 415-449, doi:10.1002/rog.20017.
  490. Koenig, L. S., C. Miège, R. R. Forster and L. Brucker, 2014: Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer. Geophysical Research Letters, 41 (1), 81-85, doi:10.1002/2013GL058083.
  491. Haine, T. W. N. et al., 2015: Arctic freshwater export: Status, mechanisms, and prospects. Global and Planetary Change, 125 (Supplement C), 13-35, doi:10.1016/j.gloplacha.2014.11.013.
  492. Nummelin, A., M. Ilicak, C. Li and L. H. Smedsrud, 2016: Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. Journal of Geophysical Research: Oceans, 121 (1), 617-637, doi:10.1002/2015JC011156.
  493. Ilicak, M. et al., 2016: An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Modelling, 100, 141-161, doi:10.1016/j.ocemod.2016.02.004.
  494. Sallée, J.-B. et al., 2013a: Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 118 (4), 1845-1862, doi:10.1002/jgrc.20157.
  495. Heuzé, C., K. J. Heywood, D. P. Stevens and J. K. Ridley, 2015: Changes in global ocean bottom properties and volume transports in CMIP5 models under climate change scenarios. Journal of Climate, 28 (8), 2917-2944, doi:10.1175/JCLI-D-14-00381.1.
  496. Sallée, J.-B. et al., 2013b: Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 118 (4), 1830-1844, doi:10.1002/jgrc.20135.
  497. Sallée, J.-B. et al., 2013a: Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 118 (4), 1845-1862, doi:10.1002/jgrc.20157.
  498. Sallée, J.-B. et al., 2013a: Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 118 (4), 1845-1862, doi:10.1002/jgrc.20157.
  499. Wang, C. et al., 2014: A global perspective on CMIP5 climate model biases. Nature Climate Change, 4 (3), 201, doi:10.1038/nclimate2118.
  500. Orr, J. C. et al., 2005: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437 (7059), 681-6, doi:10.1038/nature04095.
  501. Hauri, C., T. Friedrich and A. Timmermann, 2015: Abrupt onset and prolongation of aragonite undersaturation events in the Southern Ocean. Nature Climate Change, 6 (2), 172-176, doi:10.1038/nclimate2844.
  502. Sasse, T. P., B. I. McNeil, R. J. Matear and A. Lenton, 2015: Quantifying the influence of CO2 seasonality on future aragonite undersaturation onset. Biogeosciences, 12 (20), 6017-6031, doi:10.5194/bg-12-6017-2015.
  503. Popova, E. E. et al., 2014: Regional variability of acidification in the Arctic: a sea of contrasts. Biogeosciences, 11 (2), 293-308, doi:10.5194/bg-11-293-2014.
  504. Steiner, N. S. et al., 2014: Future ocean acidification in the Canada Basin and surrounding Arctic Ocean from CMIP5 earth system models. Journal of Geophysical Research-Oceans, 119 (1), 332-347, doi:10.1002/2013jc009069.
  505. Skogen, M. D. et al., 2014: Modelling ocean acidification in the Nordic and Barents Seas in present and future climate. Journal of Marine Systems, 131, 10-20, doi:10.1016/j.jmarsys.2013.10.005.
  506. Wallhead, P. J. et al., 2017: Bottom Water Acidification and Warming on the Western Eurasian Arctic Shelves: Dynamical Downscaling Projections. Journal of Geophysical Research: Oceans, 122 (10), 8126-8144, doi:10.1002/2017jc013231.
  507. Kessler, A. and J. Tjiputra, 2016: The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks. Earth System Dynamics, 7 (2), 295-312, doi:papers2://publication/doi/10.5194/esd-7-295-2016.
  508. Hauck, J. and C. Volker, 2015: Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor. Geophys Res Lett, 42 (5), 1459-1464, doi:10.1002/2015GL063070.
  509. Mongwe, N. P., M. Vichi and P. M. S. Monteiro, 2018: The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models. Biogeosciences, 15 (9), 2851-2872, doi:10.5194/bg-15-2851-2018.
  510. Sasse, T. P., B. I. McNeil, R. J. Matear and A. Lenton, 2015: Quantifying the influence of CO2 seasonality on future aragonite undersaturation onset. Biogeosciences, 12 (20), 6017-6031, doi:10.5194/bg-12-6017-2015.
  511. McNeil, B. I. and T. P. Sasse, 2016: Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature, 529 (7586), 383-6, doi:10.1038/nature16156.
  512. Hauck, J. and C. Volker, 2015: Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor. Geophys Res Lett, 42 (5), 1459-1464, doi:10.1002/2015GL063070.
  513. McNeil, B. I. and T. P. Sasse, 2016: Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature, 529 (7586), 383-6, doi:10.1038/nature16156.
  514. Landschützer, P. et al., 2018: Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2. Nature Climate Change, 8 (2), 146-150, doi:10.1038/s41558-017-0057-x.
  515. McNeil, B. I. and T. P. Sasse, 2016: Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature, 529 (7586), 383-6, doi:10.1038/nature16156.
  516. Kwiatkowski, L. and J. C. Orr, 2018: Diverging seasonal extremes for ocean acidification during the twenty-first century. Nature Climate Change, 8 (2), 141-145, doi:10.1038/s41558-017-0054-0.
  517. Frainer, A. et al., 2017: Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc Natl Acad Sci U S A, 114 (46), 12202-12207, doi:10.1073/pnas.1706080114.
  518. Kaartvedt, S. and J. Titelman, 2018: Planktivorous fish in a future Arctic Ocean of changing ice and unchanged photoperiod. ICES Journal of Marine Science, 75 (7), 2312-2318, doi:10.1093/icesjms/fsx248.
  519. Moore, S. E., P. J. Stabeno, J. M. Grebmeier and S. R. Okkonen, 2018: The Arctic Marine Pulses Model: linking annual oceanographic processes to contiguous ecological domains in the Pacific Arctic. Deep Sea Research Part II: Topical Studies in Oceanography, 152, 8-21, doi:10.1016/j.dsr2.2016.10.011.
  520. Frederiksen, M., 2017: Synthesis: Status and trends of Arctic marine biodiversity and monitoring. In: CAFF State of the Arctic Marine Biodiversity Report. Conservation of Arctic Flora and Fauna International Secretariat Akureyri, Iceland, 175-195.
  521. Moore, S. E. and P. J. Stabeno, 2015: Synthesis of Arctic Research (SOAR) in marine ecosystems of the Pacific Arctic. Progress in Oceanography, 136, 1-11, doi:10.1016/j.pocean.2015.05.017.
  522. Stasko, A. D. et al., 2018: Benthic-pelagic trophic coupling in an Arctic marine food web along vertical water mass and organic matter gradients. Marine Ecology Progress Series, 594, 1-19, doi:10.3354/meps12582.
  523. Luckman, A. et al., 2014: Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds. Antarctic Science, 26 (06), 625-635, doi:10.1017/S0954102014000339.
  524. Howes, E., F. Joos, M. Eakin and J.-P. Gattuso, 2015: An updated synthesis of the observed and projected impacts of climate change on the chemical, physical and biological processes in the oceans. Frontiers in Marine Science, 2 (36), doi:10.3389/fmars.2015.00036.
  525. Falkenberg, J. et al., 2018: AMAP Assessment 2018: Arctic Ocean Acidification. Biological responses to ocean acidification, Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway, 187 [Available at: https://www.amap.no/documents/doc/AMAP-Assessment-2018-Arctic-Ocean-Acidification/1659%5D.
  526. Moore, S. E., P. J. Stabeno, J. M. Grebmeier and S. R. Okkonen, 2018: The Arctic Marine Pulses Model: linking annual oceanographic processes to contiguous ecological domains in the Pacific Arctic. Deep Sea Research Part II: Topical Studies in Oceanography, 152, 8-21, doi:10.1016/j.dsr2.2016.10.011.
  527. Arrigo, K. R. and G. L. van Dijken, 2011: Secular trends in Arctic Ocean net primary production. J. Geophys. Res., 116 (C9), C09011, doi:10.1029/2011jc007151.
  528. Bélanger, S., M. Babin and J.-É. Tremblay, 2013: Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding. Biogeosciences, 10 (6), 4087, doi:10.5194/bg-10-4087-2013.
  529. Arrigo, K. R. and G. L. van Dijken, 2015: Continued increases in Arctic Ocean primary production. Progress in Oceanography, 136, 60-70, doi:10.1016/j.pocean.2015.05.002.
  530. Kahru, M., Z. Lee, B. G. Mitchell and C. D. Nevison, 2016: Effects of sea ice cover on satellite-detected primary production in the Arctic Ocean. Biology Letters, 12 (11), doi:10.1098/rsbl.2016.0223.
  531. Stanley, R. H. R., Z. O. Sandwith and W. J. Williams, 2015: Rates of summertime biological productivity in the Beaufort Gyre: A comparison between the low and record-low ice conditions of August 2011 and 2012. Journal of Marine Systems, 147 (Supplement C), 29-44, doi:10.1016/j.jmarsys.2014.04.006.
  532. Vancoppenolle, M. et al., 2013: Future arctic ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms. Global Biogeochemical Cycles, 27 (3), 605-619, doi:10.1002/gbc.20055.
  533. Jin, M. et al., 2016: Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean. Journal of Geophysical Research: Oceans, 121 (1), 934-948, doi:10.1002/2015JC011183.
  534. Kahru, M., V. Brotas, M. Manzano-Sarabia and B. G. Mitchell, 2011: Are phytoplankton blooms occurring earlier in the Arctic? Global Change Biology, 17 (4), 1733-1739, doi:10.1111/j.1365-2486.2010.02312.x.
  535. Fujiwara, A. et al., 2016: Influence of timing of sea ice retreat on phytoplankton size during marginal ice zone bloom period on the Chukchi and Bering shelves. Biogeosciences, 13 (1115-131), doi:10.5194/bg-13-115-2016.
  536. Ardyna, M. et al., 2017: Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnology and Oceanography, 62 (5), 2113-2132, doi:10.1002/lno.10554.
  537. Arrigo, K. R. et al., 2012: Massive phytoplankton blooms under sea ice. Science, 336, 1408, doi:10.1126/science.1215065.
  538. Arrigo, K. R. et al., 2014: Phytoplankton blooms beneath the sea ice in the Chukchi sea. Deep Sea Research Part II: Topical Studies in Oceanography, 105 (Supplement C), 1-16, doi:10.1016/j.dsr2.2014.03.018.
  539. Zhang, J. et al., 2015: The influence of sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms in the Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 118 (Part A), 122-135, doi:10.1016/j.dsr2.2015.02.008.
  540. Jin, M. et al., 2016: Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean. Journal of Geophysical Research: Oceans, 121 (1), 934-948, doi:10.1002/2015JC011183.
  541. Horvat, C. et al., 2017: The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean. Science Advances, 3 (3), e1601191, doi:10.1126/sciadv.1601191.
  542. Fernández-Méndez, M. et al., 2018: Algal Hot Spots in a Changing Arctic Ocean: Sea-Ice Ridges and the Snow-Ice Interface. Frontiers in Marine Science, 5 (75), doi:10.3389/fmars.2018.00075.
  543. Assmy, P. et al., 2017: Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Scientific Reports, 7, 40850, doi:10.1038/srep40850.
  544. Wang, Q. et al., 2016a: Sea ice leads in the Arctic Ocean: Model assessment, interannual variability and trends. Geophysical Research Letters, 43 (13), 7019-7027, doi:10.1002/2016GL068696.
  545. Lange, B. A. et al., 2017: Pan-Arctic sea ice-algal chl a biomass and suitable habitat are largely underestimated for multiyear ice. Glob Chang Biol, 23 (11), 4581-4597, doi:10.1111/gcb.13742.
  546. Williams, W. J. and E. C. Carmack, 2015: The ‘interior’ shelves of the Arctic Ocean: Physical oceanographic setting, climatology and effects of sea-ice retreat on cross-shelf exchange. Progress in Oceanography, 139, 24-41, doi:10.1016/j.pocean.2015.07.008.
  547. Schulze, L. M. and R. S. Pickart, 2012: Seasonal variation of upwelling in the Alaskan Beaufort Sea: Impact of sea ice cover. Journal of Geophysical Research: Oceans, 117 (C6), C06022, doi:10.1029/2012JC007985.
  548. Williams, W. J. and E. C. Carmack, 2015: The ‘interior’ shelves of the Arctic Ocean: Physical oceanographic setting, climatology and effects of sea-ice retreat on cross-shelf exchange. Progress in Oceanography, 139, 24-41, doi:10.1016/j.pocean.2015.07.008.
  549. Capotondi, A. et al., 2012: Enhanced upper ocean stratification with climate change in the CMIP3 models. Journal of Geophysical Research: Oceans, 117 (C4), C04031, doi:10.1029/2011JC007409.
  550. Nummelin, A., M. Ilicak, C. Li and L. H. Smedsrud, 2016: Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. Journal of Geophysical Research: Oceans, 121 (1), 617-637, doi:10.1002/2015JC011156.
  551. Ardyna, M. et al., 2017: Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnology and Oceanography, 62 (5), 2113-2132, doi:10.1002/lno.10554.
  552. Yun, M. S. et al., 2015: Regional productivity of phytoplankton in the Western Arctic Ocean during summer in 2010. Deep Sea Research Part II: Topical Studies in Oceanography, 120 (Supplement C), 61-71, doi:10.1016/j.dsr2.2014.11.023.
  553. Song, H. J. et al., 2016: In-situ measured primary productivity of ice algae in Arctic sea ice floes using a new incubation method. Ocean Science Journal, 51 (3), 387-396, doi:10.1007/s12601-016-0035-7.
  554. Fernández-Méndez, M. et al., 2015: Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012. Biogeosciences, 12 (11), 3525-3549, doi:10.5194/bg-12-3525-2015.
  555. Boetius, A. et al., 2013: Export of Algal Biomass from the Melting Arctic Sea Ice. Science, 339 (6126), 1430-1432, doi:10.1126/science.1231346.
  556. Lalande, C. et al., 2014: Variability in under-ice export fluxes of biogenic matter in the Arctic Ocean. Global Biogeochemical Cycles, 28 (5), 571-583, doi:10.1002/2013GB004735.
  557. Mäkelä, A., U. Witte and P. Archambault, 2017: Ice algae versus phytoplankton: resource utilization by Arctic deep sea macroinfauna revealed through isotope labelling experiments. Marine Ecology Progressive Series, 572, 1-18, doi:10.3354/meps12157.
  558. Randelhoff, A. and J. D. Guthrie, 2016: Regional patterns in current and future export production in the central Arctic Ocean quantified from nitrate fluxes. Geophysical Research Letters, 43 (16), 8600-8608, doi:10.1002/2016GL070252.
  559. Hoppe, C. J. M. et al., 2018: Compensation of ocean acidification effects in Arctic phytoplankton assemblages. Nature Climate Change, 8 (6), 529-533, doi:10.1038/s41558-018-0142-9.
  560. Wang, S. W. et al., 2015: Importance of sympagic production to Bering Sea zooplankton as revealed from fatty acid-carbon stable isotope analyses. Marine Ecology Progress Series, 518, 31-50, doi:10.3354/meps11076.
  561. Kohlbach, D. et al., 2016: The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: Food web relationships revealed by lipid and stable isotope analyses. Limnology and Oceanography, 61 (6), 2027-2044, doi:10.1002/lno.10351.
  562. Sigler, M. F. et al., 2017: Late summer zoogeography of the northern Bering and Chukchi seas. Deep Sea Research Part II: Topical Studies in Oceanography, 135 (Supplement C), 168-189, doi:10.1016/j.dsr2.2016.03.005.
  563. Kimmel, D. G., L. B. Eisner, M. T. Wilson and J. T. Duffy-Anderson, 2018: Copepod dynamics across warm and cold periods in the eastern Bering Sea: Implications for walleye pollock (Gadus chalcogrammus) and the Oscillating Control Hypothesis. Fisheries Oceanography, 27 (2), 143-158, doi:10.1111/fog.12241.
  564. Ershova, E. A., R. R. Hopcroft and K. N. Kosobokova, 2015: Inter-annual variability of summer mesozooplankton communities of the western Chukchi Sea: 2004–2012. Polar Biology, 38 (9), 1461-1481, doi:10.1007/s00300-015-1709-9.
  565. Smoot, C. A. and R. R. Hopcroft, 2017: Depth-stratified community structure of Beaufort Sea slope zooplankton and its relations to water masses. Journal of Plankton Research, 39 (1), 79-91, doi:10.1093/plankt/fbw087.
  566. Hunt, B. P. V. et al., 2014: Zooplankton community structure and dynamics in the Arctic Canada Basin during a period of intense environmental change (2004–2009). Journal of Geophysical Research: Oceans, 119 (4), 2518-2538, doi:10.1002/2013JC009156.
  567. Rutzen, I. and R. R. Hopcroft, 2018: Abundance, biomass and community structure of epipelagic zooplankton in the Canada Basin. Journal of Plankton Research, 40 (4), 486-499, doi:10.1093/plankt/fby028.
  568. Kvile, K. O. et al., 2018: Pushing the limit: Resilience of an Arctic copepod to environmental fluctuations. Glob Chang Biol, 24 (11), 5426-5439, doi:10.1111/gcb.14419.
  569. Arctic Council, 2015a: Arctic Marine Tourism Project (AMTP): best practices guidelines. Protection of the Arctic Marine Environment (PAME), Iceland, 17 pp [Available at: https://oaarchive.arctic-council.org/bitstream/handle/11374/414/AMTP%20Best%20Practice%20Guidelines.pdf?sequence=1&isAllowed=y; Access Date: 10 October 2018].
  570. Dalpadado, P. et al., 2016: Distribution and abundance of euphausiids and pelagic amphipods in Kongsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their relative importance as key prey in a warming marine ecosystem. Polar Biology, 39 (10), 1765-1784, doi:10.1007/s00300-015-1874-x.
  571. Renaud, P. E. et al., 2018: Pelagic food-webs in a changing Arctic: a trait-based perspective suggests a mode of resilience. ICES Journal of Marine Science, 75 (6), 1871-1881, doi:10.1093/icesjms/fsy063.
  572. Bailey, A. et al., 2017: Early life stages of the Arctic copepod Calanus glacialis are unaffected by increased seawater pCO2. ICES Journal of Marine Science, 74 (4), 996-1004, doi:10.1093/icesjms/fsw066.
  573. Thor, P. et al., 2018: Contrasting physiological responses to future ocean acidification among Arctic copepod populations. Glob Chang Biol, 24 (1), e365-e377, doi:10.1111/gcb.13870.
  574. Mann, M. E. et al., 2017: Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events. Scientific Reports, 7 (1), 45242, doi:10.1038/srep45242.
  575. Peck, V. L. et al., 2016: Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127, 41-52, doi:10.1016/j.dsr2.2015.12.005.
  576. Peck, M. and J. K. Pinnegar, 2018: Chapter 5: Climate change impacts, vulnerabilities and adaptations: North Atlantic and Atlantic Arctic marine fisheries. In: Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper No. 627. [Barange, M., T. Bahri, M. C. M. Beveridge, K. L. Cochrane, S. Funge-Smith and F. Poulain (eds.)], Rome.
  577. Lischka, S. and U. Riebesell, 2016: Metabolic response of Arctic pteropods to ocean acidification and warming during the polar night/twilight phase in Kongsfjord (Spitsbergen). Polar Biology, 40 (6), 1211-1227, doi:10.1007/s00300-016-2044-5.
  578. Link, H., D. Piepenburg and P. Archambault, 2013: Are Hotspots Always Hotspots? The Relationship between Diversity, Resource and Ecosystem Functions in the Arctic. Plos One, 8 (9), e74077, doi:10.1371/journal.pone.0074077.
  579. Birchenough, S. N. R. et al., 2015: Climate change and marine benthos: a review of existing research and future directions in the North Atlantic. Wiley Interdisciplinary Reviews: Climate Change, 6 (2), 203-223, doi:10.1002/wcc.330.
  580. Johannesen, E. et al., 2017: Large-scale patterns in community structure of benthos and fish in the Barents Sea. Polar Biology, 40 (2), 237-246, doi:10.1007/s00300-016-1946-6.
  581. Kortsch, S. et al., 2012: Climate-driven regime shifts in Arctic marine benthos. Proceedings of the National Academy of Sciences of the United States of America, 109 (35), 14052-14057, doi:10.1073/pnas.1207509109.
  582. Kortsch, S. et al., 2015: Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proceedings of the Royal Society B: Biological Sciences, 282 (1814), 20151546, doi:10.1098/rspb.2015.1546.
  583. Grebmeier, J. M. and L. W. Cooper, 2016: The Saint Lawrence Island Polynya: A 25-Year Evaluation of an Analogue for Climate Change in Polar Regions. In: Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective [Glibert, P. M. and T. M. Kana (eds.)]. Springer International Publishing, Cham, 171-183.
  584. Grebmeier, J. M. et al., 2015: Ecosystem characteristics and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory in the Pacific Arctic. Progress in Oceanography, 136 (Supplement C), 92-114, doi:10.1016/j.pocean.2015.05.006.
  585. Wassmann, P. and T. M. Lenton, 2012: Arctic Tipping Points in an Earth System Perspective. AMBIO, 41 (1), 1-9, doi:10.1007/s13280-011-0230-9.
  586. Kortsch, S. et al., 2012: Climate-driven regime shifts in Arctic marine benthos. Proceedings of the National Academy of Sciences of the United States of America, 109 (35), 14052-14057, doi:10.1073/pnas.1207509109.
  587. Paar, M. et al., 2016: Temporal shift in biomass and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years. Polar Biology, 39 (11), 2065-2076, doi:10.1007/s00300-015-1760-6.
  588. Burgos, J., B. Ernst, D. Armstrong and J. Orensanz, 2013: Fluctuations in Range and Abundance of Snow Crab (Chionoecetes Opilio) from the Eastern Bering Sea: What Role for Pacific Cod (Gadus Macrocephalus) Predation? Bulletin of Marine Science, 89 (1), 57-81, doi:10.5343/bms.2011.1137.
  589. Long, W. C., S. B. Van Sant and J. A. Haaga, 2015: Habitat, predation, growth, and coexistence: Could interactions between juvenile red and blue king crabs limit blue king crab productivity? Journal of Experimental Marine Biology and Ecology, 464, 58-67, doi:10.1016/j.jembe.2014.12.011.
  590. Ryer, C. H. et al., 2016: Temperature-Dependent Growth of Early Juvenile Southern Tanner CrabChionoecetes bairdi: Implications for Cold Pool Effects and Climate Change in the Southeastern Bering Sea. Journal of Shellfish Research, 35 (1), 259-267, doi:10.2983/035.035.0128.
  591. Mullowney, D. R. J., E. G. Dawe, E. B. Colbourne and G. A. Rose, 2014: A review of factors contributing to the decline of Newfoundland and Labrador snow crab (Chionoecetes opilio). Reviews in Fish Biology and Fisheries, 24 (2), 639-657, doi:10.1007/s11160-014-9349-7.
  592. Zisserson, B. and A. Cook, 2017: Impact of bottom water temperature change on the southernmost snow crab fishery in the Atlantic Ocean. Fisheries Research, 195 (Supplement C), 12-18, doi:10.1016/j.fishres.2017.06.009.
  593. Hansen, H. S. B., 2016: Three major challenges in managing non-native sedentary Barents Sea snow crab (Chionoecetes opilio). Marine Policy, 71, 38-43, doi:10.1016/j.marpol.2016.05.013.
  594. Lorentzen, G. et al., 2018: Current Status of the Red King Crab (Paralithodes camtchaticus) and Snow Crab (Chionoecetes opilio) Industries in Norway. Reviews in Fisheries Science & Aquaculture, 26 (1), 42-54, doi:10.1080/23308249.2017.1335284.
  595. Long, W. C. et al., 2017: Survival, growth, and morphology of blue king crabs: effect of ocean acidification decreases with exposure time. ICES Journal of Marine Science, 74 (4), 1033-1041, doi:10.1093/icesjms/fsw197.
  596. Swiney, K. M., W. C. Long and R. J. Foy, 2017: Decreased pH and increased temperatures affect young-of-the-year red king crab (Paralithodes camtschaticus). ICES Journal of Marine Science, 74 (4), 1191-1200, doi:10.1093/icesjms/fsw251.
  597. Long, W. C., P. Pruisner, K. M. Swiney and R. Foy, 2019: Effects of ocean acidification on the respiration and feeding of juvenile red and blue king crabs. ICES Journal of Marine Science, 76 (5), 1335–1343, doi:https://doi.org/10.1093/icesjms/fsz090.
  598. Mathis, J. T. et al., 2015: Ocean acidification risk assessment for Alaska’s fishery sector. Progress in Oceanography, 136, 71-91, doi:10.1016/j.pocean.2014.07.001.
  599. Punt, A. E. et al., 2016: Effects of long-term exposure to ocean acidification conditions on future southern Tanner crab (Chionoecetes bairdi) fisheries management. ICES Journal of Marine Science: Journal du Conseil, 73 (3), 849-864, doi:10.1093/icesjms/fsv205.
  600. Wassmann, P. et al., 2015: The contiguous domains of Arctic Ocean advection: Trails of life and death. Progress in Oceanography, 139, 42-65, doi:10.1016/j.pocean.2015.06.011.
  601. Dalpadado, P. et al., 2016: Distribution and abundance of euphausiids and pelagic amphipods in Kongsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their relative importance as key prey in a warming marine ecosystem. Polar Biology, 39 (10), 1765-1784, doi:10.1007/s00300-015-1874-x.
  602. Hunt, G. L. et al., 2016: Advection in polar and sub-polar environments: Impacts on high latitude marine ecosystems. Progress in Oceanography, 149, 40-81, doi:10.1016/j.pocean.2016.10.004.
  603. Kjesbu, O. S. et al., 2014: Synergies between climate and management for Atlantic cod fisheries at high latitudes. Proceedings of the National Academy of Sciences, 111 (9), 3478-3483, doi:10.1073/pnas.1316342111.
  604. Christiansen, J. S., 2017: No future for Euro-Arctic ocean fishes? Marine Ecology Progress Series, 575, 217-227, doi:10.3354/meps12192.
  605. Nahrgang, J. et al., 2014: Gender Specific Reproductive Strategies of an Arctic Key Species (Boreogadus saida) and Implications of Climate Change. Plos One, 9 (5), e98452, doi:10.1371/journal.pone.0098452.
  606. Fossheim, M. et al., 2015: Recent warming leads to a rapid borealization of fish communities in the Arctic. Nature Climate Change, 5, 673, doi:10.1038/nclimate2647.
  607. Frainer, A. et al., 2017: Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc Natl Acad Sci U S A, 114 (46), 12202-12207, doi:10.1073/pnas.1706080114.
  608. Reist, J. D., C. D. Sawatzky and L. Johnson, 2016: The Arctic ‘Great’ Lakes of Canada and their fish faunas — An overview in the context of Arctic change. Journal of Great Lakes Research, 42 (2), 173-192, doi:10.1016/j.jglr.2015.10.008.
  609. Jensen, A. J., B. Finstad and P. Fiske, 2018: Evidence for the linkage of survival of anadromous Arctic char and brown trout during winter to marine growth during the previous summer. Canadian Journal of Fisheries and Aquatic Sciences, 75 (5), 663-672, doi:10.1139/cjfas-2017-0077.
  610. Chernova, N. V., 2011: Distribution patterns and chorological analysis of fish fauna of the Arctic Region. Journal of Ichthyology, 51 (10), 825-924, doi:10.1134/S0032945211100043.
  611. Lynghammar, A. et al., 2013: Species richness and distribution of chondrichthyan fishes in the Arctic Ocean and adjacent seas. Biodiversity, 14 (1), 57-66, doi:10.1080/14888386.2012.706198.
  612. Laurel, B. J., L. A. Copeman, M. Spencer and P. Iseri, 2017: Temperature-dependent growth as a function of size and age in juvenile Arctic cod (Boreogadus saida). ICES Journal of Marine Science, 74 (6), 1614-1621, doi:10.1093/icesjms/fsx028.
  613. Alabia, I. D. et al., 2018: Distribution shifts of marine taxa in the Pacific Arctic under contemporary climate changes. Diversity and Distributions, 24 (11), 1583-1597, doi:10.1111/ddi.12788.
  614. Logerwell, E., K. Rand, S. Danielson and L. Sousa, 2018: Environmental drivers of benthic fish distribution in and around Barrow Canyon in the northeastern Chukchi Sea and western Beaufort Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 152, 170-181, doi:10.1016/j.dsr2.2017.04.012.
  615. Landa, C. S. et al., 2014: Recruitment, distribution boundary and habitat temperature of an arcto-boreal gadoid in a climatically changing environment: a case study on Northeast Arctic haddock (Melanogrammus aeglefinus). Fisheries Oceanography, 23 (6), 506-520, doi:10.1111/fog.12085.
  616. Mueter, F. J., J. Weems, E. V. Farley and M. F. Sigler, 2017: Arctic Ecosystem Integrated Survey (Arctic Eis): Marine ecosystem dynamics in the rapidly changing Pacific Arctic Gateway. Deep Sea Research Part II: Topical Studies in Oceanography, 135 (Supplement C), 1-6, doi:10.1016/j.dsr2.2016.11.005.
  617. Joli, N. et al., 2018: Need for focus on microbial species following ice melt and changing freshwater regimes in a Janus Arctic Gateway. Scientific Reports, 8 (1), 9405, doi:10.1038/s41598-018-27705-6.
  618. Hop, H. and H. Gjøsæter, 2013: Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea. Marine Biology Research, 9 (9), 878-894, doi:10.1080/17451000.2013.775458.
  619. Christiansen, J. S., 2017: No future for Euro-Arctic ocean fishes? Marine Ecology Progress Series, 575, 217-227, doi:10.3354/meps12192.
  620. Hermann, A. J. et al., 2016: Projected future biophysical states of the Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 134 (Supplement C), 30-47, doi:10.1016/j.dsr2.2015.11.001.
  621. Holsman, K. K. et al., 2016: A comparison of fisheries biological reference points estimated from temperature-specific multi-species and single-species climate-enhanced stock assessment models. Deep Sea Research Part II: Topical Studies in Oceanography, 134 (Supplement C), 360-378, doi:10.1016/j.dsr2.2015.08.001.
  622. Ianelli, J., K. K. Holsman, A. E. Punt and K. Aydin, 2016: Multi-model inference for incorporating trophic and climate uncertainty into stock assessments. Deep Sea Research Part II: Topical Studies in Oceanography, 134 (Supplement C), 379-389, doi:10.1016/j.dsr2.2015.04.002.
  623. Hermann, A. J. et al., 2019: Projected biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios. ICES Journal of Marine Science, 76 (5), 1280–1304, doi:10.1093/icesjms/fsz043.
  624. Hermann, A. J. et al., 2019: Projected biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios. ICES Journal of Marine Science, 76 (5), 1280–1304, doi:10.1093/icesjms/fsz043.
  625. Sigler, M. F. et al., 2017: Late summer zoogeography of the northern Bering and Chukchi seas. Deep Sea Research Part II: Topical Studies in Oceanography, 135 (Supplement C), 168-189, doi:10.1016/j.dsr2.2016.03.005.
  626. Kimmel, D. G., L. B. Eisner, M. T. Wilson and J. T. Duffy-Anderson, 2018: Copepod dynamics across warm and cold periods in the eastern Bering Sea: Implications for walleye pollock (Gadus chalcogrammus) and the Oscillating Control Hypothesis. Fisheries Oceanography, 27 (2), 143-158, doi:10.1111/fog.12241.
  627. Hedger, R. D. et al., 2013: Predicting climate change effects on subarctic-Arctic populations of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 70 (2), 159-168, doi:10.1139/cjfas-2012-0205.
  628. Stiasny, M. H. et al., 2016: Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population. Plos One, 11 (8), e0155448, doi:10.1371/journal.pone.0155448.
  629. Koenigstein, S. et al., 2018: Forecasting future recruitment success for Atlantic cod in the warming and acidifying Barents Sea. Glob Chang Biol, 24 (1), 526-535, doi:10.1111/gcb.13848.
  630. Gilg, O. et al., 2012: Climate change and the ecology and evolution of Arctic vertebrates. Annals of the New York Academy of Sciences, 1249 (1), 166-190, doi:10.1111/j.1749-6632.2011.06412.x.
  631. Laidre, K. L. et al., 2015: Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conservation Biology, 29 (3), 724-737, doi:10.1111/cobi.12474.
  632. Gall, A. E., T. C. Morgan, R. H. Day and K. J. Kuletz, 2017: Ecological shift from piscivorous to planktivorous seabirds in the Chukchi Sea, 1975-2012. Polar Biology, 40 (1), 61-78, doi:10.1007/s00300-016-1924-z.
  633. Descamps, S. et al., 2017: Circumpolar dynamics of a marine top-predator track ocean warming rates. Global Change Biology, 23 (9), 3770-3780, doi:10.1111/gcb.13715.
  634. Post, E. et al., 2013: Ecological Consequences of Sea-Ice Decline. Science, 341 (6145), 519-524, doi:10.1126/science.1235225.
  635. Hamilton, C. D. et al., 2019: Contrasting changes in space use induced by climate change in two Arctic marine mammal species. Biol Lett, 15 (3), 20180834, doi:10.1098/rsbl.2018.0834.
  636. Kovacs, K. M. et al., 2012: Global threats to pinnipeds. Marine Mammal Science, 28 (2), 414-436, doi:10.1111/j.1748-7692.2011.00479.x.
  637. Hamilton, C. D., C. Lydersen, R. A. Ims and K. M. Kovacs, 2015: Predictions replaced by facts: a keystone species’ behavioural responses to declining arctic sea-ice. Biology Letters, 11 (11), doi:10.1098/rsbl.2015.0803.
  638. deHart, P. A. P. and C. M. Picco, 2015: Stable oxygen and hydrogen isotope analyses of bowhead whale baleen as biochemical recorders of migration and arctic environmental change. Polar Science, 9 (2), 235-248, doi:https://doi.org/10.1016/j.polar.2015.03.002.
  639. Hamilton, C. D. et al., 2017: An Arctic predator–prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals. Journal of Animal Ecology, 86 (5), 1054-1064, doi:10.1111/1365-2656.12685.
  640. Hunt, G. L. et al., 2018: Timing of sea-ice retreat affects the distribution of seabirds and their prey in the southeastern Bering Sea. Marine Ecology Progress Series, 593, 209-230, doi:10.3354/meps12383.
  641. Kovacs, K. M., P. Lemons, J. G. MacCracken and C. Lydersen, 2016: Walruses in a time of climate change. Arctic Report Card: Update for 2015 [Available at: https://www.arctic.noaa.gov/Report-Card%5D.
  642. Bajzak, C. E., M. O. Hammill, G. B. Stenson and S. Prinsenberg, 2011: Drifting away: implications of changes in ice conditions for a pack-ice-breeding phocid, the harp seal (Pagophilus groenlandicus). Canadian Journal of Zoology, 89 (11), 1050-1062, doi:10.1139/z11-081.
  643. Øigård, T. A. et al., 2013: Functional relationship between harp seal body condition and available prey in the Barents Sea. Marine Ecology Progress Series, 484, 287-301, doi:10.3354/meps10272.
  644. Johnston, D. W., M. T. Bowers, A. S. Friedlaender and D. M. Lavigne, 2012c: The Effects of Climate Change on Harp Seals (Pagophilus groenlandicus). Plos One, 7 (1), e29158, doi:10.1371/journal.pone.0029158.
  645. Soulen, B. K., K. Cammen, T. F. Schultz and D. W. Johnston, 2013: Factors Affecting Harp Seal (Pagophilus groenlandicus) Strandings in the Northwest Atlantic. Plos One, 8 (7), e68779, doi:10.1371/journal.pone.0068779.
  646. Stenson, G. B. and M. O. Hammill, 2014: Can ice breeding seals adapt to habitat loss in a time of climate change? ICES Journal of Marine Science, 71 (7), 1977-1986, doi:10.1093/icesjms/fsu074.
  647. Asselin, N. C. et al., 2011: Beluga (Delphinapterus leucas) habitat selection in the eastern Beaufort Sea in spring, 1975–1979. Polar Biology, 34 (12), 1973-1988, doi:10.1007/s00300-011-0990-5.
  648. Øigård, T. A., T. Haug and K. T. Nilssen, 2014: Current status of hooded seals in the Greenland Sea. Victims of climate change and predation? Biological Conservation, 172, 29-36, doi:10.1016/j.biocon.2014.02.007.
  649. Choy, E. S., B. Rosenberg, J. D. Roth and L. L. Loseto, 2017: Inter-annual variation in environmental factors affect the prey and body condition of beluga whales in the eastern Beaufort Sea. Marine Ecology Progress Series, 579, 213-225, doi:10.3354/meps12256.
  650. Hamilton, C. D., C. Lydersen, R. A. Ims and K. M. Kovacs, 2015: Predictions replaced by facts: a keystone species’ behavioural responses to declining arctic sea-ice. Biology Letters, 11 (11), doi:10.1098/rsbl.2015.0803.
  651. Lowther, A. D., A. Fisk, K. M. Kovacs and C. Lydersen, 2017: Interdecadal changes in the marine food web along the west Spitsbergen coast detected in the stable isotope composition of ringed seal (Pusa hispida) whiskers. Polar Biology, 40 (10), 2027-2033, doi:10.1007/s00300-017-2122-3.
  652. Lydersen, C. et al., 2017: Novel terrestrial haul-out behaviour by ringed seals (Pusa hispida) in Svalbard, in association with harbour seals (Phoca vitulina). Polar Research, 36 (1), 1374124, doi:10.1080/17518369.2017.1374124.
  653. Brower, A. A. et al., 2017: Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 156-174, doi:10.1016/j.dsr2.2016.12.007.
  654. Udevitz, M. S. et al., 2017: Forecasting consequences of changing sea ice availability for Pacific walruses. Ecosphere, 8 (11), e02014, doi:10.1002/ecs2.2014.
  655. Szpak, P., M. Buckley, C. M. Darwent and M. P. Richards, 2018: Long‐term ecological changes in marine mammals driven by recent warming in northwestern Alaska. Global Change Biology, 24 (1), 490-503, doi:10.1111/gcb.13880.
  656. Andersen, M., A. E. Derocher, Ø. Wiig and J. Aars, 2012: Polar bear (Ursus maritimus) maternity den distribution in Svalbard, Norway. Polar Biology, 35 (4), 499-508, doi:10.1007/s00300-011-1094-y.
  657. Hamilton, C. D. et al., 2017: An Arctic predator–prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals. Journal of Animal Ecology, 86 (5), 1054-1064, doi:10.1111/1365-2656.12685.
  658. Escajeda, E. et al., 2018: Identifying shifts in maternity den phenology and habitat characteristics of polar bears (Ursus maritimus) in Baffin Bay and Kane Basin. Polar Biology, 41 (1), 87-100, doi:10.1007/s00300-017-2172-6.
  659. Durner, G. M. et al., 2017: Increased Arctic sea ice drift alters adult female polar bear movements and energetics. Global Change Biology, 23 (9), 3460-3473, doi:10.1111/gcb.13746.
  660. Pilfold, N., W. et al., 2017: Migratory response of polar bears to sea ice loss: to swim or not to swim. Ecography, 40 (1), 189-199, doi:10.1111/ecog.02109.
  661. Lone, K. et al., 2018: Aquatic behaviour of polar bears (Ursus maritimus) in an increasingly ice-free Arctic. Scientific Reports, 8 (1), 9677, doi:10.1038/s41598-018-27947-4.
  662. Lunn, N. J. et al., 2016: Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay. Ecological Applications, 26 (5), 1302-1320, doi:doi:10.1890/15-1256.
  663. McCall, A. G., N. W. Pilfold, A. E. Derocher and N. J. Lunn, 2016: Seasonal habitat selection by adult female polar bears in western Hudson Bay. Population Ecology, 58 (3), 407-419, doi:10.1007/s10144-016-0549-y.
  664. Voorhees, H., R. Sparks, H. P. Huntington and K. D. Rode, 2014: Traditional Knowledge about Polar Bears (Ursus maritimus) in Northwestern Alaska. Arctic, 67 (4), 523-536.
  665. Aars, J. et al., 2017: The number and distribution of polar bears in the western Barents Sea. Polar Research, 36 (1), 1374125, doi:10.1080/17518369.2017.1374125.
  666. Galicia, M. P. et al., 2016: Dietary habits of polar bears in Foxe Basin, Canada: possible evidence of a trophic regime shift mediated by a new top predator. Ecology and Evolution, 6 (16), 6005-6018, doi:10.1002/ece3.2173.
  667. Stapleton, S., E. Peacock and D. Garshelis, 2016: Aerial surveys suggest long‐term stability in the seasonally ice‐free Foxe Basin (Nunavut) polar bear population. Marine Mammal Science, 32 (1), 181-201, doi:10.1111/mms.12251.
  668. Øigård, T. A., T. Haug and K. T. Nilssen, 2014: Current status of hooded seals in the Greenland Sea. Victims of climate change and predation? Biological Conservation, 172, 29-36, doi:10.1016/j.biocon.2014.02.007.
  669. Breed, G. A. et al., 2017: Sustained disruption of narwhal habitat use and behavior in the presence of Arctic killer whales. Proceedings of the National Academy of Sciences, 114 (10), 2628-2633, doi:10.1073/pnas.1611707114.
  670. Smith, A. J. et al., 2017a: Beluga whale summer habitat associations in the Nelson River estuary, western Hudson Bay, Canada. Plos One, 12 (8), e0181045, doi:10.1371/journal.pone.0181045.
  671. Dorresteijn, I. et al., 2012: Climate affects food availability to planktivorous least auklets Aethia pusilla through physical processes in the southeastern Bering Sea. Marine Ecology Progress Series, 454, 207-220, doi:10.3354/meps09372.
  672. Divoky, G. J., P. M. Lukacs and M. L. Druckenmiller, 2015: Effects of recent decreases in arctic sea ice on an ice-associated marine bird. Progress in Oceanography, 136, 151-161, doi:10.1016/j.pocean.2015.05.010.
  673. Vihtakari, M. et al., 2018: Black-legged kittiwakes as messengers of Atlantification in the Arctic. Scientific Reports, 8 (1), 1178, doi:10.1038/s41598-017-19118-8.
  674. Gaston, A. J., P. A. Smith and J. F. Provencher, 2012: Discontinuous change in ice cover in Hudson Bay in the 1990s and some consequences for marine birds and their prey. ICES Journal of Marine Science, 69 (7), 1218-1225, doi:10.1093/icesjms/fss040.
  675. Provencher, J. F., A. J. Gaston, P. D. O’Hara and H. G. Gilchrist, 2012: Seabird diet indicates changing Arctic marine communities in eastern Canada. Marine Ecology Progress Series, 454, 171-182, doi:10.3354/meps09299.
  676. Gaston, A. J. and K. H. Elliott, 2014: Seabird diet changes in northern Hudson Bay, 1981-2013, reflect the availability of schooling prey. Marine Ecology Progress Series, 513, 211-223, doi:10.3354/meps10945.
  677. Gall, A. E., T. C. Morgan, R. H. Day and K. J. Kuletz, 2017: Ecological shift from piscivorous to planktivorous seabirds in the Chukchi Sea, 1975-2012. Polar Biology, 40 (1), 61-78, doi:10.1007/s00300-016-1924-z.
  678. Dorresteijn, I. et al., 2012: Climate affects food availability to planktivorous least auklets Aethia pusilla through physical processes in the southeastern Bering Sea. Marine Ecology Progress Series, 454, 207-220, doi:10.3354/meps09372.
  679. Kokubun, N. et al., 2018: Inter-annual climate variability affects foraging behavior and nutritional state of thick-billed murres breeding in the southeastern Bering Sea. Marine Ecology Progress Series, 593, 195-208, doi:10.3354/meps12365.
  680. Renner, M. et al., 2016: Timing of ice retreat alters seabird abundances and distributions in the southeast Bering Sea. Biology Letters, 12 (9), 20160276, doi:10.1098/rsbl.2016.0276.
  681. Hunt, G. L. et al., 2018: Timing of sea-ice retreat affects the distribution of seabirds and their prey in the southeastern Bering Sea. Marine Ecology Progress Series, 593, 209-230, doi:10.3354/meps12383.
  682. Schmidt, K. and A. Atkinson, 2016: Feeding and Food Processing in Antarctic Krill (Euphausia superba Dana). In: Biology and Ecology of Antarctic Krill [Siegel, V. (ed.)]. Springer, New York, 175-224.
  683. Trathan, P. N. and S. L. Hill, 2016: The Importance of Krill Predation in the Southern Ocean. In: Biology and Ecology of Antarctic Krill [Siegel, V. (ed.)]. Springer, 321-350.
  684. Larsen, J. N. et al., 2014: Polar regions. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Barros, V. R., C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea and L. L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1567-1612.
  685. Siegel, V., Eds., 2016: Biology and Ecology of Antarctic Krill. Springer, 1-458 pp.
  686. McCormack, S. A. et al., 2017: Simplification of complex ecological networks – species aggregation in Antarctic food web models. In: MODSIM2017, 22nd International Congress on Modelling and Simulation, [Syme, G., D. Hatton MacDonald, E. Fulton and J. Piantadosi (eds.)], Modelling and Simulation Society of Australia and New Zealand, 264-270.
  687. Constable, A. J. et al., 2014: Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Global Change Biology, 20 (10), 3004-3025, doi:10.1111/gcb.12623.
  688. Gutt, J. et al., 2015: The Southern Ocean ecosystem under multiple climate change stresses–an integrated circumpolar assessment. Glob Chang Biol, 21 (4), 1434-53, doi:10.1111/gcb.12794.
  689. Constable, A. J. et al., 2016: Developing priority variables (“ecosystem Essential Ocean Variables” — eEOVs) for observing dynamics and change in Southern Ocean ecosystems. Journal of Marine Systems, 161, 26-41, doi:10.1016/j.jmarsys.2016.05.003.
  690. Hunt, G. L. et al., 2016: Advection in polar and sub-polar environments: Impacts on high latitude marine ecosystems. Progress in Oceanography, 149, 40-81, doi:10.1016/j.pocean.2016.10.004.
  691. Gutt, J. et al., 2018: Cross-disciplinarity in the advance of Antarctic ecosystem research. Mar Genomics, 37, 1-17, doi:10.1016/j.margen.2017.09.006.
  692. Constable, A. J. et al., 2014: Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Global Change Biology, 20 (10), 3004-3025, doi:10.1111/gcb.12623.
  693. Constable, A. J. et al., 2014: Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Global Change Biology, 20 (10), 3004-3025, doi:10.1111/gcb.12623.
  694. Gutt, J. et al., 2015: The Southern Ocean ecosystem under multiple climate change stresses–an integrated circumpolar assessment. Glob Chang Biol, 21 (4), 1434-53, doi:10.1111/gcb.12794.
  695. Constable, A. J. et al., 2016: Developing priority variables (“ecosystem Essential Ocean Variables” — eEOVs) for observing dynamics and change in Southern Ocean ecosystems. Journal of Marine Systems, 161, 26-41, doi:10.1016/j.jmarsys.2016.05.003.
  696. Cavanagh, R. D. et al., 2017: A Synergistic Approach for Evaluating Climate Model Output for Ecological Applications. Frontiers in Marine Science, 4, 1-12, doi:https://doi.org/10.3389/fmars.2017.00308.
  697. Behrenfeld, M. J. et al., 2016: Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nature Geoscience, 10, 118, doi:10.1038/ngeo2861.
  698. Arrigo, K. R., G. L. van Dijken and S. Bushinsky, 2008: Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research: Oceans, 113 (C8), doi:10.1029/2007JC004551.
  699. Venables, H. J., A. Clarke and M. P. Meredith, 2013: Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnology and Oceanography, 58 (3), 1035-1047, doi:10.4319/lo.2013.58.3.1035.
  700. Schofield, O. et al., 2018: Changes in the upper ocean mixed layer and phytoplankton productivity along the West Antarctic Peninsula. Philos Trans A Math Phys Eng Sci, 376 (2122), doi:10.1098/rsta.2017.0173.
  701. Kim, H. et al., 2018: Inter-decadal variability of phytoplankton biomass along the coastal West Antarctic Peninsula. Philos Trans A Math Phys Eng Sci, 376 (2122), 1-21, doi:10.1098/rsta.2017.0174.
  702. Schofield, O. et al., 2018: Changes in the upper ocean mixed layer and phytoplankton productivity along the West Antarctic Peninsula. Philos Trans A Math Phys Eng Sci, 376 (2122), doi:10.1098/rsta.2017.0173.
  703. Schofield, O. et al., 2018: Changes in the upper ocean mixed layer and phytoplankton productivity along the West Antarctic Peninsula. Philos Trans A Math Phys Eng Sci, 376 (2122), doi:10.1098/rsta.2017.0173.
  704. Arrigo, K. R. et al., 2017a: Early Spring Phytoplankton Dynamics in the Western Antarctic Peninsula. Journal of Geophysical Research-Oceans, 122 (12), 9350-9369, doi:10.1002/2017jc013281.
  705. Hancock, A. M. et al., 2017: Ocean acidification changes the structure of an Antarctic coastal protistan community. Biogeosciences Discussions, 2017, 1-32, doi:10.5194/bg-2017-224.
  706. Deppeler, S. et al., 2018: Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity. Biogeosciences, 15 (1), 209-231, doi:10.5194/bg-15-209-2018.
  707. Westwood, K. J. et al., 2018: Ocean acidification impacts primary and bacterial production in Antarctic coastal waters during austral summer. Journal of Experimental Marine Biology and Ecology, 498, 46-60, doi:10.1016/j.jembe.2017.11.003.
  708. McMinn, A., 2017: Reviews and syntheses: Ice acidification, the effects of ocean acidification on sea ice microbial communities. Biogeosciences, 14 (17), 3927-3935, doi:10.5194/bg-14-3927-2017.
  709. Leung, S., A. Cabré and I. Marinov, 2015: A latitudinally banded phytoplankton response to 21st century climate change in the Southern Ocean across the CMIP5 model suite. Biogeosciences, 12 (19), 5715-5734, doi:10.5194/bg-12-5715-2015.
  710. Leung, S., A. Cabré and I. Marinov, 2015: A latitudinally banded phytoplankton response to 21st century climate change in the Southern Ocean across the CMIP5 model suite. Biogeosciences, 12 (19), 5715-5734, doi:10.5194/bg-12-5715-2015.
  711. Hutchins, D. A. and P. W. Boyd, 2016: Marine phytoplankton and the changing ocean iron cycle. Nature Climate Change, 6 (12), 1072, doi:10.1038/nclimate3147.
  712. Tarling, G. A., P. Ward and S. E. Thorpe, 2018: Spatial distributions of Southern Ocean mesozooplankton communities have been resilient to long-term surface warming. Glob Chang Biol, 24 (1), 132-142, doi:10.1111/gcb.13834.
  713. Steinberg, D. K. et al., 2015: Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Research Part I: Oceanographic Research Papers, 101, 54-70, doi:10.1016/j.dsr.2015.02.009.
  714. Manno, C., V. L. Peck and G. A. Tarling, 2016: Pteropod eggs released at high pCO2 lack resilience to ocean acidification. Sci Rep, 6, 25752, doi:10.1038/srep25752.
  715. Barnes, D. K. A., 2017: Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows. Glob Chang Biol, 23 (12), 5083-5091, doi:10.1111/gcb.13772.
  716. Jansen, J. et al., 2017: Abundance and richness of key Antarctic seafloor fauna correlates with modelled food availability. Nature Ecology & Evolution, 1-13, doi:10.1038/s41559-017-0392-3.
  717. Clark, G. F. et al., 2015: Vulnerability of Antarctic shallow invertebrate-dominated ecosystems. Austral Ecology, 40 (4), 482-491, doi:10.1111/aec.12237.
  718. Clark, G. F. et al., 2017: The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities. Plos One, 12 (1), e0168391, doi:10.1371/journal.pone.0168391.
  719. Griffiths, H. J., A. J. S. Meijers and T. J. Bracegirdle, 2017a: More losers than winners in a century of future Southern Ocean seafloor warming. Nature Climate Change, 7 (10), 749-754, doi:10.1038/nclimate3377.
  720. Pörtner, H.-O. et al., 2014: Ocean systems [Field, C. B., V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea and L. L. White (eds.)]. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Press, C. U., Cambridge, United Kingdom and New York, NY, USA, 411-484.
  721. Mintenbeck, K., 2017: Impacts of Climate Change on the Southern Ocean. In: Climate Change Impacts on Fisheries and Aquaculture [Phillips, B. F. and M. Pérez‐Ramírez (eds.)]. John Wiley & Sons New Jersey, 663-701.
  722. Mueller, I. A. et al., 2012: Exposure to critical thermal maxima increases oxidative stress in hearts of white- but not red-blooded Antarctic notothenioid fishes. The Journal of Experimental Biology, 215 (20), 3655, doi:10.1242/jeb.071811.
  723. Beers, J. M. and N. Jayasundara, 2015: Antarctic notothenioid fish: what are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures? J Exp Biol, 218 (Pt 12), 1834-45, doi:10.1242/jeb.116129.
  724. Atkinson, A., V. Siegel, E. Pakhomov and P. Rothery, 2004: Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature, 432 (7013), 100-103, doi:10.1038/nature0299.
  725. Larsen, J. N. et al., 2014: Polar regions. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Barros, V. R., C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea and L. L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1567-1612.
  726. Fielding, S. et al., 2014: Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES Journal of Marine Science, 71 (9), 2578-2588, doi:10.1093/icesjms/fsu104.
  727. Kinzey, D., G. M. Watters and C. S. Reiss, 2015: Selectivity and two biomass measures in an age-based assessment of Antarctic krill (Euphausia superba). Fisheries Research, 168, 72-84, doi:10.1016/j.fishres.2015.03.023.
  728. Steinberg, D. K. et al., 2015: Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Research Part I: Oceanographic Research Papers, 101, 54-70, doi:10.1016/j.dsr.2015.02.009.
  729. Cox, M. J. et al., 2018: No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. Journal of Crustacean Biology, 38 (6), 656-661, doi:10.1093/jcbiol/ruy072.
  730. Fielding, S. et al., 2014: Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES Journal of Marine Science, 71 (9), 2578-2588, doi:10.1093/icesjms/fsu104.
  731. Kinzey, D., G. M. Watters and C. S. Reiss, 2015: Selectivity and two biomass measures in an age-based assessment of Antarctic krill (Euphausia superba). Fisheries Research, 168, 72-84, doi:10.1016/j.fishres.2015.03.023.
  732. Steinberg, D. K. et al., 2015: Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Research Part I: Oceanographic Research Papers, 101, 54-70, doi:10.1016/j.dsr.2015.02.009.
  733. Cox, M. J. et al., 2018: No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. Journal of Crustacean Biology, 38 (6), 656-661, doi:10.1093/jcbiol/ruy072.
  734. Atkinson, A. et al., 2019: Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nature Climate Change, 9 (2), 142-147, doi:10.1038/s41558-018-0370-z.
  735. Cox, M. J. et al., 2018: No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. Journal of Crustacean Biology, 38 (6), 656-661, doi:10.1093/jcbiol/ruy072.
  736. Atkinson, A. et al., 2019: Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nature Climate Change, 9 (2), 142-147, doi:10.1038/s41558-018-0370-z.
  737. Melbourne-Thomas, J. et al., 2016: Under ice habitats for Antarctic krill larvae: Could less mean more under climate warming? Geophysical Research Letters, 43 (19), 10,322-10,327, doi:10.1002/2016gl070846.
  738. Piñones, A. and A. V. Fedorov, 2016: Projected changes of Antarctic krill habitat by the end of the 21st century. Geophysical Research Letters, 43 (16), 8580-8589, doi:10.1002/2016gl069656.
  739. Meyer, B. et al., 2017: The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nat Ecol Evol, 1 (12), 1853-1861, doi:10.1038/s41559-017-0368-3.
  740. Murphy, E. J. et al., 2017: Restricted regions of enhanced growth of Antarctic krill in the circumpolar Southern Ocean. Sci Rep, 7 (1), 6963, doi:10.1038/s41598-017-07205-9.
  741. Klein, E. S. et al., 2018: Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. Plos One, 13 (1), e0191011, doi:10.1371/journal.pone.0191011.
  742. Hill, S. L., T. Phillips and A. Atkinson, 2013: Potential Climate Change Effects on the Habitat of Antarctic Krill in the Weddell Quadrant of the Southern Ocean. Plos One, 8 (8), e72246, doi:10.1371/journal.pone.0072246.
  743. Piñones, A. and A. V. Fedorov, 2016: Projected changes of Antarctic krill habitat by the end of the 21st century. Geophysical Research Letters, 43 (16), 8580-8589, doi:10.1002/2016gl069656.
  744. Kawaguchi, S. et al., 2013: Risk maps for Antarctic krill under projected Southern Ocean acidification. Nature Climate Change, 3, 843, doi:10.1038/nclimate1937.
  745. Piñones, A. and A. V. Fedorov, 2016: Projected changes of Antarctic krill habitat by the end of the 21st century. Geophysical Research Letters, 43 (16), 8580-8589, doi:10.1002/2016gl069656.
  746. Klein, E. S. et al., 2018: Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. Plos One, 13 (1), e0191011, doi:10.1371/journal.pone.0191011.
  747. Suprenand, P. M. and C. H. Ainsworth, 2017: Trophodynamic effects of climate change-induced alterations to primary production along the western Antarctic Peninsula. Marine Ecology Progress Series, 569, 37-54, doi:10.3354/meps12100.
  748. Mintenbeck, K. et al., 2012: Impact of Climate Change on Fishes in Complex Antarctic Ecosystems. Advances in Ecological Research, Vol 46: Global Change in Multispecies Systems, Pt 1, 46, 351-426, doi:10.1016/B978-0-12-396992-7.00006-X.
  749. Young, E. F. et al., 2018: Stepping stones to isolation: Impacts of a changing climate on the connectivity of fragmented fish populations. Evol Appl, 11 (6), 978-994, doi:10.1111/eva.12613.
  750. Mintenbeck, K. et al., 2012: Impact of Climate Change on Fishes in Complex Antarctic Ecosystems. Advances in Ecological Research, Vol 46: Global Change in Multispecies Systems, Pt 1, 46, 351-426, doi:10.1016/B978-0-12-396992-7.00006-X.
  751. Vacchi, M. et al., 2012: A nursery area for the Antarctic silverfish Pleuragramma antarcticum at Terra Nova Bay (Ross Sea): first estimate of distribution and abundance of eggs and larvae under the seasonal sea-ice. Polar Biology, 35 (10), 1573-1585, doi:10.1007/s00300-012-1199-y.
  752. Park, H. et al., 2015: Quantification of Warming Climate-Induced Changes in Terrestrial Arctic River Ice Thickness and Phenology. Journal of Climate, 29 (5), 1733-1754, doi:10.1175/jcli-d-15-0569.1.
  753. Mintenbeck, K., 2017: Impacts of Climate Change on the Southern Ocean. In: Climate Change Impacts on Fisheries and Aquaculture [Phillips, B. F. and M. Pérez‐Ramírez (eds.)]. John Wiley & Sons New Jersey, 663-701.
  754. Freer, J. J. et al., 2018: Predicting ecological responses in a changing ocean: the effects of future climate uncertainty. Mar Biol, 165 (1), 7, doi:10.1007/s00227-017-3239-1.
  755. Belchier, M. and M. A. Collins, 2008: Recruitment and body size in relation to temperature in juvenile Patagonian toothfish (Dissostichus eleginoides) at South Georgia. Marine Biology, 155 (5), 493, doi:10.1007/s00227-008-1047-3.
  756. Mintenbeck, K., 2017: Impacts of Climate Change on the Southern Ocean. In: Climate Change Impacts on Fisheries and Aquaculture [Phillips, B. F. and M. Pérez‐Ramírez (eds.)]. John Wiley & Sons New Jersey, 663-701.
  757. Bost, C. A. et al., 2009: The importance of oceanographic fronts to marine birds and mammals of the southern oceans. Journal of Marine Systems, 78 (3), 363-376, doi:10.1016/j.jmarsys.2008.11.022.
  758. Gutt, J. et al., 2015: The Southern Ocean ecosystem under multiple climate change stresses–an integrated circumpolar assessment. Glob Chang Biol, 21 (4), 1434-53, doi:10.1111/gcb.12794.
  759. Constable, A. J. et al., 2016: Developing priority variables (“ecosystem Essential Ocean Variables” — eEOVs) for observing dynamics and change in Southern Ocean ecosystems. Journal of Marine Systems, 161, 26-41, doi:10.1016/j.jmarsys.2016.05.003.
  760. Hunt, G. L. et al., 2016: Advection in polar and sub-polar environments: Impacts on high latitude marine ecosystems. Progress in Oceanography, 149, 40-81, doi:10.1016/j.pocean.2016.10.004.
  761. Gutt, J. et al., 2018: Cross-disciplinarity in the advance of Antarctic ecosystem research. Mar Genomics, 37, 1-17, doi:10.1016/j.margen.2017.09.006.
  762. Dugger, K. M. et al., 2014: Adélie penguins coping with environmental change: results from a natural experiment at the edge of their breeding range. Frontiers in Ecology and Evolution, 2, 1-12, doi:10.3389/fevo.2014.00068.
  763. Young, A. M., P. E. Higuera, P. A. Duffy and F. S. Hu, 2017: Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography, 40 (5), 606-617, doi:10.1111/ecog.02205.
  764. Abrahms, B. et al., 2018: Climate mediates the success of migration strategies in a marine predator. Ecol Lett, 21 (1), 63-71, doi:10.1111/ele.12871.
  765. Descamps, S. et al., 2015: Demographic effects of extreme weather events: snow storms, breeding success, and population growth rate in a long-lived Antarctic seabird. Ecology and Evolution, 5 (2), 314-325, doi:10.1002/ece3.1357.
  766. Jenouvrier, S., C. Péron and H. Weimerskirch, 2015: Extreme climate events and individual heterogeneity shape life-history traits and population dynamics. Ecological Monographs, 85 (4), 605-624, doi:10.1890/14-1834.1.
  767. Sydeman, W. J., E. Poloczanska, T. E. Reed and S. A. Thompson, 2015: Climate change and marine vertebrates. Science, 350 (6262), 772-777, doi:10.1126/science.aac9874.
  768. Abadi, F., C. Barbraud and O. Gimenez, 2017: Integrated population modeling reveals the impact of climate on the survival of juvenile emperor penguins. Global Change Biology, 23 (3), 1353-1359, doi:10.1111/gcb.13538.
  769. Bjorndal, K. A. et al., 2017: Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic. Global Change Biology, 23 (11), 4556-4568, doi:10.1111/gcb.13712.
  770. Fluhr, J. et al., 2017: Weakening of the subpolar gyre as a key driver of North Atlantic seabird demography: a case study with Brunnich’s guillemots in Svalbard. Marine Ecology Progress Series, 563, 1-11, doi:10.3354/meps11982.
  771. Hinke, J. T. et al., 2017a: Identifying Risk: Concurrent Overlap of the Antarctic Krill Fishery with Krill-Dependent Predators in the Scotia Sea. Plos One, 12 (1), e0170132, doi:10.1371/journal.pone.0170132.
  772. Hinke, J. T., S. G. Trivelpiece and W. Z. Trivelpiece, 2017b: Variable vital rates and the risk of population declines in Adelie penguins from the Antarctic Peninsula region. Ecosphere, 8 (1), 1-13, doi:10.1002/ecs2.1666.
  773. Pardo, D., S. Jenouvrier, H. Weimerskirch and C. Barbraud, 2017: Effect of extreme sea surface temperature events on the demography of an age-structured albatross population. Philos Trans R Soc Lond B Biol Sci, 372 (1723), 1-10, doi:10.1098/rstb.2016.0143.
  774. Bost, C. A. et al., 2015: Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat Commun, 6, 8220, doi:10.1038/ncomms9220.
  775. Kavanaugh, M. T. et al., 2015: Effect of continental shelf canyons on phytoplankton biomass and community composition along the western Antarctic Peninsula. Marine Ecology Progress Series, 524, 11-26, doi:10.3354/meps11189.
  776. Hindell, M. A. et al., 2016: Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories. Ecosphere, 7 (5), e01213, doi:10.1002/ecs2.1213.
  777. Santora, J. A. et al., 2017: Impacts of ocean climate variability on biodiversity of pelagic forage species in an upwelling ecosystem. Marine Ecology Progress Series, 580, 205-220, doi:10.3354/meps12278.
  778. Braithwaite, J. E., J. J. Meeuwig and M. R. Hipsey, 2015a: Optimal migration energetics of humpback whales and the implications of disturbance. Conserv Physiol, 3 (1), doi:10.1093/conphys/cov001.
  779. Whitehead, A. L. et al., 2015: Factors driving Adélie penguin chick size, mass and condition at colonies of different sizes in the Southern Ross Sea. Marine Ecology Progress Series, 523, 199-213, doi:10.3354/meps11130.
  780. Seyboth, E. et al., 2016: Southern Right Whale (Eubalaena australis) Reproductive Success is Influenced by Krill (Euphausia superba) Density and Climate. Sci Rep, 6, 28205, doi:10.1038/srep28205.
  781. Hinke, J. T., S. G. Trivelpiece and W. Z. Trivelpiece, 2017b: Variable vital rates and the risk of population declines in Adelie penguins from the Antarctic Peninsula region. Ecosphere, 8 (1), 1-13, doi:10.1002/ecs2.1666.
  782. Lynch, H. J., R. Naveen and P. Casanovas, 2013: Antarctic Site Inventory breeding bird survey data, 1994–2013. Ecology, 94 (11), 2653-2653.
  783. Dunn, M. J. et al., 2016: Population Size and Decadal Trends of Three Penguin Species Nesting at Signy Island, South Orkney Islands. Plos One, 11 (10), e0164025, doi:10.1371/journal.pone.0164025.
  784. Hinke, J. T. et al., 2017a: Identifying Risk: Concurrent Overlap of the Antarctic Krill Fishery with Krill-Dependent Predators in the Scotia Sea. Plos One, 12 (1), e0170132, doi:10.1371/journal.pone.0170132.
  785. Trivelpiece, W. Z. et al., 2011: Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Natl Acad Sci U S A, 108 (18), 7625-8, doi:10.1073/pnas.1016560108.
  786. LaRue, M. A. et al., 2013: Climate change winners: receding ice fields facilitate colony expansion and altered dynamics in an Adelie penguin metapopulation. Plos One, 8 (4), e60568, doi:10.1371/journal.pone.0060568.
  787. Jenouvrier, S. et al., 2014: Projected continent-wide declines of the emperor penguin under climate change. Nature Climate Change, 4 (8), 715-718, doi:10.1038/nclimate2280.
  788. Bost, C. A. et al., 2015: Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat Commun, 6, 8220, doi:10.1038/ncomms9220.
  789. Southwell, C. et al., 2015: Spatially Extensive Standardized Surveys Reveal Widespread, Multi-Decadal Increase in East Antarctic Adelie Penguin Populations. Plos One, 10 (10), 18, doi:10.1371/journal.pone.0139877.
  790. Young, I., K. Gropp, A. Fazil and B. A. Smith, 2015: Knowledge synthesis to support risk assessment of climate change impacts on food and water safety: A case study of the effects of water temperature and salinity on Vibrio parahaemolyticus in raw oysters and harvest waters. Food Research International, 68, 86-93, doi:10.1016/j.foodres.2014.06.035.
  791. Cimino, M. A., H. J. Lynch, V. S. Saba and M. J. Oliver, 2016: Projected asymmetric response of Adelie penguins to Antarctic climate change. Sci Rep, 6, 28785, doi:10.1038/srep28785.
  792. Young, A. M., P. E. Higuera, P. A. Duffy and F. S. Hu, 2017: Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography, 40 (5), 606-617, doi:10.1111/ecog.02205.
  793. Ancel, A. et al., 2017: Looking for new emperor penguin colonies? Filling the gaps. Global Ecology and Conservation, 9, 171-179, doi:10.1016/j.gecco.2017.01.003.
  794. Kooyman, G. L. and P. J. Ponganis, 2017: Rise and fall of Ross Sea emperor penguin colony populations: 2000 to 2012. Antarctic Science, 29 (3), 201-208, doi:10.1017/S0954102016000559.
  795. Descamps, S. et al., 2015: Demographic effects of extreme weather events: snow storms, breeding success, and population growth rate in a long-lived Antarctic seabird. Ecology and Evolution, 5 (2), 314-325, doi:10.1002/ece3.1357.
  796. Jenouvrier, S., C. Péron and H. Weimerskirch, 2015: Extreme climate events and individual heterogeneity shape life-history traits and population dynamics. Ecological Monographs, 85 (4), 605-624, doi:10.1890/14-1834.1.
  797. Pardo, D., S. Jenouvrier, H. Weimerskirch and C. Barbraud, 2017: Effect of extreme sea surface temperature events on the demography of an age-structured albatross population. Philos Trans R Soc Lond B Biol Sci, 372 (1723), 1-10, doi:10.1098/rstb.2016.0143.
  798. Weimerskirch, H., M. Louzao, S. de Grissac and K. Delord, 2012: Changes in wind pattern alter albatross distribution and life-history traits. Science, 335 (6065), 211-4, doi:10.1126/science.1210270.
  799. Jenouvrier, S. et al., 2018: Climate change and functional traits affect population dynamics of a long-lived seabird. Journal of Animal Ecology, 87 (4), 906-920, doi:10.1111/1365-2656.12827.
  800. Krüger, L. et al., 2018: Projected distributions of Southern Ocean albatrosses, petrels and fisheries as a consequence of climatic change. Ecography, 41 (1), 195-208, doi:10.1111/ecog.02590.
  801. Lyver, P. O. et al., 2014: Trends in the Breeding Population of Adelie Penguins in the Ross Sea, 1981-2012: A Coincidence of Climate and Resource Extraction Effects. Plos One, 9 (3), 10, doi:10.1371/journal.pone.0091188.
  802. Bost, C. A. et al., 2015: Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat Commun, 6, 8220, doi:10.1038/ncomms9220.
  803. Jenouvrier, S., C. Péron and H. Weimerskirch, 2015: Extreme climate events and individual heterogeneity shape life-history traits and population dynamics. Ecological Monographs, 85 (4), 605-624, doi:10.1890/14-1834.1.
  804. Whitehead, A. L. et al., 2015: Factors driving Adélie penguin chick size, mass and condition at colonies of different sizes in the Southern Ross Sea. Marine Ecology Progress Series, 523, 199-213, doi:10.3354/meps11130.
  805. Cimino, M. A., H. J. Lynch, V. S. Saba and M. J. Oliver, 2016: Projected asymmetric response of Adelie penguins to Antarctic climate change. Sci Rep, 6, 28785, doi:10.1038/srep28785.
  806. Hinke, J. T. et al., 2017a: Identifying Risk: Concurrent Overlap of the Antarctic Krill Fishery with Krill-Dependent Predators in the Scotia Sea. Plos One, 12 (1), e0170132, doi:10.1371/journal.pone.0170132.
  807. Pardo, D., S. Jenouvrier, H. Weimerskirch and C. Barbraud, 2017: Effect of extreme sea surface temperature events on the demography of an age-structured albatross population. Philos Trans R Soc Lond B Biol Sci, 372 (1723), 1-10, doi:10.1098/rstb.2016.0143.
  808. Kavanaugh, M. T. et al., 2015: Effect of continental shelf canyons on phytoplankton biomass and community composition along the western Antarctic Peninsula. Marine Ecology Progress Series, 524, 11-26, doi:10.3354/meps11189.
  809. Hindell, M. A. et al., 2016: Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories. Ecosphere, 7 (5), e01213, doi:10.1002/ecs2.1213.
  810. Gurarie, E. et al., 2017: Distribution, density and abundance of Antarctic ice seals off Queen Maud Land and the eastern Weddell Sea. Polar Biology, 40 (5), 1149-1165, doi:10.1007/s00300-016-2029-4.
  811. Santora, J. A. et al., 2017: Impacts of ocean climate variability on biodiversity of pelagic forage species in an upwelling ecosystem. Marine Ecology Progress Series, 580, 205-220, doi:10.3354/meps12278.
  812. Hindell, M. A. et al., 2016: Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories. Ecosphere, 7 (5), e01213, doi:10.1002/ecs2.1213.
  813. Southwell, C. et al., 2012: A review of data on abundance, trends in abundance, habitat utilisation and diet for Southern Ocean ice-breeding seals. CCAMLR Science, 19, 1-49.
  814. Bester, M. N., H. Bornemann and T. McIntyre, 2017: Sea Ice, Third Edition [Thomas, D. N. (ed.)]. Antarctic marine mammals and sea ice, John Wiley & Sons, Ltd.
  815. Gurarie, E. et al., 2017: Distribution, density and abundance of Antarctic ice seals off Queen Maud Land and the eastern Weddell Sea. Polar Biology, 40 (5), 1149-1165, doi:10.1007/s00300-016-2029-4.
  816. Braithwaite, J. E., J. J. Meeuwig and M. R. Hipsey, 2015a: Optimal migration energetics of humpback whales and the implications of disturbance. Conserv Physiol, 3 (1), doi:10.1093/conphys/cov001.
  817. Braithwaite, J. E. et al., 2015b: From sea ice to blubber: linking whale condition to krill abundance using historical whaling records. Polar Biology, 38 (8), 1195-1202, doi:10.1007/s00300-015-1685-0.
  818. Seyboth, E. et al., 2016: Southern Right Whale (Eubalaena australis) Reproductive Success is Influenced by Krill (Euphausia superba) Density and Climate. Sci Rep, 6, 28205, doi:10.1038/srep28205.
  819. Tulloch, V. J. D. et al., 2019: Future recovery of baleen whales is imperiled by climate change. Glob Chang Biol, doi:10.1111/gcb.14573.
  820. Tulloch, V. J. D. et al., 2019: Future recovery of baleen whales is imperiled by climate change. Glob Chang Biol, doi:10.1111/gcb.14573.
  821. Murphy, E. J., A. Clarke, N. J. Abram and J. Turner, 2014: Variability of sea-ice in the northern Weddell Sea during the 20th century. Journal of Geophysical Research: Oceans, 119 (7), 4549-4572, doi:10.1002/2013jc009511.
  822. Constable, A. J. et al., 2016: Developing priority variables (“ecosystem Essential Ocean Variables” — eEOVs) for observing dynamics and change in Southern Ocean ecosystems. Journal of Marine Systems, 161, 26-41, doi:10.1016/j.jmarsys.2016.05.003.
  823. Constable, A., J. Melbourne-Thomas, R. Trebilco and A. J. Press, 2017: ACE CRC Position Analysis: Managing change in Southern Ocean ecosystems. Centre, A. C. E. C. R., Hobart, 1-40 [Available at: http://acecrc.org.au/wp-content/uploads/2017/10/2017-ACECRC-Position-Analysis-Southern-Ocean-Ecosystems.pdf; Access Date: 05 December 2018].
  824. McCormack, S. A. et al., 2017: Simplification of complex ecological networks – species aggregation in Antarctic food web models. In: MODSIM2017, 22nd International Congress on Modelling and Simulation, [Syme, G., D. Hatton MacDonald, E. Fulton and J. Piantadosi (eds.)], Modelling and Simulation Society of Australia and New Zealand, 264-270.
  825. Klein, E. S. et al., 2018: Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. Plos One, 13 (1), e0191011, doi:10.1371/journal.pone.0191011.
  826. Constable, A. J. et al., 2016: Developing priority variables (“ecosystem Essential Ocean Variables” — eEOVs) for observing dynamics and change in Southern Ocean ecosystems. Journal of Marine Systems, 161, 26-41, doi:10.1016/j.jmarsys.2016.05.003.
  827. Constable, A., J. Melbourne-Thomas, R. Trebilco and A. J. Press, 2017: ACE CRC Position Analysis: Managing change in Southern Ocean ecosystems. Centre, A. C. E. C. R., Hobart, 1-40 [Available at: http://acecrc.org.au/wp-content/uploads/2017/10/2017-ACECRC-Position-Analysis-Southern-Ocean-Ecosystems.pdf; Access Date: 05 December 2018].
  828. Larsen, J. N. et al., 2014: Polar regions. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Barros, V. R., C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea and L. L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1567-1612.
  829. Leung, S., A. Cabré and I. Marinov, 2015: A latitudinally banded phytoplankton response to 21st century climate change in the Southern Ocean across the CMIP5 model suite. Biogeosciences, 12 (19), 5715-5734, doi:10.5194/bg-12-5715-2015.
  830. Atkinson, A. et al., 2019: Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nature Climate Change, 9 (2), 142-147, doi:10.1038/s41558-018-0370-z.
  831. Griffiths, H. J., A. J. S. Meijers and T. J. Bracegirdle, 2017a: More losers than winners in a century of future Southern Ocean seafloor warming. Nature Climate Change, 7 (10), 749-754, doi:10.1038/nclimate3377.
  832. Klein, E. S. et al., 2018: Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. Plos One, 13 (1), e0191011, doi:10.1371/journal.pone.0191011.
  833. Holsman, K. et al., 2018: Chapter 6: Climate change impacts, vulnerabilities and adaptations: North Pacific and Pacific Arctic marine fisheries. In: Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper No. 627. [Barange, M., T. Bahri, M. C. M. Beveridge, K. L. Cochrane, S. Funge-Smith and F. Poulain (eds.)], Rome.
  834. Peck, M. and J. K. Pinnegar, 2018: Chapter 5: Climate change impacts, vulnerabilities and adaptations: North Atlantic and Atlantic Arctic marine fisheries. In: Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper No. 627. [Barange, M., T. Bahri, M. C. M. Beveridge, K. L. Cochrane, S. Funge-Smith and F. Poulain (eds.)], Rome.
  835. Reist, J., 2018: Fisheries. In: Marine Fisheries of Arctic Canada [Coad, B. W. and J. Reist (eds.)]. Canadian Museum of Nature and University of Toronto Press, Toronto, 618p.
  836. Barrett, J. H. et al., 2011: Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. Journal of Archaeological Science, 38 (7), 1516-1524, doi:10.1016/j.jas.2011.02.017.
  837. Eide, A., 2017: Climate change, fisheries management and fishing aptitude affecting spatial and temporal distributions of the Barents Sea cod fishery. AMBIO, 46 (Suppl 3), 387-399, doi:10.1007/s13280-017-0955-1.
  838. Lam, V. W. Y., W. W. L. Cheung and U. R. Sumaila, 2016: Marine capture fisheries in the Arctic: winners or losers under climate change and ocean acidification? Fish and Fisheries, 17 (2), 335-357, doi:10.1111/faf.12106.
  839. Eide, A., 2017: Climate change, fisheries management and fishing aptitude affecting spatial and temporal distributions of the Barents Sea cod fishery. AMBIO, 46 (Suppl 3), 387-399, doi:10.1007/s13280-017-0955-1.
  840. Haug, T. et al., 2017: Future harvest of living resources in the Arctic Ocean north of the Nordic and Barents Seas: A review of possibilities and constraints. Fisheries Research, 188, 38-57, doi:10.1016/j.fishres.2016.12.002.
  841. Peck, M. and J. K. Pinnegar, 2018: Chapter 5: Climate change impacts, vulnerabilities and adaptations: North Atlantic and Atlantic Arctic marine fisheries. In: Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper No. 627. [Barange, M., T. Bahri, M. C. M. Beveridge, K. L. Cochrane, S. Funge-Smith and F. Poulain (eds.)], Rome.
  842. Holsman, K. et al., 2018: Chapter 6: Climate change impacts, vulnerabilities and adaptations: North Pacific and Pacific Arctic marine fisheries. In: Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper No. 627. [Barange, M., T. Bahri, M. C. M. Beveridge, K. L. Cochrane, S. Funge-Smith and F. Poulain (eds.)], Rome.
  843. Groeneveld, R. A. et al., 2018: Defining scenarios of future vectors of change in marine life and associated economic sectors. Estuarine, Coastal and Shelf Science, 201, 164-171, doi:10.1016/j.ecss.2015.10.020.
  844. Haynie, A. C. and L. Pfeiffer, 2012: Why economics matters for understanding the effects of climate change on fisheries. ICES Journal of Marine Science, 69 (7), 1160-1167, doi:10.1093/icesjms/fss021.
  845. Ward, E. J. et al., 2017: Effects of increased specialization on revenue of Alaskan salmon fishers over four decades. Journal of Applied Ecology, 55 (3), 1082-1091, doi:10.1111/1365-2664.13058.
  846. CCAMLR, 2017b: Krill Fishery Report 2016. Commission for the Conservation of Antarctic Marine Living Resources, Hobart, Tasmania. [Available at: https://www.ccamlr.org/en/document/publications/krill-fishery-report-2016; Access Date: 05 December, 2018].
  847. CCAMLR, 2017a: Fishery Reports 2016. Commission for the Conservation of Antarctic Marine Living Resources, Hobart, Tasmania [Available at: https://www.ccamlr.org/en/publications/fishery-reports-2016; Access Date: 05 December, 2018].
  848. CCAMLR, 2016b: The value of marine resources harvested in the CCAMLR Convention Area – an assessment of GVP. Commission for the Conservation of Antarctic Marine Living Resources [Available at: https://www.ccamlr.org/en/ccamlr-xxxv/10; Access Date: 05 December, 2018].
  849. Hinke, J. T. et al., 2017a: Identifying Risk: Concurrent Overlap of the Antarctic Krill Fishery with Krill-Dependent Predators in the Scotia Sea. Plos One, 12 (1), e0170132, doi:10.1371/journal.pone.0170132.
  850. Nicol, S. and J. Foster, 2016: The Fishery for Antarctic Krill: Its Current Status and Management Regime. In: Biology and Ecology of Antarctic Krill [Siegel, V. (ed.)]. Springer, New York, 387-421.
  851. Kawaguchi, S., S. Nicol and A. J. Press, 2009: Direct effects of climate change on the Antarctic krill fishery. Fisheries Management and Ecology, 16 (5), 424-427, doi:10.1111/j.1365-2400.2009.00686.x.
  852. Nicol, S. and J. Foster, 2016: The Fishery for Antarctic Krill: Its Current Status and Management Regime. In: Biology and Ecology of Antarctic Krill [Siegel, V. (ed.)]. Springer, New York, 387-421.
  853. Mintenbeck, K., 2017: Impacts of Climate Change on the Southern Ocean. In: Climate Change Impacts on Fisheries and Aquaculture [Phillips, B. F. and M. Pérez‐Ramírez (eds.)]. John Wiley & Sons New Jersey, 663-701.
  854. Dawson, J., M. E. Johnston and E. J. Stewart, 2014: Governance of Arctic expedition cruise ships in a time of rapid environmental and economic change. Ocean and Coastal Management, 89, 88–99, doi:10.1016/j.ocecoaman.2013.12.005.
  855. Johnston, M., J. Dawson, E. De Souza and E. J. Stewart, 2017: Management challenges for the fastest growing marine shipping sector in Arctic Canada: pleasure crafts. Polar Record, 53 (1), 67-78, doi:10.1017/s0032247416000565.
  856. Johnston, M., J. Dawson, E. De Souza and E. J. Stewart, 2017: Management challenges for the fastest growing marine shipping sector in Arctic Canada: pleasure crafts. Polar Record, 53 (1), 67-78, doi:10.1017/s0032247416000565.
  857. Lasserre, F. and P.-L. Têtu, 2015: The cruise tourism industry in the Canadian Arctic: analysis of activities and perceptions of cruise ship operators. Polar Record, 51 (1), 24-38, doi:10.1017/s0032247413000508.
  858. Johnston, M., J. Dawson, E. De Souza and E. J. Stewart, 2017: Management challenges for the fastest growing marine shipping sector in Arctic Canada: pleasure crafts. Polar Record, 53 (1), 67-78, doi:10.1017/s0032247416000565.
  859. Dawson, J. et al., 2018: Temporal and Spatial Patterns of Ship Traffic in the Canadian Arctic from 1990 to 2015. Arctic, 71 (7), 15-26, doi:10.14430/arctic4698.
  860. ATCM, 2018: IAATO Overview of Antarctic Tourism: 2017-18 Season and Preliminary Estimates for 2018-19 Season. ATCM, Buenos Aires [Available at: https://iaato.org/documents/10157/2398215/IAATO+overview/bc34db24-e1dc-4eab-997a-4401836b7033%5D.
  861. Pertierra, L. R., K. A. Hughes, G. C. Vega and M. A. Olalla-Tarraga, 2017: High Resolution Spatial Mapping of Human Footprint across Antarctica and Its Implications for the Strategic Conservation of Avifauna. Plos One, 12 (1), e0168280, doi:10.1371/journal.pone.0168280.
  862. Johnston, M., J. Dawson, E. De Souza and E. J. Stewart, 2017: Management challenges for the fastest growing marine shipping sector in Arctic Canada: pleasure crafts. Polar Record, 53 (1), 67-78, doi:10.1017/s0032247416000565.
  863. Dawson, J. et al., 2018: Temporal and Spatial Patterns of Ship Traffic in the Canadian Arctic from 1990 to 2015. Arctic, 71 (7), 15-26, doi:10.14430/arctic4698.
  864. Johnston, M., J. Dawson, E. De Souza and E. J. Stewart, 2017: Management challenges for the fastest growing marine shipping sector in Arctic Canada: pleasure crafts. Polar Record, 53 (1), 67-78, doi:10.1017/s0032247416000565.
  865. Lamers, M. A. J., E. Eijgelaar and B. Amelung, 2013: Last chance tourism in Antarctica Cruising for change? . In: Last chance tourism: Adapting tourism opportunities in a changing world [Lemelin, R. H., J. Dawson and E. J. Stewart (eds.)]. Routledge, London, 24-41.
  866. Johnston, A., M. E. Johnston, J. Dawson and E. J. Stewart, 2012a: Challenges of changes in Arctic cruise tourism: perspectives of federal government stakeholders. Journal of Maritime Law and Commerce, 43 (3), 335–347.
  867. Johnston, A. et al., 2012b: Perspectives of decision makers and regulators on climate change and adaptation in expedition cruise ship tourism in Nunavut. Northern Review, 35, 69-85.
  868. Stewart, E. J. et al., 2013: Local-level responses to sea ice change and cruise tourism in Arctic Canada’s Northwest Passage. Polar Geography, 36 (1-2), 142-162, doi:10.1080/1088937x.2012.705352.
  869. Dawson, J., M. E. Johnston and E. J. Stewart, 2014: Governance of Arctic expedition cruise ships in a time of rapid environmental and economic change. Ocean and Coastal Management, 89, 88–99, doi:10.1016/j.ocecoaman.2013.12.005.
  870. Lasserre, F. and P.-L. Têtu, 2015: The cruise tourism industry in the Canadian Arctic: analysis of activities and perceptions of cruise ship operators. Polar Record, 51 (1), 24-38, doi:10.1017/s0032247413000508.
  871. Stewart, E., J. Dawson and M. Johnston, 2015: Risks and opportunities associated with change in the cruise tourism sector: community perspectives from Arctic Canada. The Polar Journal, 5 (2), 403-427, doi:10.1080/2154896x.2015.1082283.
  872. Stewart, E. J. et al., 2013: Local-level responses to sea ice change and cruise tourism in Arctic Canada’s Northwest Passage. Polar Geography, 36 (1-2), 142-162, doi:10.1080/1088937x.2012.705352.
  873. Stewart, E., J. Dawson and M. Johnston, 2015: Risks and opportunities associated with change in the cruise tourism sector: community perspectives from Arctic Canada. The Polar Journal, 5 (2), 403-427, doi:10.1080/2154896x.2015.1082283.
  874. Chown, S. L. et al., 2012: Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proceedings of the National Academy of Sciences, 109 (13), 4938, doi:10.1073/pnas.1119787109.
  875. Huiskes, A. H. L. et al., 2014: Aliens in Antarctica: Assessing transfer of plant propagules by human visitors to reduce invasion risk. Biological Conservation, 171, 278-284, doi:10.1016/j.biocon.2014.01.038.
  876. Hughes, K. A., L. R. Pertierra, M. A. Molina-Montenegro and P. Convey, 2015: Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodiversity and Conservation, 24 (5), 1031-1055, doi:10.1007/s10531-015-0896-6.
  877. Duffy, G. A. et al., 2017: Barriers to globally invasive species are weakening across the Antarctic. Diversity and Distributions, 23 (9), 982-996, doi:10.1111/ddi.12593.
  878. Lee, J. R. et al., 2017a: Climate change drives expansion of Antarctic ice-free habitat. Nature, 547 (7661), 49, doi:10.1038/nature22996.
  879. Pertierra, L. R., K. A. Hughes, G. C. Vega and M. A. Olalla-Tarraga, 2017: High Resolution Spatial Mapping of Human Footprint across Antarctica and Its Implications for the Strategic Conservation of Avifauna. Plos One, 12 (1), e0168280, doi:10.1371/journal.pone.0168280.
  880. Dawson, J., M. E. Johnston and E. J. Stewart, 2014: Governance of Arctic expedition cruise ships in a time of rapid environmental and economic change. Ocean and Coastal Management, 89, 88–99, doi:10.1016/j.ocecoaman.2013.12.005.
  881. Pashkevich, A., J. Dawson and E. J. Stewart, 2015: Governance of expedition cruise ship tourism in the Arctic: A comparison of the Canadian and Russian Arctic. Tourism in Marine Environments, 10 (3/4), 225-240, doi:10.1016/j.ocecoaman.2013.12.005.
  882. Pizzolato, L. et al., 2016: The influence of declining sea ice on shipping activity in the Canadian Arctic. Geophysical Research Letters, 43 (23), 12,146-12,154, doi:10.1002/2016gl071489.
  883. Johnston, M., J. Dawson, E. De Souza and E. J. Stewart, 2017: Management challenges for the fastest growing marine shipping sector in Arctic Canada: pleasure crafts. Polar Record, 53 (1), 67-78, doi:10.1017/s0032247416000565.
  884. Johnston, M., J. Dawson, E. De Souza and E. J. Stewart, 2017: Management challenges for the fastest growing marine shipping sector in Arctic Canada: pleasure crafts. Polar Record, 53 (1), 67-78, doi:10.1017/s0032247416000565.
  885. Pizzolato, L. et al., 2014: Changing sea ice conditions and marine transportation activity in Canadian Arctic waters between 1990 and 2012. Climatic Change, 123 (2), 161-173, doi:10.1007/s10584-013-1038-3.
  886. Eguíluz, V. M., J. Fernández-Gracia, X. Irigoien and C. M. Duarte, 2016: A quantitative assessment of Arctic shipping in 2010–2014. Scientific Reports, 6, 30682, doi:10.1038/srep30682.
  887. Pizzolato, L. et al., 2016: The influence of declining sea ice on shipping activity in the Canadian Arctic. Geophysical Research Letters, 43 (23), 12,146-12,154, doi:10.1002/2016gl071489.
  888. Dawson, J. et al., 2018: Temporal and Spatial Patterns of Ship Traffic in the Canadian Arctic from 1990 to 2015. Arctic, 71 (7), 15-26, doi:10.14430/arctic4698.
  889. Lasserre, F. and S. Pelletier, 2011: Polar super seaways? Maritime transport in the Arctic: an analysis of shipowners’ intentions. Journal of Transport Geography, 19 (6), 1465-1473, doi:10.1016/j.jtrangeo.2011.08.006.
  890. Têtu, P.-L., J.-F. Pelletier and F. Lasserre, 2015: The mining industry in Canada north of the 55th parallel: a maritime traffic generator? Polar Geography, 38 (2), 107-122, doi:10.1080/1088937x.2015.1028576.
  891. Johnston, M., J. Dawson, E. De Souza and E. J. Stewart, 2017: Management challenges for the fastest growing marine shipping sector in Arctic Canada: pleasure crafts. Polar Record, 53 (1), 67-78, doi:10.1017/s0032247416000565.
  892. Halliday, W. D. et al., 2017: Potential impacts of shipping noise on marine mammals in the western Canadian Arctic. Marine Pollution Bulletin, 123 (1), 73-82, doi:10.1016/j.marpolbul.2017.09.027.
  893. Marelle, L. et al., 2016: Air quality and radiative impacts of Arctic shipping emissions in the summertime in northern Norway: from the local to the regional scale. Atmospheric Chemistry and Physics, 16 (4), 2359-2379, doi:10.5194/acp-16-2359-2016.
  894. Huntington, H. P. et al., 2015: Vessels, risks, and rules: Planning for safe shipping in Bering Strait. Marine Policy, 51, 119-127, doi:10.1016/j.marpol.2014.07.027.
  895. Olsen, J., N. A. Carter, J. Dawson and W. Coetzee, 2019: Community perspectives on the environmental impacts of Arctic shipping: Case studies from Russia, Norway and Canada. Cogent Social Sciences, 5 (1), 1609189, doi:10.1080/23311886.2019.1609189.
  896. Stephenson, S. R., L. C. Smith and J. A. Agnew, 2011: Divergent long-term trajectories of human access to the Arctic. Nature Climate Change, 1, 156, doi:10.1038/nclimate1120.
  897. Stephenson, S. R., L. C. Smith, L. W. Brigham and J. A. Agnew, 2013: Projected 21st-century changes to Arctic marine access. Climatic Change, 118 (3), 885-899, doi:10.1007/s10584-012-0685-0.
  898. Barnes, E. A. and L. M. Polvani, 2015: CMIP5 Projections of Arctic Amplification, of the North American/North Atlantic Circulation, and of Their Relationship. Journal of Climate, 28 (13), 5254-5271, doi:10.1175/jcli-d-14-00589.1.
  899. Melia, N., K. Haines and E. Hawkins, 2016: Sea ice decline and 21st century trans‐Arctic shipping routes. Geophysical Research Letters, 43 (18), 9720-9728, doi:10.1002/2016gl069315.
  900. Zhang, Y., Q. Meng and S. H. Ng, 2016: Shipping efficiency comparison between Northern Sea Route and the conventional Asia-Europe shipping route via Suez Canal. Journal of Transport Geography, 57, 241-249, doi:10.1016/j.jtrangeo.2016.09.008.
  901. Milaković, A.-S. et al., 2018: Current status and future operational models for transit shipping along the Northern Sea Route. Marine Policy, 94, 53-60, doi:10.1016/j.marpol.2018.04.027.
  902. Aksenov, Y. et al., 2017: On the future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and sea ice. Marine Policy, 75, 300-317, doi:10.1016/j.marpol.2015.12.027.
  903. Stephenson, S. R., L. C. Smith, L. W. Brigham and J. A. Agnew, 2013: Projected 21st-century changes to Arctic marine access. Climatic Change, 118 (3), 885-899, doi:10.1007/s10584-012-0685-0.
  904. Johnston, M., J. Dawson, E. De Souza and E. J. Stewart, 2017: Management challenges for the fastest growing marine shipping sector in Arctic Canada: pleasure crafts. Polar Record, 53 (1), 67-78, doi:10.1017/s0032247416000565.
  905. Andrews, J., D. Babb and D. G. Barber, 2018: Climate change and sea ice: Shipping in Hudson Bay, Hudson Strait, and Foxe Basin (1980-2016). Elementa-Science of the Anthropocene, 6 (1), p.19, doi:http://doi.org/10.1525/elementa.281.
  906. Arctic Council, 2015a: Arctic Marine Tourism Project (AMTP): best practices guidelines. Protection of the Arctic Marine Environment (PAME), Iceland, 17 pp [Available at: https://oaarchive.arctic-council.org/bitstream/handle/11374/414/AMTP%20Best%20Practice%20Guidelines.pdf?sequence=1&isAllowed=y; Access Date: 10 October 2018].
  907. Halliday, W. D. et al., 2017: Potential impacts of shipping noise on marine mammals in the western Canadian Arctic. Marine Pollution Bulletin, 123 (1), 73-82, doi:10.1016/j.marpolbul.2017.09.027.
  908. Hauser, D. D. W., K. L. Laidre and H. L. Stern, 2018: Vulnerability of Arctic marine mammals to vessel traffic in the increasingly ice-free Northwest Passage and Northern Sea Route. Proceedings of the National Academy of Sciences, 115 (29), 7617, doi:10.1073/pnas.1803543115.
  909. Arctic Council, 2017: Expert Group on Black Carbon and Methane: Summary of progress and recommendations. Expert Group on Black Carbon and Methane (EGBCM), 49pp [Available at: https://oaarchive.arctic-council.org/handle/11374/1936; Access Date: 28 March 2019].
  910. Sand, M., T. K. Berntsen, Ø. Seland and J. E. Kristjánsson, 2013: Arctic surface temperature change to emissions of black carbon within Arctic or midlatitudes. Journal of Geophysical Research: Atmospheres, 118 (14), 7788-7798, doi:10.1002/jgrd.50613.
  911. Turner, D. R., I.-M. Hassellöv, E. Ytreberg and A. Rutgersson, 2017a: Shipping and the environment: Smokestack emissions, scrubbers and unregulated oceanic consequences. Elem Sci Anth, 5, 45, doi:http://doi.org/10.1525/elementa.167.
  912. Chown, S. L., 2017: Antarctic environmental challenges in a global context. In: The Handbook on the Politics of Antarctica [Dodds, K. and A. Hemmings (eds.)]. Edward Elgar Publishing, Cheltenham, 523-539.
  913. Martín‐Español, A. et al., 2016: Spatial and temporal Antarctic Ice Sheet mass trends, glacio‐isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. Journal of Geophysical Research: Earth Surface, 121 (2), 182-200, doi:10.1002/2015JF003550.
  914. Zwally, H. J. et al., 2017: Mass gains of the Antarctic ice sheet exceed losses. Journal of Glaciology, 61 (230), 1019-1036, doi:10.3189/2015JoG15J071.
  915. Bamber, J. L., R. M. Westaway, B. Marzeion and B. Wouters, 2018: The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13 (6), 063008, doi:10.1088/1748-9326/aac2f0/meta.
  916. Gardner, A. S. et al., 2018: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. The Cryosphere, 12 (2), 521-547, doi:10.5194/tc-12-521-2018.
  917. Rignot, E. et al., 2019: Four decades of Antarctic Ice Sheet mass balance from 1979-2017. Proc Natl Acad Sci U S A, 116 (4), 1095-1103, doi:10.1073/pnas.1812883116.
  918. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp [Available at: http://www.climatechange2013.org/report/full-report/%5D.
  919. Mémin, A. et al., 2015: Interannual variation of the Antarctic Ice Sheet from a combined analysis of satellite gravimetry and altimetry data. Earth and Planetary Science Letters, 422, 150-156, doi:10.1016/j.epsl.2015.03.045.
  920. Bamber, J. L., R. M. Westaway, B. Marzeion and B. Wouters, 2018: The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13 (6), 063008, doi:10.1088/1748-9326/aac2f0/meta.
  921. Bamber, J. L., R. M. Westaway, B. Marzeion and B. Wouters, 2018: The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13 (6), 063008, doi:10.1088/1748-9326/aac2f0/meta.
  922. Bamber, J. L., R. M. Westaway, B. Marzeion and B. Wouters, 2018: The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13 (6), 063008, doi:10.1088/1748-9326/aac2f0/meta.
  923. Bamber, J. L., R. M. Westaway, B. Marzeion and B. Wouters, 2018: The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13 (6), 063008, doi:10.1088/1748-9326/aac2f0/meta.
  924. Bamber, J. L., R. M. Westaway, B. Marzeion and B. Wouters, 2018: The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13 (6), 063008, doi:10.1088/1748-9326/aac2f0/meta.
  925. Bamber, J. L., R. M. Westaway, B. Marzeion and B. Wouters, 2018: The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13 (6), 063008, doi:10.1088/1748-9326/aac2f0/meta.
  926. Bamber, J. L., R. M. Westaway, B. Marzeion and B. Wouters, 2018: The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13 (6), 063008, doi:10.1088/1748-9326/aac2f0/meta.
  927. King, M. D. et al., 2018: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. The Cryosphere, 12 (12), 3813-3825, doi:10.5194/tc-12-3813-2018.
  928. Mouginot, J., E. Rignot and B. Scheuchl, 2014: Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophysical Research Letters, 41 (5), 1576-1584, doi:10.1002/2013gl059069.
  929. Martín‐Español, A. et al., 2016: Spatial and temporal Antarctic Ice Sheet mass trends, glacio‐isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. Journal of Geophysical Research: Earth Surface, 121 (2), 182-200, doi:10.1002/2015JF003550.
  930. Gardner, A. S. et al., 2018: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. The Cryosphere, 12 (2), 521-547, doi:10.5194/tc-12-521-2018.
  931. Helm, V., A. Humbert and H. Miller, 2014: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere, 8 (4), 1539-1559, doi:10.5194/tc-8-1539-2014.
  932. McMillan, M. et al., 2014b: Increased ice losses from Antarctica detected by CryoSat-2. Geophysical Research Letters, 41 (11), 3899-3905, doi:10.1002/2014gl060111.
  933. Wouters, B. et al., 2015: Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science, 348 (6237), 899-903, doi:10.1126/science.aaa5727.
  934. Hogg, A. E. et al., 2017: Increased ice flow in Western Palmer Land linked to ocean melting. Geophysical Research Letters, 44 (9), 4159-4167, doi:10.1002/2016GL072110.
  935. Seehaus, T. et al., 2015: Changes in ice dynamics, elevation and mass discharge of Dinsmoor–Bombardier–Edgeworth glacier system, Antarctic Peninsula. Earth and Planetary Science Letters, 427, 125-135, doi:10.1016/j.epsl.2015.06.047.
  936. Wuite, J. et al., 2015: Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013. The Cryosphere, 9 (3), 957-969, doi:10.5194/tc-9-957-2015.
  937. Rott, H. et al., 2018: Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016. The Cryosphere, 12 (4), 1273-1291, doi:10.5194/tc-12-1273-2018.
  938. Cook, A. J., D. G. Vaughan, A. J. Luckman and T. Murray, 2014: A new Antarctic Peninsula glacier basin inventory and observed area changes since the 1940s. Antarctic Science, 26 (6), 614-624, doi:10.1017/S0954102014000200.
  939. Fieber, K. D. et al., 2018: Rigorous 3D change determination in Antarctic Peninsula glaciers from stereo WorldView-2 and archival aerial imagery. Remote Sensing of Environment, 205, 18-31, doi:10.1016/j.rse.2017.10.042.
  940. Velicogna, I., T. C. Sutterley and M. R. Van Den Broeke, 2014: Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters, 41 (22), 8130-8137, doi:10.1002/2014GL061052.
  941. Martin-Español, A., J. L. Bamber and A. Zammit-Mangion, 2017: Constraining the mass balance of East Antarctica. Geophysical Research Letters, 44 (9), 4168-4175, doi:10.1002/2017GL072937.
  942. Bamber, J. L., R. M. Westaway, B. Marzeion and B. Wouters, 2018: The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13 (6), 063008, doi:10.1088/1748-9326/aac2f0/meta.
  943. Zwally, H. J. et al., 2017: Mass gains of the Antarctic ice sheet exceed losses. Journal of Glaciology, 61 (230), 1019-1036, doi:10.3189/2015JoG15J071.
  944. Rignot, E. et al., 2019: Four decades of Antarctic Ice Sheet mass balance from 1979-2017. Proc Natl Acad Sci U S A, 116 (4), 1095-1103, doi:10.1073/pnas.1812883116.
  945. Velicogna, I., T. C. Sutterley and M. R. Van Den Broeke, 2014: Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters, 41 (22), 8130-8137, doi:10.1002/2014GL061052.
  946. Zwally, H. J. et al., 2017: Mass gains of the Antarctic ice sheet exceed losses. Journal of Glaciology, 61 (230), 1019-1036, doi:10.3189/2015JoG15J071.
  947. Rignot, E. et al., 2019: Four decades of Antarctic Ice Sheet mass balance from 1979-2017. Proc Natl Acad Sci U S A, 116 (4), 1095-1103, doi:10.1073/pnas.1812883116.
  948. Aitken, A. R. A. et al., 2016: Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature, 533, 385, doi:10.1038/nature17447.
  949. Martín‐Español, A. et al., 2016: Spatial and temporal Antarctic Ice Sheet mass trends, glacio‐isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. Journal of Geophysical Research: Earth Surface, 121 (2), 182-200, doi:10.1002/2015JF003550.
  950. Sutterley, T. C. et al., 2014: Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques. Geophysical Research Letters, 41 (23), 8421-8428, doi:10.1002/2014GL061940.
  951. Mouginot, J., E. Rignot and B. Scheuchl, 2014: Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophysical Research Letters, 41 (5), 1576-1584, doi:10.1002/2013gl059069.
  952. Mouginot, J., E. Rignot and B. Scheuchl, 2014: Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophysical Research Letters, 41 (5), 1576-1584, doi:10.1002/2013gl059069.
  953. Konrad, H. et al., 2017: Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica. Geophysical Research Letters, 44 (2), 910-918, doi:10.1002/2016GL070733.
  954. Smith, J. A. et al., 2017c: Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier. Nature, 541, 77, doi:10.1038/nature20136.
  955. Gardner, A. S. et al., 2018: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. The Cryosphere, 12 (2), 521-547, doi:10.5194/tc-12-521-2018.
  956. Chuter, S. J., A. Martín-Español, B. Wouters and J. L. Bamber, 2017: Mass balance reassessment of glaciers draining into the Abbot and Getz Ice Shelves of West Antarctica. Geophysical Research Letters, 44 (14), 7328-7337, doi:10.1002/2017GL073087.
  957. Depoorter, M. A. et al., 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 89, doi:10.1038/nature12567.
  958. Rignot, E. et al., 2014: Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters, 41 (10), 3502-3509, doi:10.1002/2014gl060140.
  959. Fürst, J. J. et al., 2016: The safety band of Antarctic ice shelves. Nature Climate Change, 6, 479, doi:10.1038/nclimate2912.
  960. Reese, R., G. H. Gudmundsson, A. Levermann and R. Winkelmann, 2018: The far reach of ice-shelf thinning in Antarctica. Nature Climate Change, 8 (1), 53-57, doi:10.1038/s41558-017-0020-x.
  961. Paolo, F. S., H. A. Fricker and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348 (6232), 327-331, doi:10.1126/science.aaa0940.
  962. Wouters, B. et al., 2015: Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science, 348 (6237), 899-903, doi:10.1126/science.aaa5727.
  963. Hogg, A. E. et al., 2017: Increased ice flow in Western Palmer Land linked to ocean melting. Geophysical Research Letters, 44 (9), 4159-4167, doi:10.1002/2016GL072110.
  964. Martin-Español, A., J. L. Bamber and A. Zammit-Mangion, 2017: Constraining the mass balance of East Antarctica. Geophysical Research Letters, 44 (9), 4168-4175, doi:10.1002/2017GL072937.
  965. Rignot, E. et al., 2014: Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters, 41 (10), 3502-3509, doi:10.1002/2014gl060140.
  966. Konrad, H. et al., 2018: Net retreat of Antarctic glacier grounding line. Nature Geosciences, 11, 258-262, doi:10.1038/s41561-018-0082-z.
  967. Roberts, J. et al., 2018: Ocean forced variability of Totten Glacier mass loss. Geological Society, London, Special Publications, 461 (1), 175-186, doi:10.1144/sp461.6.
  968. Rignot, E. et al., 2019: Four decades of Antarctic Ice Sheet mass balance from 1979-2017. Proc Natl Acad Sci U S A, 116 (4), 1095-1103, doi:10.1073/pnas.1812883116.
  969. Seehaus, T. et al., 2015: Changes in ice dynamics, elevation and mass discharge of Dinsmoor–Bombardier–Edgeworth glacier system, Antarctic Peninsula. Earth and Planetary Science Letters, 427, 125-135, doi:10.1016/j.epsl.2015.06.047.
  970. Wuite, J. et al., 2015: Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013. The Cryosphere, 9 (3), 957-969, doi:10.5194/tc-9-957-2015.
  971. Friedl, P. et al., 2018: Recent dynamic changes on Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula. The Cryosphere, 12 (4), 1347-1365, doi:10.5194/tc-12-1347-2018.
  972. Rott, H. et al., 2018: Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016. The Cryosphere, 12 (4), 1273-1291, doi:10.5194/tc-12-1273-2018.
  973. Dutrieux, P. et al., 2014: Strong Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability. Science, 343 (6167), 174-178, doi:10.1126/science.1244341.
  974. Paolo, F. S., H. A. Fricker and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348 (6232), 327-331, doi:10.1126/science.aaa0940.
  975. Christianson, K. et al., 2016: Sensitivity of Pine Island Glacier to observed ocean forcing. Geophysical Research Letters, 43 (20), 10817-10825, doi:10.1002/2016gl070500.
  976. Jenkins, A. et al., 2018: West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nature Geoscience, 11 (10), 733-738, doi:10.1038/s41561-018-0207-4.
  977. Favier, L. et al., 2014: Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nature Climate Change, 4 (2), 117-121, doi:10.1038/Nclimate2094.
  978. Joughin, I., B. E. Smith and B. Medley, 2014: Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica. Science, 344 (6185), 735-738, doi:10.1126/science.1249055.
  979. Mouginot, J., E. Rignot and B. Scheuchl, 2014: Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophysical Research Letters, 41 (5), 1576-1584, doi:10.1002/2013gl059069.
  980. Rignot, E. et al., 2014: Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters, 41 (10), 3502-3509, doi:10.1002/2014gl060140.
  981. Christianson, K. et al., 2016: Sensitivity of Pine Island Glacier to observed ocean forcing. Geophysical Research Letters, 43 (20), 10817-10825, doi:10.1002/2016gl070500.
  982. Thomas, C. D. and P. K. Gillingham, 2015: The performance of protected areas for biodiversity under climate change. Biological Journal of the Linnean Society, 115 (3), 718-730, doi:10.1111/bij.12510.
  983. Goodwin, B. P. et al., 2016: Accumulation variability in the Antarctic Peninsula: The role of large-scale atmospheric oscillations and their interactions. Journal of Climate, 29 (7), 2579-2596, doi:10.1175/JCLI-D-15-0354.1.
  984. Medley, B. and E. R. Thomas, 2018: Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nature Climate Change, 9 (1), 34-39, doi:10.1038/s41558-018-0356-x.
  985. Medley, B. and E. R. Thomas, 2018: Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nature Climate Change, 9 (1), 34-39, doi:10.1038/s41558-018-0356-x.
  986. Thomas, E. R. et al., 2017b: Review of regional Antarctic snow accumulation over the past 1000 years. Climate of the Past Discussions, 1-42, doi:10.5194/cp-2017-18.
  987. Thomas, E. R. et al., 2017a: Regional Antarctic snow accumulation over the past 1000 years. Climate of the Past, 13 (11), 1491-1513, doi:10.5194/cp-13-1491-2017.
  988. Frezzotti, M. et al., 2013: A synthesis of the Antarctic surface mass balance during the last 800 yr. Cryosphere, 7 (1), 303-319, doi:10.5194/tc-7-303-2013.
  989. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp [Available at: http://www.climatechange2013.org/report/full-report/%5D.
  990. Siegert, M. J., 2017: A 60-year international hystory of Antarctic subglacial lake exploration. In: Exploration of subsurface Antarctica: Uncovering past changes and modern processes [Siegert, M. J., S. S. R. Jamieson and D. A. White (eds.)]. Geological Society, London, 461, 7-21.
  991. Pattyn, F., 2010: Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth Planet. Sci. Lett., 295, 451-461, doi:10.1016/j.epsl.2010.04.025.
  992. Bell, R. E., 2008: The role of subglacial water in ice-sheet mass balance. Nature Geoscience, 1, 297, doi:10.1038/ngeo186.
  993. Popov, S. V. and V. N. Masolov, 2007: Forty-seven new subglacial lakes in the 0-110*E sector of East Antarctica. J. Glaciol., 53 (181), 289-297, doi:10.3189/172756507782202856.
  994. Lipenkov, V., A. A. Ekaykin, E. V. Polyakova and D. Raynaud, 2016: Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice. Phil. Trans. R. Soc. A, 374 (2059), 20140303, doi:10.1098/rsta.2014.0303.
  995. Siegert, M. J., 2017: A 60-year international hystory of Antarctic subglacial lake exploration. In: Exploration of subsurface Antarctica: Uncovering past changes and modern processes [Siegert, M. J., S. S. R. Jamieson and D. A. White (eds.)]. Geological Society, London, 461, 7-21.
  996. Fricker, H. A., T. Scambos, R. Bindschadler and L. Padman, 2007: An active subglacial water system in West Antarctica mapped from space. Science, 315 (5818), 1544-1548, doi:10.1126/science.1136897
  997. Siegert, M. J., A. M. Le Brocq and A. J. Payne, 2007: Hydrological connections between Antarctic subglacial lakes, the flow of water beneath the East Antarctic ice sheet and implications for sedimentary processes. In: Glacial sedimentary processes and products [Hambrey, M. J., P. Christoffersen, N. F. Glasser and B. Hubbard (eds.)]. International Association of Sedimentologists, 3-22.
  998. Carter, S. P. and H. A. Fricker, 2012: The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica. Ann. Glaciol., 53, 267-280, doi:10.3189/2012AoG60A119.
  999. Horgan, H. J. et al., 2013: Estuaries beneath ice sheets. Geology, 41 (11), 1159-1162, doi:10.1130/G34654.1.
  1000. Flament, T., E. Berthier and F. Rémy, 2014: Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models. The Cryosphere, 8 (2), 673-687, doi:10.5194/tc-8-673-2014.
  1001. Siegel, V., Eds., 2016: Biology and Ecology of Antarctic Krill. Springer, 1-458 pp.
  1002. Fricker, H. A., M. R. Siegfried, S. P. Carter and T. A. Scambos, 2016: A decade of progress in observing and modelling Antarctic subglacial water systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2059), 20140294, doi:10.1098/rsta.2014.0294.
  1003. Shepherd, A. et al., 2012: A reconciled estimate of ice-sheet mass balance. Science, 338 (6111), 1183-9, doi:10.1126/science.1228102.
  1004. Schrama, E. J. O., B. Wouters and R. Rietbroek, 2014: A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. Journal of Geophysical Research: Solid Earth, 119 (7), 6048-6066, doi:10.1002/2013jb010923.
  1005. Velicogna, I., T. C. Sutterley and M. R. Van Den Broeke, 2014: Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters, 41 (22), 8130-8137, doi:10.1002/2014GL061052.
  1006. van den Broeke, M. R. et al., 2016: On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10 (5), 1933-1946, doi:10.5194/tc-10-1933-2016.
  1007. Bamber, J. L., R. M. Westaway, B. Marzeion and B. Wouters, 2018: The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13 (6), 063008, doi:10.1088/1748-9326/aac2f0/meta.
  1008. King, M. D. et al., 2018: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. The Cryosphere, 12 (12), 3813-3825, doi:10.5194/tc-12-3813-2018.
  1009. Sandberg Sørensen, L. et al., 2018: 25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry. Earth and Planetary Science Letters, 495, 234-241, doi:10.1016/j.epsl.2018.05.015.
  1010. WCRP, 2018: Global sea-level budget 1993–present. Earth System Science Data, 10 (3), 1551-1590, doi:10.5194/essd-10-1551-2018.
  1011. Bamber, J. L., R. M. Westaway, B. Marzeion and B. Wouters, 2018: The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13 (6), 063008, doi:10.1088/1748-9326/aac2f0/meta.
  1012. WCRP, 2018: Global sea-level budget 1993–present. Earth System Science Data, 10 (3), 1551-1590, doi:10.5194/essd-10-1551-2018.
  1013. Kjeldsen, K. K. et al., 2015: Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature, 528, 396, doi:10.1038/nature16183.
  1014. Andersen, M. L. et al., 2015: Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth and Planetary Science Letters, 409, 89-95, doi:10.1016/j.epsl.2014.10.015.
  1015. Fettweis, X. et al., 2017: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, 11 (2), 1015-1033, doi:10.5194/tc-11-1015-2017.
  1016. van den Broeke, M. et al., 2017: Greenland Ice Sheet Surface Mass Loss: Recent Developments in Observation and Modeling. Current Climate Change Reports, 3 (4), 345-356, doi:10.1007/s40641-017-0084-8.
  1017. King, M. D. et al., 2018: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. The Cryosphere, 12 (12), 3813-3825, doi:10.5194/tc-12-3813-2018.
  1018. Enderlin, E. M. et al., 2014: An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41 (3), doi:10.1002/2013GL059010.
  1019. Hanna, E. et al., 2013: Ice-sheet mass balance and climate change. Nature, 498 (7452), 51-59, doi:10.1038/nature12238.
  1020. Khan, S. A. et al., 2015: Greenland ice sheet mass balance: a review. Reports on Progress in Physics, 046801, 1-26, doi:10.1088/0034-4885/78/4/046801.
  1021. Colgan, W. et al., 2015: Greenland high-elevation mass balance: inference and implication of reference period (1961–90) imbalance. Annals of Glaciology, 56 (70), 105-117, doi:10.3189/2015AoG70A967.
  1022. Mernild, S. H. et al., 2015: Greenland precipitation trends in a long-term instrumental climate context (1890-2012): Evaluation of coastal and ice core records. International Journal of Climatology, 35 (2), 303-320, doi:10.1002/joc.3986.
  1023. Orsi, A. J. et al., 2017: The recent warming trend in North Greenland. Geophysical Research Letters, 44 (12), 6235-6243, doi:10.1002/2016gl072212.
  1024. McGrath, D. et al., 2013: Recent warming at Summit, Greenland: Global context and implications. Geophysical Research Letters, 40 (10), 2091-2096, doi:10.1002/grl.50456.
  1025. Hall, D. K. et al., 2013: Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS. Geophysical Research Letters, 40 (10), 2114-2120, doi:10.1002/grl.50240.
  1026. Vinther, B. M. et al., 2009: Holocene thinning of the Greenland ice sheet. Nature, 461 (7262), 385-8, doi:10.1038/nature08355.
  1027. Masson-Delmotte, V. et al., 2012: Greenland climate change: from the past to the future. Wiley Interdisciplinary Reviews: Climate Change, 3 (5), 427-449, doi:10.1002/wcc.186.
  1028. Lecavalier, B. S. et al., 2017: High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution. Proc Natl Acad Sci U S A, 114 (23), 5952-5957, doi:10.1073/pnas.1616287114.
  1029. Mernild, S. H., T. L. Mote and G. E. Liston, 2017: Greenland ice sheet surface melt extent and trends: 1960–2010. Journal of Glaciology, 57 (204), 621-628, doi:10.3189/002214311797409712.
  1030. Trusel, L. D. et al., 2018: Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature, 564 (7734), 104-108, doi:10.1038/s41586-018-0752-4.
  1031. Graeter, K. A. et al., 2018: Ice Core Records of West Greenland Melt and Climate Forcing. Geophysical Research Letters, 45 (7), 3164-3172, doi:10.1002/2017gl076641.
  1032. Trusel, L. D. et al., 2018: Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature, 564 (7734), 104-108, doi:10.1038/s41586-018-0752-4.
  1033. Hanna, E. et al., 2014: Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. International Journal of Climatology, 34 (4), 1022-1037, doi:10.1002/joc.3743.
  1034. Fettweis, X. et al., 2013: Brief communication Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere, 7 (1), 241-248, doi:10.5194/tc-7-241-2013.
  1035. Tedstone, A. J. et al., 2015: Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming. Nature, 526, 692, doi:10.1038/nature15722.
  1036. van den Broeke, M. R. et al., 2016: On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10 (5), 1933-1946, doi:10.5194/tc-10-1933-2016.
  1037. Fettweis, X. et al., 2017: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, 11 (2), 1015-1033, doi:10.5194/tc-11-1015-2017.
  1038. Trusel, L. D. et al., 2018: Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature, 564 (7734), 104-108, doi:10.1038/s41586-018-0752-4.
  1039. Ahlstrom, A. P. et al., 2017: Abrupt shift in the observed runoff from the southwestern Greenland ice sheet. Sci Adv, 3 (12), e1701169, doi:10.1126/sciadv.1701169.
  1040. Steger, C. R. et al., 2017: Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison. Frontiers in Earth Science, 5, doi:10.3389/feart.2017.00003.
  1041. Humphrey, N. F., J. T. Harper and W. T. Pfeffer, 2012: Thermal tracking of meltwater retention in Greenland’s accumulation area. Journal of Geophysical Research: Earth Surface, 117 (1), 1-11, doi:10.1029/2011JF002083.
  1042. Forster, R. R. et al., 2013: Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nature Geoscience, 7 (2), 95-98, doi:10.1038/ngeo2043.
  1043. Munneke, P. K. et al., 2014: Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet. Geophysical Research Letters, 41 (2), 476-483, doi:10.1002/2013gl058389.
  1044. Poinar, K. et al., 2017: Drainage of Southeast Greenland Firn Aquifer Water through Crevasses to the Bed. Frontiers in Earth Science, 5, 1-15, doi:10.3389/feart.2017.00005.
  1045. Miège, C. et al., 2016: Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars. Journal of Geophysical Research: Earth Surface, 121 (12), 2381-2398, doi:10.1002/2016JF003869.
  1046. Steger, C. R. et al., 2017: Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison. Frontiers in Earth Science, 5, doi:10.3389/feart.2017.00003.
  1047. Noël, B. et al., 2017: A tipping point in refreezing accelerates mass loss of Greenland’s glaciers and ice caps. Nature Communications, 8, 14730, doi:10.1038/ncomms14730.
  1048. Koenig, L. S., C. Miège, R. R. Forster and L. Brucker, 2014: Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer. Geophysical Research Letters, 41 (1), 81-85, doi:10.1002/2013GL058083.
  1049. van den Broeke, M. R. et al., 2016: On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10 (5), 1933-1946, doi:10.5194/tc-10-1933-2016.
  1050. Steger, C. R. et al., 2017: Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison. Frontiers in Earth Science, 5, doi:10.3389/feart.2017.00003.
  1051. Polashenski, C. et al., 2014: Observations of pronounced Greenland ice sheet firn warming and implications for runoff production. Geophysical Research Letters, 41 (12), 4238-4246, doi:10.1002/2014GL059806.
  1052. Poinar, K. et al., 2017: Drainage of Southeast Greenland Firn Aquifer Water through Crevasses to the Bed. Frontiers in Earth Science, 5, 1-15, doi:10.3389/feart.2017.00005.
  1053. Charalampidis, C. et al., 2016: Thermal tracing of retained meltwater in the lower accumulation area of the Southwestern Greenland ice sheet. Annals of Glaciology, 57 (72), 1-10, doi:10.1017/aog.2016.2.
  1054. Ryan, J. C. et al., 2019: Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Sci Adv, 5 (3), eaav3738, doi:10.1126/sciadv.aav3738.
  1055. Steger, C. R. et al., 2017: Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison. Frontiers in Earth Science, 5, doi:10.3389/feart.2017.00003.
  1056. Ryan, J. C. et al., 2019: Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Sci Adv, 5 (3), eaav3738, doi:10.1126/sciadv.aav3738.
  1057. Enderlin, E. M. et al., 2014: An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41 (3), doi:10.1002/2013GL059010.
  1058. van den Broeke, M. R. et al., 2016: On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10 (5), 1933-1946, doi:10.5194/tc-10-1933-2016.
  1059. King, M. D. et al., 2018: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. The Cryosphere, 12 (12), 3813-3825, doi:10.5194/tc-12-3813-2018.
  1060. King, M. D. et al., 2018: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. The Cryosphere, 12 (12), 3813-3825, doi:10.5194/tc-12-3813-2018.
  1061. Enderlin, E. M. et al., 2014: An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41 (3), doi:10.1002/2013GL059010.
  1062. Enderlin, E. M. et al., 2014: An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41 (3), doi:10.1002/2013GL059010.
  1063. Tedstone, A. J. et al., 2015: Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming. Nature, 526, 692, doi:10.1038/nature15722.
  1064. Stevens, L. A. et al., 2016: Greenland Ice Sheet flow response to runoff variability. Geophysical Research Letters, 43 (21), 11,295-11,303, doi:10.1002/2016GL070414.
  1065. Nienow, P. W., A. J. Sole, D. A. Slater and T. R. Cowton, 2017: Recent Advances in Our Understanding of the Role of Meltwater in the Greenland Ice Sheet System. Current Climate Change Reports, 3 (4), 330-344, doi:10.1007/s40641-017-0083-9.
  1066. Khazendar, A. et al., 2013: Observed thinning of Totten Glacier is linked to coastal polynya variability. Nature Communications, 4, 2857, doi:10.1038/ncomms3857.
  1067. Pollard, D., R. M. DeConto and R. B. Alley, 2015: Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth and Planetary Science Letters, 412, 112-121, doi:10.1016/j.epsl.2014.12.035.
  1068. Cook, A. J. et al., 2016: Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353 (6296), 283, doi:10.1126/science.aae0017.
  1069. Rintoul, S. R. et al., 2016: Ocean heat drives rapid basal melt of the Totten Ice Shelf. Science Advances, 2 (12), doi:10.1126/sciadv.1601610.
  1070. Walker, C. C. and A. S. Gardner, 2017: Rapid drawdown of Antarctica’s Wordie Ice Shelf glaciers in response to ENSO/Southern Annular Mode-driven warming in the Southern Ocean. Earth and Planetary Science Letters, 476, 100-110, doi:10.1016/j.epsl.2017.08.005.
  1071. Adusumilli, S. et al., 2018: Variable Basal Melt Rates of Antarctic Peninsula Ice Shelves, 1994–2016. Geophysical Research Letters, 45 (9), 4086-4095, doi:10.1002/2017GL076652.
  1072. Dow, C. F. et al., 2018a: Basal channels drive active surface hydrology and transverse ice shelf fracture. Sci Adv, 4 (6), eaao7212, doi:10.1126/sciadv.aao7212.
  1073. Minchew, B. M. et al., 2018: Modeling the dynamic response of outlet glaciers to observed ice-shelf thinning in the Bellingshausen Sea Sector, West Antarctica. Journal of Glaciology, 64 (244), 333-342, doi:10.1017/jog.2018.24.
  1074. Roberts, J. et al., 2018: Ocean forced variability of Totten Glacier mass loss. Geological Society, London, Special Publications, 461 (1), 175-186, doi:10.1144/sp461.6.
  1075. Jacobs, S. S., A. Jenkins, C. F. Giulivi and P. Dutrieux, 2011: Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geoscience, 4 (8), 519, doi:10.1038/ngeo1188.
  1076. Pritchard, H. D. et al., 2012: Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484 (7395), 502, doi:10.1038/nature10968.
  1077. Depoorter, M. A. et al., 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 89, doi:10.1038/nature12567.
  1078. Rignot, E., S. Jacobs, J. Mouginot and B. Scheuchl, 2013: Ice-shelf melting around Antarctica. Science, 341 (6143), 266-70, doi:10.1126/science.1235798.
  1079. Dutrieux, P. et al., 2014: Strong Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability. Science, 343 (6167), 174-178, doi:10.1126/science.1244341.
  1080. Paolo, F. S., H. A. Fricker and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348 (6232), 327-331, doi:10.1126/science.aaa0940.
  1081. Wouters, B. et al., 2015: Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science, 348 (6237), 899-903, doi:10.1126/science.aaa5727.
  1082. Christianson, K. et al., 2016: Sensitivity of Pine Island Glacier to observed ocean forcing. Geophysical Research Letters, 43 (20), 10817-10825, doi:10.1002/2016gl070500.
  1083. Cook, A. J. et al., 2016: Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353 (6296), 283, doi:10.1126/science.aae0017.
  1084. Jenkins, A. et al., 2018: West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nature Geoscience, 11 (10), 733-738, doi:10.1038/s41561-018-0207-4.
  1085. Roberts, J. et al., 2018: Ocean forced variability of Totten Glacier mass loss. Geological Society, London, Special Publications, 461 (1), 175-186, doi:10.1144/sp461.6.
  1086. Walker, D. P. et al., 2013: Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica. Journal of Geophysical Research: Oceans, 118 (6), 2906-2918, doi:10.1002/jgrc.20212.
  1087. Dutrieux, P. et al., 2014: Strong Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability. Science, 343 (6167), 174-178, doi:10.1126/science.1244341.
  1088. Kimura, S. et al., 2017: Oceanographic Controls on the Variability of Ice‐Shelf Basal Melting and Circulation of Glacial Meltwater in the Amundsen Sea Embayment, Antarctica. Journal of Geophysical Research: Oceans, 122 (12), 10131-10155, doi:10.1002/2017JC012926.
  1089. Webber, B. G. M. et al., 2017: Mechanisms driving variability in the ocean forcing of Pine Island Glacier. Nature Communications, 8, 14507, doi:10.1038/ncomms14507.
  1090. Uotila, P., T. Vihma and M. Tsukernik, 2013: Close interactions between the Antarctic cyclone budget and large-scale atmospheric circulation. Geophysical Research Letters, 40 (12), 3237-3241, doi:10.1002/grl.50560.
  1091. Li, X., D. M. Holland, E. P. Gerber and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538, doi:10.1038/nature12945.
  1092. Turner, J. et al., 2016: Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535 (7612), 411-415, doi:10.1038/nature18645.
  1093. Smith, J. A. et al., 2017c: Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier. Nature, 541, 77, doi:10.1038/nature20136.
  1094. Jenkins, A. et al., 2018: West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nature Geoscience, 11 (10), 733-738, doi:10.1038/s41561-018-0207-4.
  1095. Paolo, F. S. et al., 2018: Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nature Geoscience, 11 (2), 121-126, doi:10.1038/s41561-017-0033-0.
  1096. Greene, C. A. et al., 2017: Wind causes Totten Ice Shelf melt and acceleration. Sci Adv, 3 (11), e1701681, doi:10.1126/sciadv.1701681.
  1097. Andresen, C. S. et al., 2012: Rapid response of Helheim Glacier in Greenland to climate variability over the past century. Nature Geoscience, 5 (1), 37-41, doi:10.1038/ngeo1349.
  1098. Cheng, L. et al., 2017: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3 (3), doi:10.1126/sciadv.1601545
  1099. Häkkinen, S., P. B. Rhines and D. L. Worthen, 2013: Northern North Atlantic sea surface height and ocean heat content variability. Journal of Geophysical Research: Oceans, 118 (7), 3670-3678, doi:10.1002/jgrc.20268.
  1100. Straneo, F. et al., 2017: Characteristics of ocean waters reaching Greenland’s glaciers. Annals of Glaciology, 53 (60), 202-210, doi:10.3189/2012AoG60A059.
  1101. Straneo, F. et al., 2013: Challenges to understanding the dynamic response of Greenland’s marine terminating glaciers to oc eanic and atmospheric forcing. Bulletin of the American Meteorological Society, 94 (8), 1131-1144, doi:10.1175/BAMS-D-12-00100.1.
  1102. Xu, Y. et al., 2013b: Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophysical Research Letters, 40 (17), 4648-4653, doi:10.1002/grl.50825.
  1103. Bendtsen, J., J. Mortensen, K. Lennert and S. Rysgaard, 2015: Heat sources for glacial ice melt in a west Greenland tidewater outlet glacier fjord: The role of subglacial freshwater discharge. Geophysical Research Letters, 42 (10), 4089-4095, doi:10.1002/2015GL063846.
  1104. Murray, T. et al., 2015: Extensive retreat of Greenland tidewater glaciers, 2000-2010. Arctic Antarctic and Alpine Research, 47 (3), 427-447, doi:10.1657/Aaar0014-049.
  1105. Cowton, T. et al., 2016: Controls on the transport of oceanic heat to Kangerdlugssuaq Glacier, East Greenland. Journal of Glaciology, 62 (236), 1167-1180, doi:10.1017/jog.2016.117.
  1106. Miles, V. V., M. W. Miles and O. M. Johannessen, 2016: Satellite archives reveal abrupt changes in behavior of Helheim Glacier, southeast Greenland. Journal of Glaciology, 62 (231), 137-146, doi:10.1017/jog.2016.24.
  1107. Rignot, E., M. Koppes and I. Velicogna, 2010: Rapid submarine melting of the calving faces of West Greenland glaciers. Nature Geoscience, 3 (3), 187-191, doi:10.1038/Ngeo765.
  1108. Todd, J. and P. Christoffersen, 2014: Are seasonal calving dynamics forced by buttressing from ice melange or undercutting by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland. Cryosphere, 8 (6), 2353-2365, doi:10.5194/tc-8-2353-2014.
  1109. Benn, D. I. et al., 2017: Melt-under-cutting and buoyancy-driven calving from tidewater glaciers: new insights from discrete element and continuum model simulations. Journal of Glaciology, 63 (240), 691-702, doi:10.1017/jog.2017.41.
  1110. Enderlin, E. M. et al., 2014: An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41 (3), doi:10.1002/2013GL059010.
  1111. Gladish, C. V., D. M. Holland and C. M. Lee, 2015: Oceanic Boundary Conditions for Jakobshavn Glacier. Part I: Variability and Renewal of Ilulissat Icefjord Waters, 2001–14*. Journal of Physical Oceanography, 45 (2003), 33-63, doi:10.1175/JPO-D-14-0045.1.
  1112. Slater, D. A. et al., 2015: Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophysical Research Letters, 42 (8), 2861-2868, doi:10.1002/2014GL062494.
  1113. Morlighem, M. et al., 2016: Modeling of Store Gletscher’s calving dynamics, West Greenland, in response to ocean thermal forcing. Geophysical Research Letters, 43 (6), 2659-2666, doi:10.1002/2016gl067695.
  1114. Rathmann, N. M. et al., 2017: Highly temporally resolved response to seasonal surface melt of the Zachariae and 79N outlet glaciers in northeast Greenland. Geophysical Research Letters, 44 (19), 9805-9814, doi:10.1002/2017gl074368.
  1115. Moon, T., I. Joughin, B. Smith and I. Howat, 2012: 21st-Century Evolution of Greenland Outlet Glacier Velocities. Science, 336 (6081), 576, doi:10.1126/science.1219985.
  1116. Carr, J. R., C. R. Stokes and A. Vieli, 2013: Recent progress in understanding marine-terminating Arctic outlet glacier response to climatic and oceanic forcing. Progress in Physical Geography, 37 (4), 436-467, doi:10.1177/0309133313483163.
  1117. Straneo, F., G. S. Hamilton, L. A. Stearns and D. A. Sutherland, 2016: Connecting the Greenland Ice Sheet and the ocean: A case study of Helheim Glacier and Semilik Fjord. Oceanography, 29 (4), 34-45, doi:10.5670/oceanog.2016.97.
  1118. Cowton, T. R. et al., 2018: Linear response of east Greenland’s tidewater glaciers to ocean/atmosphere warming. Proceedings of the National Academy of Sciences, 115 (31), 7907, doi:10.1073/pnas.1801769115.
  1119. Arblaster, J. M. et al., 2014: Stratospheric ozone changes and climate, Chapter 4 in Scientific Assessment of Ozone Depletion.[World Meteorological Organization, G. S. (ed.)], Geneva, iv + 57 pp; Global Ozone Research and Monitoring Project – Report No. 55.
  1120. Swart, N. C., J. C. Fyfe, N. Gillett and G. J. Marshall, 2015a: Comparing Trends in the Southern Annular Mode and Surface Westerly Jet. Journal of Climate, 28 (22), 8840-8859, doi:10.1175/JCLI-D-14-00716.s1.
  1121. Abram, N. J. et al., 2014: Evolution of the Southern Annular Mode during the past millennium. Nature Climate Change, 4 (7), 564-569, doi:10.1038/nclimate2235.
  1122. Dätwyler, C. et al., 2017: Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium. Climate Dynamics, 51 (5-6), 2321-2339, doi:10.1007/s00382-017-4015-0.
  1123. Marshall, G. J., D. W. J. Thompson and M. R. Van den Broeke, 2017: The signature of Southern Hemisphere atmospheric circulation patterns in Antarctic precipitation. Geophysical Research Letters, 44 (22), 11580-11589, doi:10.1002/2017GL075998.
  1124. Raphael, M. N. et al., 2016: The Amundsen Sea Low Variability, Change, and Impact on Antarctic Climate. Bulletin of the American Meteorological Society, 97 (1), 111-121, doi:10.1175/bams-d-14-00018.1.
  1125. Steig, E. J. et al., 2013: Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nature Geoscience, 6 (5), 372-375, doi:10.1038/ngeo1778.
  1126. Abram, N. J. et al., 2013a: Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nature Geoscience, 6 (5), 404-411, doi:10.1038/ngeo1787.
  1127. Mulvaney, R. et al., 2012a: Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature, 489 (7414), 141-4, doi:10.1038/nature11391.
  1128. Stenni, B. et al., 2017: Antarctic climate variability on regional and continental scales over the last 2000 years. Climate of the Past, 13 (11), 1609-1634, doi:10.5194/cp-13-1609-2017.
  1129. Cape, M. R. et al., 2015: Foehn winds link climate-driven warming to ice shelf evolution in Antarctica. Journal of Geophysical Research-Atmospheres, 120 (21), 11037-11057, doi:10.1002/2015jd023465.
  1130. Grosvenor, D. P., J. C. King, T. W. Choularton and T. Lachlan-Cope, 2014: Downslope föhn winds over the antarctic peninsula and their effect on the larsen ice shelves. Atmospheric Chemistry and Physics, 14 (18), 9481-9509, doi:10.5194/acp-14-9481-2014.
  1131. Luckman, A. et al., 2014: Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds. Antarctic Science, 26 (06), 625-635, doi:10.1017/S0954102014000339.
  1132. Elvidge, A. D. et al., 2015: Foehn jets over the Larsen C Ice Shelf, Antarctica. Quarterly Journal of the Royal Meteorological Society, 141 (688), 698-713, doi:10.1002/qj.2382.
  1133. Domack, E. et al., 2005: Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature, 436, 681, doi:10.1038/nature03908.
  1134. Fettweis, X. et al., 2013: Brief communication Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere, 7 (1), 241-248, doi:10.5194/tc-7-241-2013.
  1135. Tedesco, M. et al., 2013: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. The Cryosphere, 7 (2), 615-630, doi:10.5194/tc-7-615-2013.
  1136. Ding, Q. et al., 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509 (7499), 209-12, doi:10.1038/nature13260.
  1137. Tedesco, M. et al., 2016b: Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nat Commun, 7, 11723, doi:10.1038/ncomms11723.
  1138. Ding, Q. et al., 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nature Climate Change, 7, 289, doi:10.1038/nclimate3241
  1139. Hofer, S., A. J. Tedstone, X. Fettweis and J. L. Bamber, 2017: Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci Adv, 3 (6), e1700584, doi:10.1126/sciadv.1700584.
  1140. Hanna, E., T. E. Cropper, R. J. Hall and J. Cappelen, 2016: Greenland Blocking Index 1851–2015: a regional climate change signal. International Journal of Climatology, 36 (15), 4847-4861, doi:10.1002/joc.4673.
  1141. Fettweis, X. et al., 2013: Brief communication Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere, 7 (1), 241-248, doi:10.5194/tc-7-241-2013.
  1142. Tedesco, M. et al., 2013: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. The Cryosphere, 7 (2), 615-630, doi:10.5194/tc-7-615-2013.
  1143. Mioduszewski, J. R. et al., 2016: Atmospheric drivers of Greenland surface melt revealed by self‐organizing maps. Journal of Geophysical Research: Atmospheres, 121 (10), 5095-5114, doi:10.1002/2015JD024550.
  1144. Tedesco, M. et al., 2013: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. The Cryosphere, 7 (2), 615-630, doi:10.5194/tc-7-615-2013.
  1145. Box, J. E. et al., 2012: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. The Cryosphere, 6 (4), 821-839, doi:10.5194/tc-6-821-2012.
  1146. Charalampidis, C. et al., 2015: Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland. The Cryosphere, 9 (6), 2163-2181, doi:10.5194/tc-9-2163-2015.
  1147. Tedesco, M. et al., 2016a: The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100). The Cryosphere, 10 (2), 477-496, doi:10.5194/tc-10-477-2016.
  1148. Stibal, M. et al., 2017: Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet. Geophysical Research Letters, 44 (22), 11,463-11,471, doi:10.1002/2017GL075958.
  1149. Ryan, J. C. et al., 2018: Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities. Nature Communications, 9 (1), 1065, doi:10.1038/s41467-018-03353-2.
  1150. Hofer, S., A. J. Tedstone, X. Fettweis and J. L. Bamber, 2017: Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci Adv, 3 (6), e1700584, doi:10.1126/sciadv.1700584.
  1151. Nghiem, S. V. et al., 2012: The extreme melt across the Greenland ice sheet in 2012. Geophysical Research Letters, 39 (20), 6-11, doi:10.1029/2012GL053611.
  1152. Tedesco, M. et al., 2013: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. The Cryosphere, 7 (2), 615-630, doi:10.5194/tc-7-615-2013.
  1153. Hanna, E. et al., 2014: Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. International Journal of Climatology, 34 (4), 1022-1037, doi:10.1002/joc.3743.
  1154. Hanna, E., T. E. Cropper, R. J. Hall and J. Cappelen, 2016: Greenland Blocking Index 1851–2015: a regional climate change signal. International Journal of Climatology, 36 (15), 4847-4861, doi:10.1002/joc.4673.
  1155. McLeod, J. T. and T. L. Mote, 2016: Linking interannual variability in extreme Greenland blocking episodes to the recent increase in summer melting across the Greenland ice sheet. International Journal of Climatology, 36 (3), 1484-1499, doi:10.1002/joc.4440.
  1156. Waugh, D. W., C. I. Garfinkel and L. M. Polvani, 2015: Drivers of the Recent Tropical Expansion in the Southern Hemisphere: Changing SSTs or Ozone Depletion? Journal of Climate, 28 (16), 6581-6586, doi:10.1175/jcli-d-15-0138.1.
  1157. England, M. R. et al., 2016: Robust response of the Amundsen Sea Low to stratospheric ozone depletion. Geophysical Research Letters, 43 (15), 8207-8213, doi:10.1002/2016gl070055.
  1158. Li, F. et al., 2016a: Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System, Version 5 (GEOS-5). Journal of Climate, 29 (9), 3199-3218, doi:10.1175/jcli-d-15-0572.1.
  1159. Zhang, L., T. L. Delworth, W. Cooke and X. Yang, 2018a: Natural variability of Southern Ocean convection as a driver of observed climate trends. Nature Climate Change, 9 (1), 59-65, doi:10.1038/s41558-018-0350-3.
  1160. Schneider, D. P., C. Deser and T. Fan, 2015: Comparing the Impacts of Tropical SST Variability and Polar Stratospheric Ozone Loss on the Southern Ocean Westerly Winds. Journal of Climate, 28 (23), 9350-9372, doi:10.1175/jcli-d-15-0090.1.
  1161. England, M. R. et al., 2016: Robust response of the Amundsen Sea Low to stratospheric ozone depletion. Geophysical Research Letters, 43 (15), 8207-8213, doi:10.1002/2016gl070055.
  1162. Raphael, M. N. et al., 2016: The Amundsen Sea Low Variability, Change, and Impact on Antarctic Climate. Bulletin of the American Meteorological Society, 97 (1), 111-121, doi:10.1175/bams-d-14-00018.1.
  1163. Clem, K. R., J. A. Renwick and J. McGregor, 2017: Relationship between eastern tropical Pacific cooling and recent trends in the Southern Hemisphere zonal-mean circulation. Climate Dynamics, 49 (1-2), 113-129, doi:10.1007/s00382-016-3329-7.
  1164. Steig, E. J., Q. Ding, D. S. Battisti and A. Jenkins, 2017: Tropical forcing of Circumpolar Deep Water Inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Annals of Glaciology, 53 (60), 19-28, doi:10.3189/2012AoG60A110.
  1165. Paolo, F. S. et al., 2018: Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nature Geoscience, 11 (2), 121-126, doi:10.1038/s41561-017-0033-0.
  1166. Li, X., D. M. Holland, E. P. Gerber and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538, doi:10.1038/nature12945.
  1167. Goosse, H. and V. Zunz, 2014: Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback. The Cryosphere, 8, 453-470, doi:10.5194/tc-8-435-2014.
  1168. Shindell, D. T., 2004: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophysical Research Letters, 31 (18), doi:10.1029/2004gl020724.
  1169. Arblaster, J. M. and G. A. Meehl, 2006: Contributions of External Forcings to Southern Annular Mode Trends. Journal of Climate, 19 (12), 2896-2905, doi:10.1175/jcli3774.1.
  1170. Marshall, G. J., A. Orr, N. P. M. van Lipzig and J. C. King, 2006: The Impact of a Changing Southern Hemisphere Annular Mode on Antarctic Peninsula Summer Temperatures. Journal of Climate, 19 (20), 5388-5404, doi:10.1175/jcli3844.1.
  1171. Abram, N. J. et al., 2014: Evolution of the Southern Annular Mode during the past millennium. Nature Climate Change, 4 (7), 564-569, doi:10.1038/nclimate2235.
  1172. Mulvaney, R. et al., 2012a: Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature, 489 (7414), 141-4, doi:10.1038/nature11391.
  1173. Turner, J. et al., 2016: Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535 (7612), 411-415, doi:10.1038/nature18645.
  1174. Smith, A. J. et al., 2017a: Beluga whale summer habitat associations in the Nelson River estuary, western Hudson Bay, Canada. Plos One, 12 (8), e0181045, doi:10.1371/journal.pone.0181045.
  1175. Jenkins, A. et al., 2018: West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nature Geoscience, 11 (10), 733-738, doi:10.1038/s41561-018-0207-4.
  1176. Francis, J. A. and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters, 10 (1), 014005, doi:10.1088/1748-9326/10/1/014005.
  1177. Mann, M. E. et al., 2017: Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events. Scientific Reports, 7 (1), 45242, doi:10.1038/srep45242.
  1178. Screen, J. A. and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464 (7293), 1334-7, doi:10.1038/nature09051.
  1179. Ahlstrom, A. P. et al., 2017: Abrupt shift in the observed runoff from the southwestern Greenland ice sheet. Sci Adv, 3 (12), e1701169, doi:10.1126/sciadv.1701169.
  1180. Graeter, K. A. et al., 2018: Ice Core Records of West Greenland Melt and Climate Forcing. Geophysical Research Letters, 45 (7), 3164-3172, doi:10.1002/2017gl076641.
  1181. Trusel, L. D. et al., 2018: Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature, 564 (7734), 104-108, doi:10.1038/s41586-018-0752-4.
  1182. Bolch, T. et al., 2013: Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophysical Research Letters, 40 (5), 875-881, doi:10.1002/grl.50270.
  1183. Fisher, D. et al., 2012: Recent melt rates of Canadian arctic ice caps are the highest in four millennia. Global and Planetary Change, 84-85, 3-7, doi:10.1016/j.gloplacha.2011.06.005.
  1184. Zdanowicz, C. et al., 2012: Summer melt rates on Penny Ice Cap, Baffin Island: Past and recent trends and implications for regional climate. Journal of Geophysical Research: Earth Surface, 117 (F2), doi:10.1029/2011JF002248.
  1185. Gilbert, A. et al., 2017: The projected demise of Barnes Ice Cap: Evidence of an unusually warm 21st century Arctic. Geophysical Research Letters, 44 (6), 2810-2816, doi:10.1002/2016gl072394.
  1186. Zekollari, H., B. S. Lecavalier and P. Huybrechts, 2017: Holocene evolution of Hans Tausen Iskappe (Greenland) and implications for the palaeoclimatic evolution of the high Arctic. Quaternary Science Reviews, 168, 182-193, doi:10.1016/j.quascirev.2017.05.010.
  1187. Lecavalier, B. S. et al., 2017: High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution. Proc Natl Acad Sci U S A, 114 (23), 5952-5957, doi:10.1073/pnas.1616287114.
  1188. Solomina, O. N. et al., 2015: Holocene glacier fluctuations. Quaternary Science Reviews, 111, 9-34, doi:10.1016/j.quascirev.2014.11.018.
  1189. Box, J. E. et al., 2018: Global sea-level contribution from Arctic land ice: 1971–2017. Environmental Research Letters, 13 (12), 125012, doi:10.1088/1748-9326/aaf2ed.
  1190. Bjørk, A. A. et al., 2018: Changes in Greenland’s peripheral glaciers linked to the North Atlantic Oscillation. Nature Climate Change, 8 (1), 48-52, doi:10.1038/s41558-017-0029-1.
  1191. Gardner, A. S. et al., 2013: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340 (6134), 852-857, doi:10.1126/science.1234532.
  1192. Millan, R., J. Mouginot and E. Rignot, 2017: Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada, from 1991 to 2015. Environmental Research Letters, 12 (2), 024016.
  1193. Bezeau, P., M. Sharp and G. Gascon, 2014: Variability in summer anticyclonic circulation over the Canadian Arctic Archipelago and west Greenland in the late 20th/early 21st centuries and its effect on glacier mass balance. International Journal of Climatology, 35 (4), 540-557, doi:10.1002/joc.4000.
  1194. McLeod, J. T. and T. L. Mote, 2016: Linking interannual variability in extreme Greenland blocking episodes to the recent increase in summer melting across the Greenland ice sheet. International Journal of Climatology, 36 (3), 1484-1499, doi:10.1002/joc.4440.
  1195. Zemp, M. et al., 2019: Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568 (7752), 382-386, doi:10.1038/s41586-019-1071-0.
  1196. Zemp, M. et al., 2019: Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568 (7752), 382-386, doi:10.1038/s41586-019-1071-0.
  1197. Gardner, A. S. et al., 2013: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340 (6134), 852-857, doi:10.1126/science.1234532.
  1198. Belleflamme, A., X. Fettweis and M. Erpicum, 2015: Recent summer Arctic atmospheric circulation anomalies in a historical perspective. The Cryosphere, 9 (1), 53-64, doi:10.5194/tc-9-53-2015.
  1199. Box, J. E. et al., 2012: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. The Cryosphere, 6 (4), 821-839, doi:10.5194/tc-6-821-2012.
  1200. Möller, M. and R. Möller, 2017: Modeling glacier-surface albedo across Svalbard for the 1979–2015 period: The HiRSvaC500-α data set. Journal of Advances in Modeling Earth Systems, 9 (1), 404-422, doi:10.1002/2016MS000752.
  1201. Zdanowicz, C. et al., 2012: Summer melt rates on Penny Ice Cap, Baffin Island: Past and recent trends and implications for regional climate. Journal of Geophysical Research: Earth Surface, 117 (F2), doi:10.1029/2011JF002248.
  1202. Gascon, G. et al., 2013a: Changes in accumulation-area firn stratigraphy and meltwater flow during a period of climate warming: Devon Ice Cap, Nunavut, Canada. Journal of Geophysical Research: Earth Surface, 118 (4), 2380-2391, doi:10.1002/2013JF002838.
  1203. Gascon, G., M. Sharp and A. Bush, 2013b: Changes in melt season characteristics on Devon Ice Cap, Canada, and their association with the Arctic atmospheric circulation. Annals of Glaciology, 54 (63), 101-110, doi:10.3189/2013AoG63A601.
  1204. Noël, B. et al., 2017: A tipping point in refreezing accelerates mass loss of Greenland’s glaciers and ice caps. Nature Communications, 8, 14730, doi:10.1038/ncomms14730.
  1205. Noël, B. et al., 2018: Six Decades of Glacial Mass Loss in the Canadian Arctic Archipelago. Journal of Geophysical Research: Earth Surface, 123 (6), 1430-1449, doi:10.1029/2017jf004304.
  1206. Strozzi, T. et al., 2017: Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017. Remote Sensing, 9 (9), 947, doi:10.3390/rs9090947.
  1207. Carr, J. R. et al., 2017: Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland. Journal of Glaciology, 61 (225), 137-150, doi:10.3189/2015JoG14J128.
  1208. Dunse, T. et al., 2015: Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt. The Cryosphere, 9 (1), 197-215, doi:10.5194/tc-9-197-2015.
  1209. Dunse, T. et al., 2015: Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt. The Cryosphere, 9 (1), 197-215, doi:10.5194/tc-9-197-2015.
  1210. Sevestre, H. et al., 2018: Tidewater Glacier Surges Initiated at the Terminus. Journal of Geophysical Research: Earth Surface, 123 (5), 1035-1051, doi:10.1029/2017JF004358.
  1211. Williams, P. et al., 2018: Community-based observing networks and systems in the Arctic: Human perceptions of environmental change and instrument-derived data. Regional Environmental Change, 18 (2), 547-559, doi:10.1007/s10113-017-1220-7.
  1212. McMillan, M. et al., 2014a: Rapid dynamic activation of a marine-based Arctic ice cap. Geophysical Research Letters, 41 (24), 8902-8909, doi:10.1002/2014GL062255.
  1213. Luckman, A. et al., 2015: Calving rates at tidewater glaciers vary strongly with ocean temperature. Nature Communications, 6, 8566, doi:10.1038/ncomms9566.
  1214. Vallot, D. et al., 2018: Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard. The Cryosphere, 12 (2), 609-625, doi:10.5194/tc-12-609-2018.
  1215. Williams, W. J. and E. C. Carmack, 2015: The ‘interior’ shelves of the Arctic Ocean: Physical oceanographic setting, climatology and effects of sea-ice retreat on cross-shelf exchange. Progress in Oceanography, 139, 24-41, doi:10.1016/j.pocean.2015.07.008.
  1216. Copland, L. and D. Mueller, 2017: Arctic Ice Shelves and Ice Islands. Springer Polar Sciences, Springer, Dordrecht.
  1217. Hodgson, D. A. et al., 2014: Terrestrial and submarine evidence for the extent and timing of the Last Glacial Maximum and the onset of deglaciation on the maritime-Antarctic and sub-Antarctic islands. Quaternary Science Reviews, 100, 137-158, doi:10.1016/j.quascirev.2013.12.001.
  1218. Zemp, M. et al., 2019: Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568 (7752), 382-386, doi:10.1038/s41586-019-1071-0.
  1219. Navarro, F. J., U. Y. Jonsell, M. I. Corcuera and A. Martín-Español, 2017: Decelerated mass loss of Hurd and Johnsons Glaciers, Livingston Island, Antarctic Peninsula. Journal of Glaciology, 59 (213), 115-128, doi:10.3189/2013JoG12J144.
  1220. Oliva, M. et al., 2017: Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci Total Environ, 580, 210-223, doi:10.1016/j.scitotenv.2016.12.030.
  1221. Oliva, M. et al., 2017: Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci Total Environ, 580, 210-223, doi:10.1016/j.scitotenv.2016.12.030.
  1222. Verfaillie, D. et al., 2015: Recent glacier decline in the Kerguelen Islands (49°S, 69°E) derived from modeling, field observations, and satellite data. Journal of Geophysical Research: Earth Surface, 120 (3), 637-654, doi:10.1002/2014JF003329.
  1223. Favier, V. et al., 2016: Atmospheric drying as the main driver of dramatic glacier wastage in the southern Indian Ocean. Scientific Reports, 6, 32396, doi:10.1038/srep32396.
  1224. Straneo, F. and C. Cenedese, 2015: The Dynamics of Greenland’s Glacial Fjords and Their Role in Climate. Ann Rev Mar Sci, 7, 89-112, doi:10.1146/annurev-marine-010213-135133.
  1225. Sejr, M. K. et al., 2017: Evidence of local and regional freshening of Northeast Greenland coastal waters. Sci Rep, 7 (1), 13183, doi:10.1038/s41598-017-10610-9.
  1226. Depoorter, M. A. et al., 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 89, doi:10.1038/nature12567.
  1227. Rignot, E. et al., 2014: Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters, 41 (10), 3502-3509, doi:10.1002/2014gl060140.
  1228. Paolo, F. S., H. A. Fricker and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348 (6232), 327-331, doi:10.1126/science.aaa0940.
  1229. Abernathey, R. P. et al., 2016: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nature Geoscience, 9, 596, doi:10.1038/ngeo2749.
  1230. Haumann, F. A. et al., 2016: Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537 (7618), 89-92, doi:10.1038/nature19101.
  1231. Purkey, S. G. and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. Journal of Climate, 26 (16), 6105-6122, doi:10.1175/JCLI-D-12-00834.1.
  1232. Meneghello, G., J. Marshall, S. T. Cole and M.-L. Timmermans, 2017: Observational Inferences of Lateral Eddy Diffusivity in the Halocline of the Beaufort Gyre. Geophysical Research Letters, 44 (24), 12,331-12,338, doi:10.1002/2017gl075126.
  1233. Meijers, A. et al., 2016: Wind‐driven export of Weddell Sea slope water. Journal of Geophysical Research: Oceans, 121 (10), 7530-7546, doi:10.1002/2016JC011757.
  1234. Bintanja, R. et al., 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nature Geoscience, 6 (5), 376-379, doi:10.1038/Ngeo1767.
  1235. Bronselaer, B. et al., 2018: Change in future climate due to Antarctic meltwater. Nature, 564 (7734), 53-58, doi:10.1038/s41586-018-0712-z.
  1236. Purich, A. et al., 2018: Impacts of Broad-Scale Surface Freshening of the Southern Ocean in a Coupled Climate Model. Journal of Climate, 31 (7), 2613-2632, doi:10.1175/jcli-d-17-0092.1.
  1237. Swart, N. C. and J. C. Fyfe, 2013: The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophysical Research Letters, 40, 4328-4332, doi:10.1002/grl.50820.
  1238. Pauling, A. G., I. J. Smith, P. J. Langhorne and C. M. Bitz, 2017: Time-dependent freshwater input from ice shelves: Impacts on Antarctic sea ice and the Southern Ocean in an Earth System Model. Geophysical Research Letters, 44 (20), 10454-10461, doi:10.1002/2017GL075017.
  1239. Jourdain, N. C. et al., 2017: Ocean circulation and sea-ice thinning induced by melting ice shelves in the Amundsen Sea. Journal of Geophysical Research: Oceans, 122 (3), 2550-2573, doi:10.1002/2016JC012509.
  1240. Merino, N. et al., 2018: Impact of increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean. Ocean Modelling, 121, 76-89, doi:10.1016/j.ocemod.2017.11.009.
  1241. Silvano, A. et al., 2018: Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Sci Adv, 4 (4), eaap9467, doi:10.1126/sciadv.aap9467.
  1242. Shadwick, E. H. et al., 2013: Glacier tongue calving reduced dense water formation and enhanced carbon uptake. Geophysical Research Letters, 40 (5), 904-909, doi:10.1002/grl.50178.
  1243. Wadham, J. L. et al., 2013: The potential role of the Antarctic Ice Sheet in global biogeochemical cycles. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104 (1), 55-67, doi:10.1017/S1755691013000108.
  1244. Hood, E. et al., 2015: Storage and release of organic carbon from glaciers and ice sheets. Nature Geosci, 8 (2), 91-96, doi:10.1038/ngeo2331.
  1245. Herraiz-Borreguero, L. et al., 2016: Large flux of iron from the Amery Ice Shelf marine ice to Prydz Bay, East Antarctica. Journal of Geophysical Research: Oceans, 121 (8), 6009-6020, doi:10.1002/2016jc011687.
  1246. Meire, L. et al., 2016b: Spring bloom dynamics in a subarctic fjord influenced by tidewater outlet glaciers (Godthabsfjord, SW Greenland). Journal of Geophysical Research-Biogeosciences, 121 (6), 1581-1592, doi:10.1002/2015jg003240.
  1247. Cape, M. R. et al., 2018: Nutrient release to oceans from buoyancy-driven upwelling at Greenland tidewater glaciers. Nature Geoscience, 12 (1), 34-39, doi:10.1038/s41561-018-0268-4.
  1248. Hopwood, M. J. et al., 2018: Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat Commun, 9 (1), 3256, doi:10.1038/s41467-018-05488-8.
  1249. Kanna, N. et al., 2018: Upwelling of Macronutrients and Dissolved Inorganic Carbon by a Subglacial Freshwater Driven Plume in Bowdoin Fjord, Northwestern Greenland. Journal of Geophysical Research: Biogeosciences, 123 (5), 1666-1682, doi:10.1029/2017JG004248.
  1250. Gerringa, L. J. A. et al., 2012: Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry. Deep Sea Research Part II: Topical Studies in Oceanography, 71-76, 16-31, doi:10.1016/j.dsr2.2012.03.007.
  1251. Death, R. et al., 2014: Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences, 11 (10), 2635-2643, doi:10.5194/bg-11-2635-2014.
  1252. Duprat, L. P. A. M., G. R. Bigg and D. J. Wilton, 2016: Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs. Nature Geoscience, 9, 219, doi:10.1038/ngeo2633.
  1253. Arrigo, K. R. et al., 2017b: Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophysical Research Letters, 44 (12), 6278-6285, doi:10.1002/2017gl073583.
  1254. AMAP, 2015: AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vi+71pp [Available at: https://www.amap.no/documents/doc/amap-assessment-2015-temporal-trends-in-persistent-organic-pollutants-in-the-arctic/1521; Access Date: 25 October 2018].
  1255. Bhatia, M. P. et al., 2013: Erratum: Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nature Geoscience, 6 (6), 503-503, doi:10.1038/ngeo1833.
  1256. Hawkings, J. R. et al., 2014: Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat Commun, 5, 3929, doi:10.1038/ncomms4929.
  1257. Meire, L. et al., 2016a: High export of dissolved silica from the Greenland Ice Sheet. Geophysical Research Letters, 43 (17), 9173-9182, doi:10.1002/2016GL070191.
  1258. Hawkings, J. R. et al., 2017: Ice sheets as a missing source of silica to the polar oceans. Nat Commun, 8, 14198, doi:10.1038/ncomms14198.
  1259. Hawkings, J. et al., 2016: The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic. Global Biogeochemical Cycles, 30 (2), 191-210, doi:10.1002/2015GB005237.
  1260. Wadham, J. L. et al., 2016: Sources, cycling and export of nitrogen on the Greenland Ice Sheet. Biogeosciences, 13 (22), 6339-6352, doi:10.5194/bg-13-6339-2016.
  1261. Meire, L. et al., 2016a: High export of dissolved silica from the Greenland Ice Sheet. Geophysical Research Letters, 43 (17), 9173-9182, doi:10.1002/2016GL070191.
  1262. Hopwood, M. J. et al., 2018: Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat Commun, 9 (1), 3256, doi:10.1038/s41467-018-05488-8.
  1263. Arrigo, K. R. et al., 2017b: Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophysical Research Letters, 44 (12), 6278-6285, doi:10.1002/2017gl073583.
  1264. Meire, L. et al., 2016b: Spring bloom dynamics in a subarctic fjord influenced by tidewater outlet glaciers (Godthabsfjord, SW Greenland). Journal of Geophysical Research-Biogeosciences, 121 (6), 1581-1592, doi:10.1002/2015jg003240.
  1265. Meire, L. et al., 2017: Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob Chang Biol, 23 (12), 5344-5357, doi:10.1111/gcb.13801.
  1266. Cape, M. R. et al., 2018: Nutrient release to oceans from buoyancy-driven upwelling at Greenland tidewater glaciers. Nature Geoscience, 12 (1), 34-39, doi:10.1038/s41561-018-0268-4.
  1267. Hopwood, M. J. et al., 2018: Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat Commun, 9 (1), 3256, doi:10.1038/s41467-018-05488-8.
  1268. Kanna, N. et al., 2018: Upwelling of Macronutrients and Dissolved Inorganic Carbon by a Subglacial Freshwater Driven Plume in Bowdoin Fjord, Northwestern Greenland. Journal of Geophysical Research: Biogeosciences, 123 (5), 1666-1682, doi:10.1029/2017JG004248.
  1269. Juul-Pedersen, T. et al., 2015: Seasonal and interannual phytoplankton production in a sub-Arctic tidewater outlet glacier fjord, SW Greenland. Marine Ecology Progress Series, 524, 27-38, doi:10.3354/meps11174.
  1270. Cape, M. R. et al., 2018: Nutrient release to oceans from buoyancy-driven upwelling at Greenland tidewater glaciers. Nature Geoscience, 12 (1), 34-39, doi:10.1038/s41561-018-0268-4.
  1271. Kanna, N. et al., 2018: Upwelling of Macronutrients and Dissolved Inorganic Carbon by a Subglacial Freshwater Driven Plume in Bowdoin Fjord, Northwestern Greenland. Journal of Geophysical Research: Biogeosciences, 123 (5), 1666-1682, doi:10.1029/2017JG004248.
  1272. Gerringa, L. J. A. et al., 2012: Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry. Deep Sea Research Part II: Topical Studies in Oceanography, 71-76, 16-31, doi:10.1016/j.dsr2.2012.03.007.
  1273. Shadwick, E. H. et al., 2013: Glacier tongue calving reduced dense water formation and enhanced carbon uptake. Geophysical Research Letters, 40 (5), 904-909, doi:10.1002/grl.50178.
  1274. Herraiz-Borreguero, L. et al., 2016: Large flux of iron from the Amery Ice Shelf marine ice to Prydz Bay, East Antarctica. Journal of Geophysical Research: Oceans, 121 (8), 6009-6020, doi:10.1002/2016jc011687.
  1275. Death, R. et al., 2014: Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences, 11 (10), 2635-2643, doi:10.5194/bg-11-2635-2014.
  1276. Duprat, L. P. A. M., G. R. Bigg and D. J. Wilton, 2016: Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs. Nature Geoscience, 9, 219, doi:10.1038/ngeo2633.
  1277. Wu, C. et al., 2017: Present-day and future contribution of climate and fires to vegetation composition in the boreal forest of China. Ecosphere, 8 (8), e01917, doi:10.1002/ecs2.1917.
  1278. Hawkings, J. et al., 2016: The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic. Global Biogeochemical Cycles, 30 (2), 191-210, doi:10.1002/2015GB005237.
  1279. Hawkings, J. et al., 2016: The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic. Global Biogeochemical Cycles, 30 (2), 191-210, doi:10.1002/2015GB005237.
  1280. Cook, A. J. et al., 2016: Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353 (6296), 283, doi:10.1126/science.aae0017.
  1281. Monien, D. et al., 2017: Meltwater as a source of potentially bioavailable iron to Antarctica waters. Antarctic Science, 29 (3), 277-291, doi:10.1017/S095410201600064X.
  1282. Wehrmann, L. M. et al., 2014: Iron and manganese speciation and cycling in glacially influenced high-latitude fjord sediments (West Spitsbergen, Svalbard): Evidence for a benthic recycling-transport mechanism. Geochimica et Cosmochimica Acta, 141, 628-655, doi:10.1016/j.gca.2014.06.007.
  1283. Meire, L. et al., 2017: Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob Chang Biol, 23 (12), 5344-5357, doi:10.1111/gcb.13801.
  1284. Morlighem, M. et al., 2017: BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation. Geophysical Research Letters, 44 (21), 11,051-11,061, doi:10.1002/2017GL074954.
  1285. Meire, L. et al., 2017: Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob Chang Biol, 23 (12), 5344-5357, doi:10.1111/gcb.13801.
  1286. Hopwood, M. J. et al., 2018: Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat Commun, 9 (1), 3256, doi:10.1038/s41467-018-05488-8.
  1287. Meire, L. et al., 2017: Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob Chang Biol, 23 (12), 5344-5357, doi:10.1111/gcb.13801.
  1288. Milner, A. M. et al., 2017: Glacier shrinkage driving global changes in downstream systems. Proceedings of the National Academy of Sciences, 114 (37), 9770-9778.
  1289. Bourgeois, S. et al., 2016: Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard). Journal of Marine Systems, 164, 112-127, doi:10.1016/j.jmarsys.2016.08.009.
  1290. Meire, L. et al., 2017: Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob Chang Biol, 23 (12), 5344-5357, doi:10.1111/gcb.13801.
  1291. Wehrmann, L. M. et al., 2013: The evolution of early diagenetic signals in Bering Sea subseafloor sediments in response to varying organic carbon deposition over the last 4.3Ma. Geochimica et Cosmochimica Acta, 109, 175-196, doi:10.1016/j.gca.2013.01.025.
  1292. Smith, R. W. et al., 2015: High rates of organic carbon burial in fjord sediments globally. Nature Geosci, 8 (6), 450-453, doi:10.1038/ngeo2421.
  1293. Lydersen, C. et al., 2014: The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. Journal of Marine Systems, 129, 452-471, doi:10.1016/j.jmarsys.2013.09.006.
  1294. Meire, L. et al., 2017: Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob Chang Biol, 23 (12), 5344-5357, doi:10.1111/gcb.13801.
  1295. Laidre, K. L. et al., 2016: Use of glacial fronts by narwhals (Monodon monoceros) in West Greenland. Biol Lett, 12 (10), doi:10.1098/rsbl.2016.0457.
  1296. Lydersen, C. et al., 2014: The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. Journal of Marine Systems, 129, 452-471, doi:10.1016/j.jmarsys.2013.09.006.
  1297. Gutt, J. et al., 2011: Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep Sea Research Part II: Topical Studies in Oceanography, 58 (1), 74-83, doi:10.1016/j.dsr2.2010.05.024.
  1298. Fillinger, L., D. Janussen, T. Lundälv and C. Richter, 2013: Rapid Glass Sponge Expansion after Climate-Induced Antarctic Ice Shelf Collapse. Current Biology, 23 (14), 1330-1334, doi:10.1016/j.cub.2013.05.051.
  1299. Trathan, P. N., S. M. Grant, V. Siegel and K. H. Kock, 2013: Precautionary spatial protection to facilitate the scientific study of habitats and communities under ice shelves in the context of recent, rapid, regional climate change. CCAMLR Science, 20, 139-151.
  1300. Hauquier, F., L. Ballesteros-Redondo, J. Gutt and A. Vanreusel, 2016: Community dynamics of nematodes after Larsen ice-shelf collapse in the eastern Antarctic Peninsula. Ecol Evol, 6 (1), 305-17, doi:10.1002/ece3.1869.
  1301. Ingels, J., R. B. Aronson and C. R. Smith, 2018: The scientific response to Antarctic ice-shelf loss. Nature Climate Change, 8 (10), 848-851, doi:10.1038/s41558-018-0290-y.
  1302. Gutt, J. et al., 2011: Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep Sea Research Part II: Topical Studies in Oceanography, 58 (1), 74-83, doi:10.1016/j.dsr2.2010.05.024.
  1303. Fillinger, L., D. Janussen, T. Lundälv and C. Richter, 2013: Rapid Glass Sponge Expansion after Climate-Induced Antarctic Ice Shelf Collapse. Current Biology, 23 (14), 1330-1334, doi:10.1016/j.cub.2013.05.051.
  1304. Trathan, P. N., S. M. Grant, V. Siegel and K. H. Kock, 2013: Precautionary spatial protection to facilitate the scientific study of habitats and communities under ice shelves in the context of recent, rapid, regional climate change. CCAMLR Science, 20, 139-151.
  1305. Hauquier, F., L. Ballesteros-Redondo, J. Gutt and A. Vanreusel, 2016: Community dynamics of nematodes after Larsen ice-shelf collapse in the eastern Antarctic Peninsula. Ecol Evol, 6 (1), 305-17, doi:10.1002/ece3.1869.
  1306. Trathan, P. N., S. M. Grant, V. Siegel and K. H. Kock, 2013: Precautionary spatial protection to facilitate the scientific study of habitats and communities under ice shelves in the context of recent, rapid, regional climate change. CCAMLR Science, 20, 139-151.
  1307. Barnes, D. K. A. et al., 2018: Icebergs, sea ice, blue carbon and Antarctic climate feedbacks. Philos Trans A Math Phys Eng Sci, 376 (2122), doi:10.1098/rsta.2017.0176.
  1308. Trathan, P. N., S. M. Grant, V. Siegel and K. H. Kock, 2013: Precautionary spatial protection to facilitate the scientific study of habitats and communities under ice shelves in the context of recent, rapid, regional climate change. CCAMLR Science, 20, 139-151.
  1309. Grange, L. J. and C. R. Smith, 2013: Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity. Plos One, 8 (12), e77917, doi:10.1371/journal.pone.0077917.
  1310. Moon, H. W., W. M. R. W. Hussin, H. C. Kim and I. Y. Ahn, 2015: The impacts of climate change on Antarctic nearshore mega-epifaunal benthic assemblages in a glacial fjord on King George Island: Responses and implications. Ecological Indicators, 57, 280-292, doi:10.1016/j.ecolind.2015.04.031.
  1311. Sahade, R. et al., 2015: Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Science Advances, 1, doi:10.1126/sciadv.1500050
  1312. Fürst, J. J. et al., 2016: The safety band of Antarctic ice shelves. Nature Climate Change, 6, 479, doi:10.1038/nclimate2912.
  1313. Khazendar, A. et al., 2016: Rapid submarine ice melting in the grounding zones of ice shelves in West Antarctica. Nature Communications, 7, 13243, doi:10.1038/ncomms13243.
  1314. Macayeal, D. R. and O. V. Sergienko, 2013: The flexural dynamics of melting ice shelves. Annals of Glaciology, 54 (63), 1-10, doi:10.3189/2013AoG63A256.
  1315. Bell, R. E. et al., 2017: Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature, 544 (7650), 344–348, doi:10.1038/nature22048.
  1316. Konrad, H. et al., 2018: Net retreat of Antarctic glacier grounding line. Nature Geosciences, 11, 258-262, doi:10.1038/s41561-018-0082-z.
  1317. Gomez, N., D. Pollard and D. Holland, 2015: Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss. Nature Communications, 6, 8798, doi:10.1038/ncomms9798.
  1318. Barletta, V. R. et al., 2018: Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science, 360 (6395), 1335-1339, doi:10.1126/science.aao1447.
  1319. Li, X. et al., 2015b: Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophysical Research Letters, 42 (19), 8049-8056, doi:10.1002/2015GL065701.
  1320. Aitken, A. R. A. et al., 2016: Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature, 533, 385, doi:10.1038/nature17447.
  1321. Roberts, J. et al., 2018: Ocean forced variability of Totten Glacier mass loss. Geological Society, London, Special Publications, 461 (1), 175-186, doi:10.1144/sp461.6.
  1322. Parizek, B. R. et al., 2019: Ice-cliff failure via retrogressive slumping. Geology, 47 (5), 449-452, doi:10.1130/g45880.1.
  1323. Pollard, D., R. M. DeConto and R. B. Alley, 2015: Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth and Planetary Science Letters, 412, 112-121, doi:10.1016/j.epsl.2014.12.035.
  1324. DeConto, R. M. and D. Pollard, 2016: Contribution of Antarctica to past and future sea-level rise. Nature, 531 (7596), 591-597, doi:10.1038/nature17145.
  1325. Edwards, T. L. et al., 2019: Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature, 566 (7742), 58-64, doi:10.1038/s41586-019-0901-4.
  1326. Golledge, N. R. et al., 2014: Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nature Communications, 5 (5107), 1-10, doi:10.1038/ncomms6107.
  1327. Weber, M. E. et al., 2014: Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature, 510, 134, doi:10.1038/nature13397.
  1328. Small, D. et al., 2019: Antarctic ice sheet palaeo-thinning rates from vertical transects of cosmogenic exposure ages. Quaternary Science Reviews, 206, 65-80, doi:10.1016/j.quascirev.2018.12.024.
  1329. Jones, R. S. et al., 2015b: Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability. Nature Communications, 6, 8910, doi:10.1038/ncomms9910.
  1330. Wise, M. G., J. A. Dowdeswell, M. Jakobsson and R. D. Larter, 2017: Evidence of marine ice-cliff instability in Pine Island Bay from iceberg-keel plough marks. Nature, 550 (7677), 506-510, doi:10.1038/nature24458.
  1331. King, M. D. et al., 2018: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. The Cryosphere, 12 (12), 3813-3825, doi:10.5194/tc-12-3813-2018.
  1332. Barletta, V. R. et al., 2018: Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science, 360 (6395), 1335-1339, doi:10.1126/science.aao1447.
  1333. Golledge, N. R. et al., 2014: Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nature Communications, 5 (5107), 1-10, doi:10.1038/ncomms6107.
  1334. Hillenbrand, C.-D. et al., 2017: West Antarctic Ice Sheet retreat driven by Holocene warm water incursions. Nature, 547, 43, doi:10.1038/nature22995.
  1335. Jones, R. S. et al., 2015b: Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability. Nature Communications, 6, 8910, doi:10.1038/ncomms9910.
  1336. Wise, M. G., J. A. Dowdeswell, M. Jakobsson and R. D. Larter, 2017: Evidence of marine ice-cliff instability in Pine Island Bay from iceberg-keel plough marks. Nature, 550 (7677), 506-510, doi:10.1038/nature24458.
  1337. Pattyn, F., 2018: The paradigm shift in Antarctic ice sheet modelling. Nature Communications, 9 (2728), 1-3, doi:10.1038/s41467-018-05003-z.
  1338. Pollard, D., R. M. DeConto and R. B. Alley, 2015: Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth and Planetary Science Letters, 412, 112-121, doi:10.1016/j.epsl.2014.12.035.
  1339. DeConto, R. M. and D. Pollard, 2016: Contribution of Antarctica to past and future sea-level rise. Nature, 531 (7596), 591-597, doi:10.1038/nature17145.
  1340. Aitken, A. R. A. et al., 2016: Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature, 533, 385, doi:10.1038/nature17447.
  1341. Morlighem, M. et al., 2017: BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation. Geophysical Research Letters, 44 (21), 11,051-11,061, doi:10.1002/2017GL074954.
  1342. Mouginot, J. et al., 2015: Fast retreat of Zachariæ Isstrøm, northeast Greenland. Science, 350 (6266), 1357-1361, doi:10.1126/science.aac7111.
  1343. Schaefer, J. M. et al., 2016: Greenland was nearly ice-free for extended periods during the Pleistocene. Nature, 540 (7632), 252-255, doi:10.1038/nature20146.
  1344. Parizek, B. R. et al., 2019: Ice-cliff failure via retrogressive slumping. Geology, 47 (5), 449-452, doi:10.1130/g45880.1.
  1345. Estilow, T. W., A. H. Young and D. A. Robinson, 2015: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth System Science Data, 7, 137-142, doi:10.5194/essd-7-137-2015.
  1346. Mudryk, L., P. Kushner, C. Derksen and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles. Geophysical Research Letters, 44 (2), 919-926, doi:doi:10.1002/2016GL071789.
  1347. Bulygina, O. N., P. Y. Groisman, V. N. Razuvaev and N. N. Korshunova, 2011: Changes in snow cover characteristics over Northern Eurasia since 1966. Environmental Research Letters, 6 (4), 045204, doi:10.1088/1748-9326/6/4/045204.
  1348. Brower, A. A. et al., 2017: Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 156-174, doi:10.1016/j.dsr2.2016.12.007.
  1349. Wang, L., C. Derksen and R. Brown, 2013: Recent changes in pan-Arctic melt onset from satellite passive microwave measurements. Geophysical Research Letters, 40, 522–528, doi:10.1002/grl.50098.
  1350. Estilow, T. W., A. H. Young and D. A. Robinson, 2015: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth System Science Data, 7, 137-142, doi:10.5194/essd-7-137-2015.
  1351. Anttila, K. et al., 2018: The role of climate and land use in the changes in surface albedo prior to snow melt and the timing of melt season of seasonal snow in northern land areas of 40°N–80°N during 1982–2015. Remote Sensing, 10 (10), 1619, doi:10.3390/rs10101619.
  1352. Liston, G. and C. Hiemstra, 2011: The changing cryosphere: pan-Arctic snow trends (1979–2009). Journal of Climate, 24, 5691-5712, doi:10.1175/jcli-d-11-00081.1.
  1353. Brower, A. A. et al., 2017: Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 156-174, doi:10.1016/j.dsr2.2016.12.007.
  1354. Hernández-Henríquez, M., S. Déry and C. Derksen, 2015: Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent. Environmental Research Letters, 10, 044010, doi:doi:10.1088/1748-9326/10/4/044010.
  1355. Brown, R. and C. Derksen, 2013: Is Eurasian October snow cover extent increasing? Environmental Research Letters, 8, doi:10.1088/1748-9326/8/2/024006.
  1356. Mudryk, L., P. Kushner, C. Derksen and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles. Geophysical Research Letters, 44 (2), 919-926, doi:doi:10.1002/2016GL071789.
  1357. Bulygina, O. N., P. Y. Groisman, V. N. Razuvaev and N. N. Korshunova, 2011: Changes in snow cover characteristics over Northern Eurasia since 1966. Environmental Research Letters, 6 (4), 045204, doi:10.1088/1748-9326/6/4/045204.
  1358. Osokin, N. I. and A. V. Sosnovsky, 2014: Spatial and temporal variability of depth and density of the snow cover in Russia. Ice and Snow, 4, 72-80, doi:10.15356/2076-6734-2014-4-72-80.
  1359. Vincent et al., 2015: Observed trends in Canada’s climate and influence of low-frequency variability modes. Journal of Climate, 28, 4545-4560, doi:10.1175/jcli-d-14-00697.1.
  1360. Brower, A. A. et al., 2017: Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 156-174, doi:10.1016/j.dsr2.2016.12.007.
  1361. Brower, A. A. et al., 2017: Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 156-174, doi:10.1016/j.dsr2.2016.12.007.
  1362. Brower, A. A. et al., 2017: Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 156-174, doi:10.1016/j.dsr2.2016.12.007.
  1363. Liston, G. and C. Hiemstra, 2011: The changing cryosphere: pan-Arctic snow trends (1979–2009). Journal of Climate, 24, 5691-5712, doi:10.1175/jcli-d-11-00081.1.
  1364. Park, H., H. Yabuki and T. Ohata, 2012: Analysis of satellite and model datasets for variability and trends in Arctic snow extent and depth, 1948–2006. Polar Science, 6, 23-37, doi:10.1016/j.polar.2011.11.002.
  1365. Brower, A. A. et al., 2017: Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 156-174, doi:10.1016/j.dsr2.2016.12.007.
  1366. Cowtan, K. and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quarterly Journal of the Royal Meteorological Society, 140 (683), 1935-1944, doi:10.1002/qj.2297.
  1367. Hawkins, E. and R. Sutton, 2012: Time of emergence of climate signals. Geophysical Research Letters, 39 (1), doi:10.1029/2011gl050087.
  1368. Fyfe, J. C. et al., 2013: One hundred years of Arctic surface temperature variation due to anthropogenic influence. Scientific Reports, 3, 2645, doi:10.1038/srep02645
  1369. Brutel-Vuilmet, C., M. Ménégoz and G. Krinner, 2013: An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models. The Cryosphere, 7 (1), 67-80, doi:10.5194/tc-7-67-2013.
  1370. Thackeray, C. W. and C. G. Fletcher, 2016: Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Progress in Physical Geography, 40 (3), 392-408, doi:10.1177/0309133315620999.
  1371. Mudryk, L., P. Kushner, C. Derksen and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles. Geophysical Research Letters, 44 (2), 919-926, doi:doi:10.1002/2016GL071789.
  1372. Brown, R. and C. Derksen, 2013: Is Eurasian October snow cover extent increasing? Environmental Research Letters, 8, doi:10.1088/1748-9326/8/2/024006.
  1373. Brower, A. A. et al., 2017: Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 156-174, doi:10.1016/j.dsr2.2016.12.007.
  1374. Derksen, C. and R. Brown, 2012: Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophysical Research Letters, 39 (19), L19504, doi:10.1029/2012gl053387.
  1375. Brown, R. and C. Derksen, 2013: Is Eurasian October snow cover extent increasing? Environmental Research Letters, 8, doi:10.1088/1748-9326/8/2/024006.
  1376. Bullard, J. E. et al., 2016: High-latitude dust in the Earth system. Reviews of Geophysics, 54 (2), 447-485, doi:10.1002/2016rg000518.
  1377. Skiles, S. M. et al., 2018: Radiative forcing by light-absorbing particles in snow. Nature Climate Change, 8 (11), 964-971, doi:10.1038/s41558-018-0296-5.
  1378. Boy, M. et al., 2019: Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes. Atmospheric Chemistry and Physics, 19 (3), 2015-2061, doi:10.5194/acp-19-2015-2019.
  1379. Lindsay, R., M. Wensnahan, A. Schweiger and J. Zhang, 2014: Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic. Journal of Climate, 27 (7), 2588-2606, doi:10.1175/jcli-d-13-00014.1.
  1380. Sturm, M. and S. Stuefer, 2013: Wind-blown flux rates derived from drifts at arctic snow fences. Journal of Glaciology, 59 (213), 21-34, doi:10.3189/2013JoG12J110.
  1381. AMAP, 2017d: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Council Secretariat, Oslo, Norway, xiv + 269 pp [Available at: https://www.amap.no/documents/download/2987/inline; Access Date: 10 October 2018].
  1382. Biskaborn, B. K. et al., 2019: Permafrost is warming at a global scale. Nat Commun, 10 (1), 264, doi:10.1038/s41467-018-08240-4.
  1383. Shiklomanov, N. I., D. A. Streletskiy and F. E. Nelson, 2012: Northern Hemisphere component of the global Circumpolar Active Layer Monitoring (CALM) program. In: 10th International Conference on Permafrost, Salekhard, Russia, 377-382.
  1384. Mekonnen, A., J. A. Renwick and A. Sánchez-Lugo, 2016: Regional climates [in “State of the Climate in 2015”]. Bulletin of the American Meteorological Society, 97 (8), S173–S226.
  1385. AMAP, 2017d: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Council Secretariat, Oslo, Norway, xiv + 269 pp [Available at: https://www.amap.no/documents/download/2987/inline; Access Date: 10 October 2018].
  1386. Streletskiy, D. A. et al., 2017: Thaw Subsidence in Undisturbed Tundra Landscapes, Barrow, Alaska, 1962-2015. Permafrost and Periglacial Processes, 28 (3), 566-572, doi:10.1002/ppp.1918.
  1387. Bockheim, J. et al., 2013: Climate warming and permafrost dynamics in the Antarctic Peninsula region. Global and Planetary Change, 100, 215-223, doi:10.1016/j.gloplacha.2012.10.018.
  1388. Lawrence, D. M. et al., 2011: The CCSM4 Land Simulation, 1850–2005: Assessment of Surface Climate and New Capabilities. Journal of Climate, 25 (7), 2240-2260, doi:10.1175/jcli-d-11-00103.1.
  1389. Kylling, A., C. D. Groot Zwaaftink and A. Stohl, 2018: Mineral Dust Instantaneous Radiative Forcing in the Arctic. Geophysical Research Letters, 45 (9), 4290-4298, doi:10.1029/2018gl077346.
  1390. Flanner, M. G., C. S. Zender, J. T. Randerson and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. Journal of Geophysical Research, 112 (D11), D11202, doi:10.1029/2006jd008003.
  1391. Lin, G. et al., 2014: Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon. Journal of Geophysical Research: Atmospheres, 119 (12), 7453-7476, doi:10.1002/2013jd021186.
  1392. Yang, D., 2014: Double Fence Intercomparison Reference (DFIR) vs. Bush Gauge for “true” snowfall measurement. Journal of Hydrology, 509 (Supplement C), 94-100, doi:10.1016/j.jhydrol.2013.08.052.
  1393. Kononova, N. K., 2012: The influence of atmospheric circulation on the formation of snow cover on the north eastern Siberia. Ice and Snow, 1, 38/53, doi:10.15356/2076-6734-2012-1-38-53.
  1394. Vincent et al., 2015: Observed trends in Canada’s climate and influence of low-frequency variability modes. Journal of Climate, 28, 4545-4560, doi:10.1175/jcli-d-14-00697.1.
  1395. Lique, C. et al., 2016: Modeling the Arctic freshwater system and its integration in the global system: Lessons learned and future challenges. Journal of Geophysical Research: Biogeosciences, 121 (3), 540-566, doi:10.1002/2015jg003120.
  1396. Vihma, T. et al., 2016: The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. Journal of Geophysical Research: Biogeosciences, 121 (3), 586-620, doi:10.1002/2015jg003132.
  1397. Gruber, S., 2012: Derivation and analysis of a high-resolution estimate of global permafrost zonation. The Cryosphere, 6 (1), 221-233, doi:10.5194/tc-6-221-2012.
  1398. Noetzli, J. et al., 2017: Permafrost thermal state [Blunden, J. and D. S. Arndt (eds.)]. State of the Climate in 2017, 99, Bull. Amer. Meteor. Soc., Si–S332.
  1399. Biskaborn, B. K. et al., 2019: Permafrost is warming at a global scale. Nat Commun, 10 (1), 264, doi:10.1038/s41467-018-08240-4.
  1400. Kanevskiy, M. et al., 2013: Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska. Cold Regions Science and Technology, 85, 56-70, doi:10.1016/j.coldregions.2012.08.002.
  1401. Raynolds, M. K. et al., 2014: Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Global Change Biology, 20 (4), 1211-1224, doi:10.1111/gcb.12500.
  1402. Kanevskiy, M. et al., 2013: Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska. Cold Regions Science and Technology, 85, 56-70, doi:10.1016/j.coldregions.2012.08.002.
  1403. Schirrmeister, L. et al., 2011: Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. Journal of Geophysical Research: Biogeosciences, 116 (G2), G00M02, doi:10.1029/2011jg001647.
  1404. Straneo, F. et al., 2017: Characteristics of ocean waters reaching Greenland’s glaciers. Annals of Glaciology, 53 (60), 202-210, doi:10.3189/2012AoG60A059.
  1405. Zhang, T. et al., 2008: Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography, 31 (1-2), 47-68, doi:10.1080/10889370802175895.
  1406. Mudryk, L., P. Kushner, C. Derksen and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles. Geophysical Research Letters, 44 (2), 919-926, doi:doi:10.1002/2016GL071789.
  1407. Romanovsky, V. et al., 2017: Changing permafrost and its impacts. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 65-102.
  1408. Holmes, R. M. et al., 2018: River Discharge [Jeffries, M. O., J. Richter-Menge and J. E. Overland (eds.)]. Arctic Report Card, Update for 2018 [Available at: https://www.arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/786/River-Discharge%5D.
  1409. Schuur, E. A. G. et al., 2015: Climate change and the permafrost carbon feedback. Nature, 520 (7546), 171-179, doi:10.1038/nature14338.
  1410. Schuster, P. F. et al., 2018: Permafrost Stores a Globally Significant Amount of Mercury. Geophysical Research Letters, 45 (3), 1463-1471, doi:10.1002/2017GL075571.
  1411. Tarnocai, C. et al., 2009: Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023, doi:10.1029/2008gb003327.
  1412. Hugelius, G. et al., 2014: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11 (23), 6573-6593, doi:10.5194/bg-11-6573-2014.
  1413. Jobbágy, E. G. and R. B. Jackson, 2000: The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10 (2), 423-436, doi:10.1890/1051-0761.
  1414. Schuur, E. A. G. et al., 2015: Climate change and the permafrost carbon feedback. Nature, 520 (7546), 171-179, doi:10.1038/nature14338.
  1415. Straneo, F. et al., 2013: Challenges to understanding the dynamic response of Greenland’s marine terminating glaciers to oc eanic and atmospheric forcing. Bulletin of the American Meteorological Society, 94 (8), 1131-1144, doi:10.1175/BAMS-D-12-00100.1.
  1416. Straneo, F. et al., 2017: Characteristics of ocean waters reaching Greenland’s glaciers. Annals of Glaciology, 53 (60), 202-210, doi:10.3189/2012AoG60A059.
  1417. Schuur, E. A. G. et al., 2015: Climate change and the permafrost carbon feedback. Nature, 520 (7546), 171-179, doi:10.1038/nature14338.
  1418. Walter, K. M. et al., 2007: Thermokarst Lakes as a Source of Atmospheric CH4 During the Last Deglaciation. Science, 318 (5850), 633-636, doi:10.1126/science.1142924.
  1419. Rupp, T. S. et al., 2016: Climate Scenarios, Land Cover, and Wildland Fire. In: Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of Alaska [Zhu, Z. and A. D. McGuire (eds.)], USGS Professional Paper 1826, 196.
  1420. Portnov, A. et al., 2013: Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf. Geophysical Research Letters, 40 (15), 3962-3967, doi:10.1002/grl.50735.
  1421. Anisimov, O. A., I. I. Borzenkova, S. A. Lavrov and J. G. Strelchenko, 2012: Dynamics of sub-aquatic permafrost and methane emission at eastern Arctic sea shelf under past and future climatic changes. Ice and Snow, 2, 97-105, doi:10.1002/lno.10307.
  1422. AMAP, 2017d: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Council Secretariat, Oslo, Norway, xiv + 269 pp [Available at: https://www.amap.no/documents/download/2987/inline; Access Date: 10 October 2018].
  1423. Angelopoulos, M. et al., 2019: Heat and Salt Flow in Subsea Permafrost Modeled with CryoGRID2. Journal of Geophysical Research: Earth Surface, 124 (4), 920-937, doi:10.1029/2018jf004823.
  1424. Smith, M. D., A. K. Knapp and S. L. Collins, 2009: A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90 (12), 3279-3289, doi:10.1890/08-1815.1.
  1425. Grosse, G. et al., 2011: Vulnerability of high-latitude soil organic carbon in North America to disturbance. Journal of Geophysical Research, 116 (G4), G00K06, doi:10.1029/2010jg001507.
  1426. Kanevskiy, M. et al., 2013: Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska. Cold Regions Science and Technology, 85, 56-70, doi:10.1016/j.coldregions.2012.08.002.
  1427. Gibson, C. M. et al., 2018: Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat Commun, 9 (1), 3041, doi:10.1038/s41467-018-05457-1.
  1428. Kasischke, E. S. and M. R. Turetsky, 2006: Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters, 33 (9), L09703, doi:10.1029/2006gl025677.
  1429. Flannigan, M., B. Stocks, M. Turetsky and M. Wotton, 2009: Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology, 15 (3), 549-560, doi:10.1111/j.1365-2486.2008.01660.x.
  1430. Kelly, R. et al., 2013: Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proceedings of the National Academy of Sciences USA, 110 (32), 13055-13060, doi:10.1073/pnas.1305069110.
  1431. Hanes, C. C. et al., 2019: Fire-regime changes in Canada over the last half century. Canadian Journal of Forest Research, 49 (3), 256-269, doi:10.1139/cjfr-2018-0293.
  1432. Gillett, N. P., 2004: Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31 (18), L18211, doi:10.1029/2004gl020876.
  1433. Veraverbeke, S. et al., 2017: Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 7 (7), 529-534, doi:10.1038/nclimate3329.
  1434. van der Werf, G. R. et al., 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10 (23), 11707-11735, doi:10.5194/acp-10-11707-2010.
  1435. Giglio, L., J. T. Randerson and G. R. van der Werf, 2013: Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 118 (1), 317-328, doi:10.1002/jgrg.20042.
  1436. Canadian Forest Service, 2017: National Fire Database; Agency Fire Data. , Edmonton, Alberta.
  1437. van der Werf, G. R. et al., 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10 (23), 11707-11735, doi:10.5194/acp-10-11707-2010.
  1438. Randerson, J. T. et al., 2012: Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research: Biogeosciences, 117 (G4), G04012, doi:10.1029/2012JG002128.
  1439. Giglio, L., J. T. Randerson and G. R. van der Werf, 2013: Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 118 (1), 317-328, doi:10.1002/jgrg.20042.
  1440. French, N. H. et al., 2015: Fire in Arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecology. International Journal of Wildland Fire, 24 (8), 1045-1061, doi:10.1071/WF14167.
  1441. Pastick, N. J. et al., 2017: Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska. Ecol Appl, 27 (5), 1383-1402, doi:10.1002/eap.1538.
  1442. Turetsky, M. R. et al., 2011: Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience, 4 (1), 27-31, doi:https://doi.org/10.1038/ngeo1027.
  1443. Rupp, T. S. et al., 2016: Climate Scenarios, Land Cover, and Wildland Fire. In: Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of Alaska [Zhu, Z. and A. D. McGuire (eds.)], USGS Professional Paper 1826, 196.
  1444. Pastick, N. J. et al., 2017: Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska. Ecol Appl, 27 (5), 1383-1402, doi:10.1002/eap.1538.
  1445. Balser, A. W., J. B. Jones and R. Gens, 2014: Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA. Journal of Geophysical Research: Earth Surface, 119 (5), 1106-1120, doi:10.1002/2013JF002889.
  1446. Kokelj, S. V. et al., 2015: Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada. Global and Planetary Change, 129, 56-68, doi:10.1016/j.gloplacha.2015.02.008.
  1447. Jones, B. M. et al., 2015a: Recent Arctic tundra fire initiates widespread thermokarst development. Scientific Reports, 5, 15865, doi:10.1038/srep15865.
  1448. Kokelj, S. V. et al., 2017: Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology, 45 (4), 371-374, doi:10.1130/G38626.1.
  1449. Nitze, I. et al., 2018: Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat Commun, 9 (1), 5423, doi:10.1038/s41467-018-07663-3.
  1450. Olefeldt, D. et al., 2016: Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications, 7, 13043, doi:10.1038/ncomms13043.
  1451. Prowse, T. et al., 2015: Arctic Freshwater Synthesis: Summary of key emerging issues. Journal of Geophysical Research: Biogeosciences, 120 (10), 1887-1893, doi:10.1002/2015JG003128.
  1452. Walvoord, M. A. and B. L. Kurylyk, 2016: Hydrologic Impacts of Thawing Permafrost—A Review. Vadose Zone Journal, 15 (6), doi:10.2136/vzj2016.01.0010.
  1453. Takakura, H., 2018: Local Perception of River Thaw and Spring Flooding of the Lena River. In: Global Warming and Human-Nature Dimension in Northern Eurasia [Hiyama, T. and H. Takakura (eds.)]. Springer, Singapore, 29-51.
  1454. Shiklomanov, A. I. and R. B. Lammers, 2014: River ice responses to a warming Arctic—recent evidence from Russian rivers. Environmental Research Letters, 9 (3), 035008, doi:10.1088/1748-9326/9/3/035008.
  1455. Park, H. et al., 2015: Quantification of Warming Climate-Induced Changes in Terrestrial Arctic River Ice Thickness and Phenology. Journal of Climate, 29 (5), 1733-1754, doi:10.1175/jcli-d-15-0569.1.
  1456. Cooley, S. W. and T. M. Pavelsky, 2016: Spatial and temporal patterns in Arctic river ice breakup revealed by automated ice detection from MODIS imagery. Remote Sensing of Environment, 175 (Supplement C), 310-322, doi:10.1016/j.rse.2016.01.004.
  1457. Šmejkalová, T., M. E. Edwards and J. Dash, 2016: Arctic lakes show strong decadal trend in earlier spring ice-out. Scientific Reports, 6, 38449, doi:10.1038/srep38449.
  1458. Du, J. et al., 2017: Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015. The Cryosphere, 11 (1), 47-63, doi:10.5194/tc-11-47-2017.
  1459. Alexeev, V., A. , C. D. Arp, B. M. Jones and L. Cai, 2016: Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska. Environmental Research Letters, 11 (7), 074022, doi:10.1088/1748-9326/11/7/074022.
  1460. Surdu, C. M., C. R. Duguay, L. C. Brown and D. Fernández Prieto, 2014: Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis. The Cryosphere, 8 (1), 167-180, doi:10.5194/tc-8-167-2014.
  1461. Arp, C. D. et al., 2015: Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes. Water Resources Research, 51 (12), 9379-9401, doi:10.1002/2015wr017362.
  1462. Arp, C. D. et al., 2016: Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate. Geophysical Research Letters, 43 (12), 6358-6365, doi:10.1002/2016gl068506.
  1463. Bartsch, A. et al., 2017: Circumpolar Mapping of Ground-Fast Lake Ice. Frontiers in Earth Science, 5, 12, doi:10.3389/feart.2017.00012.
  1464. Surdu, C. M., C. R. Duguay and D. Fernández Prieto, 2016: Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations. The Cryosphere, 10 (3), 941-960, doi:10.5194/tc-10-941-2016.
  1465. Troy, T. J., J. Sheffield and E. F. Wood, 2012: The role of winter precipitation and temperature on northern Eurasian streamflow trends. Journal of Geophysical Research: Atmospheres, 117 (D5), D05131, doi:10.1029/2011jd016208.
  1466. Walvoord, M. A. and B. L. Kurylyk, 2016: Hydrologic Impacts of Thawing Permafrost—A Review. Vadose Zone Journal, 15 (6), doi:10.2136/vzj2016.01.0010.
  1467. Ge, S., D. Yang and D. L. Kane, 2013: Yukon River Basin long-term (1977–2006) hydrologic and climatic analysis. Hydrological Processes, 27, 2475–2484, doi:10.1002/hyp.9282.
  1468. Déry, S. J., T. A. Stadnyk, M. K. MacDonald and B. Gauli-Sharma, 2016: Recent trends and variability in river discharge across northern Canada. Hydrol. Earth Syst. Sci., 20 (12), 4801-4818, doi:10.5194/hess-20-4801-2016.
  1469. Holmes, R. M. et al., 2018: River Discharge [Jeffries, M. O., J. Richter-Menge and J. E. Overland (eds.)]. Arctic Report Card, Update for 2018 [Available at: https://www.arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/786/River-Discharge%5D.
  1470. Stuefer, S. L., C. D. Arp, D. L. Kane and A. K. Liljedahl, 2017: Recent Extreme Runoff Observations From Coastal Arctic Watersheds in Alaska. Water Resources Research, 53 (11), 9145-9163, doi:doi:10.1002/2017WR020567.
  1471. Walvoord, M. A. and R. G. Striegl, 2007: Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophysical Research Letters, 34 (L12402), doi:doi:10.1029/2007GL030216.
  1472. Smith, L. C. et al., 2007: Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high-latitude hydrologic cycle. Journal of Geophysical Research, 112 (G04S47), doi:doi: 10.1029/2006JG000327.
  1473. Duan, L., X. Man, B. Kurylyk and T. Cai, 2017: Increasing Winter Baseflow in Response to Permafrost Thaw and Precipitation Regime Shifts in Northeastern China. Water, 9 (1), 25, doi:10.3390/w9010025.
  1474. Ge, S., D. Yang and D. L. Kane, 2013: Yukon River Basin long-term (1977–2006) hydrologic and climatic analysis. Hydrological Processes, 27, 2475–2484, doi:10.1002/hyp.9282.
  1475. Holmes, R. M. et al., 2015: River Discharge [Jeffries, M. O., J. Richter-Menge and J. E. Overland (eds.)]. Arctic Report Card, 2015, 60-65 [Available at: https://arctic.noaa.gov/Report-Card/Report-Card-2015/ArtMID/5037/ArticleID/227/River-Discharge%5D.
  1476. Ye, B., D. Yang and D. L. Kane, 2003: Changes in Lena River streamflow hydrology: Human impacts versus natural variations. Water Resources Research, 39 (7), 1200, doi:10.1029/2003wr001991.
  1477. Yang, D., B. Ye and D. L. Kane, 2004a: Streamflow changes over Siberian Yenisei River Basin. Journal of Hydrology, 296 (1), 59-80, doi:10.1016/j.jhydrol.2004.03.017.
  1478. Yang, D., B. Ye and A. Shiklomanov, 2004b: Discharge Characteristics and Changes over the Ob River Watershed in Siberia. Journal of Hydrometeorology, 5 (4), 595-610, doi:10.1175/1525-7541.
  1479. Déry, S. J., T. A. Stadnyk, M. K. MacDonald and B. Gauli-Sharma, 2016: Recent trends and variability in river discharge across northern Canada. Hydrol. Earth Syst. Sci., 20 (12), 4801-4818, doi:10.5194/hess-20-4801-2016.
  1480. Webb, B. W. et al., 2008: Recent advances in stream and river temperature research. Hydrological Processes, 22 (7), 902-918, doi:10.1002/hyp.6994.
  1481. Yang, D. and A. Peterson, 2017: River Water Temperature in Relation to Local Air Temperature in the Mackenzie and Yukon Basins. Arctic, 70 (1), 47-58, doi:10.14430/arctic4627.
  1482. Liu, B., D. Yang, B. Ye and S. Berezovskaya, 2005: Long-term open-water season stream temperature variations and changes over Lena River Basin in Siberia. Global and Planetary Change, 48 (1), 96-111, doi:10.1016/j.gloplacha.2004.12.007.
  1483. Lammers, R. B., J. W. Pundsack and A. I. Shiklomanov, 2007: Variability in river temperature, discharge, and energy flux from the Russian pan-Arctic landmass. Journal of Geophysical Research: Biogeosciences, 112 (G4), G04S59, doi:10.1029/2006jg000370.
  1484. Yang, D., 2014: Double Fence Intercomparison Reference (DFIR) vs. Bush Gauge for “true” snowfall measurement. Journal of Hydrology, 509 (Supplement C), 94-100, doi:10.1016/j.jhydrol.2013.08.052.
  1485. Grosse, G., B. Jones and C. Arp, 2013: Thermokarst lakes, drainage, and drained basins. Treatise on Geomorphology, 8, 325-353, doi:10.1016/b978-0-12-374739-6.00216-5.
  1486. Nitze, I. et al., 2017: Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions. Remote Sensing, 9 (7), 640, doi:10.3390/rs9070640.
  1487. Ulrich, M. et al., 2017: Differences in behavior and distribution of permafrost-related lakes in Central Yakutia and their response to climatic drivers. Water Resources Research, 53 (2), 1167-1188, doi:10.1002/2016wr019267.
  1488. Pastick, N. J. et al., 2019: Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Glob Chang Biol, 25 (3), 1171-1189, doi:10.1111/gcb.14279.
  1489. Liljedahl, A. K. et al., 2016: Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nature Geoscience, 9 (4), 312-318, doi:10.1038/ngeo2674.
  1490. Perreault, N. et al., 2017: Remote sensing evaluation of High Arctic wetland depletion following permafrost disturbance by thermo-erosion gullying processes. Arctic Science, 3 (2), 237-253, doi:10.1139/as-2016-0047.
  1491. Jepsen, S. M. et al., 2013: Linkages between lake shrinkage/expansion and sublacustrine permafrost distribution determined from remote sensing of interior Alaska, USA. Geophysical Research Letters, 40 (5), 882-887, doi:doi:10.1002/grl.50187.
  1492. Rey, D. M. et al., 2019: Investigating lake-area dynamics across a permafrost-thaw spectrum using airborne electromagnetic surveys and remote sensing time-series data in Yukon Flats, Alaska. Environmental Research Letters, 14 (2), 025001, doi:10.1088/1748-9326/aaf06f.
  1493. Nitze, I. et al., 2018: Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat Commun, 9 (1), 5423, doi:10.1038/s41467-018-07663-3.
  1494. Smith, L. C., Y. Sheng, G. M. MacDonald and L. D. Hinzman, 2005: Disappearing Arctic Lakes. Science, 308 (5727), 1429, doi:10.1126/science.1108142.
  1495. Polishchuk, Y. M., N. A. Bryksina and V. Y. Polishchuk, 2015: Remote analysis of changes in the number of small thermokarst lakes and their distribution with respect to their sizes in the cryolithozone of Western Siberia, 2015. Izvestiya, Atmospheric and Oceanic Physics, 51 (9), 999-1006, doi:10.1134/s0001433815090145.
  1496. Jones, B. M. et al., 2011: Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences, 116 (G2), G00M03, doi:10.1029/2011JG001666.
  1497. Smith, L. C., Y. Sheng, G. M. MacDonald and L. D. Hinzman, 2005: Disappearing Arctic Lakes. Science, 308 (5727), 1429, doi:10.1126/science.1108142.
  1498. Sharonov, D. S., N. A. Bryksina, V. Y. Polishuk and Y. M. Polishuk, 2012: Comparative analysis of thermokarst dynamics in permafrost territory of Western Siberia and Gorny Altai on the basis of space images. Current problems in remote sensing of the earth from space, 9 (1), 313–319.
  1499. Labrecque, S. et al., 2009: Contemporary (1951–2001) evolution of lakes in the Old Crow Basin, Northern Yukon, Canada: Remote Sensing, numerical modeling, and stable isotope analysis. Arctic, 62, 225-238, doi:10.14430/arctic13.
  1500. Carroll, M. L. et al., 2011: Shrinking lakes of the Arctic: Spatial relationships and trajectory of change. Geophysical Research Letters, 38 (20), doi:10.1029/2011GL049427.
  1501. Lantz, T. C. and K. W. Turner, 2015: Changes in lake area in response to thermokarst processes and climate in Old Crow Flats, Yukon. Journal of Geophysical Research: Biogeosciences, 120 (3), 513-524, doi:10.1002/2014jg002744.
  1502. Chen, M. et al., 2012: Temporal and spatial pattern of thermokarst lake area changes at Yukon Flats, Alaska. Hydrological Processes, 28 (3), 837-852, doi:10.1002/hyp.9642.
  1503. Rover, J., L. Ji, B. K. Wylie and L. L. Tieszen, 2012: Establishing water body areal extent trends in interior Alaska from multi-temporal Landsat data. Remote Sensing Letters, 3 (7), 595-604, doi:10.1080/01431161.2011.643507.
  1504. Chen, M. et al., 2012: Temporal and spatial pattern of thermokarst lake area changes at Yukon Flats, Alaska. Hydrological Processes, 28 (3), 837-852, doi:10.1002/hyp.9642.
  1505. Bouchard, F. et al., 2013: Vulnerability of shallow subarctic lakes to evaporate and desiccate when snowmelt runoff is low. Geophysical Research Letters, 40 (23), 6112-6117, doi:10.1002/2013gl058635.
  1506. Jepsen, S. M., M. A. Walvoord, C. I. Voss and J. Rover, 2015: Effect of permafrost thaw on the dynamics of lakes recharged by ice‐jam floods: case study of Yukon Flats, Alaska. Hydrological Processes, 30 (11), 1782-1795, doi:doi:10.1002/hyp.10756.
  1507. Rawlins, M. A. et al., 2010: Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations. Journal of Climate, 23 (21), 5715-5737, doi:10.1175/2010jcli3421.1.
  1508. Liu, Y. et al., 2015b: Evapotranspiration in Northern Eurasia: Impact of forcing uncertainties on terrestrial ecosystem model estimates. Journal of Geophysical Research: Atmospheres, 120 (7), 2647-2660, doi:10.1002/2014jd022531.
  1509. Liu, Y. et al., 2015b: Evapotranspiration in Northern Eurasia: Impact of forcing uncertainties on terrestrial ecosystem model estimates. Journal of Geophysical Research: Atmospheres, 120 (7), 2647-2660, doi:10.1002/2014jd022531.
  1510. Fujiwara, A. et al., 2016: Influence of timing of sea ice retreat on phytoplankton size during marginal ice zone bloom period on the Chukchi and Bering shelves. Biogeosciences, 13 (1115-131), doi:10.5194/bg-13-115-2016.
  1511. Suzuki, K. et al., 2018: Hydrological Variability and Changes in the Arctic Circumpolar Tundra and the Three Largest Pan-Arctic River Basins from 2002 to 2016. Remote Sensing, 10 (3), doi:10.3390/rs10030402.
  1512. Wellman, T. P., C. I. Voss and M. A. Walvoord, 2013: Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA). Hydrogeology Journal, 21 (1), 281-298, doi:10.1007/s10040-012-0941-4.
  1513. Essery, R., 2013: Large-scale simulations of snow albedo masking by forests. Geophysical Research Letters, 40 (20), 5521-5525, doi:10.1002/grl.51008.
  1514. Thackeray, C. W., C. G. Fletcher and C. Derksen, 2014: The influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions. Journal of Geophysical Research: Atmospheres, 119 (16), 9810-9821, doi:10.1002/2014jd021858.
  1515. Qu, X. and A. Hall, 2014: On the persistent spread in snow-albedo feedback. Climate Dynamics, 42 (1), 69-81, doi:10.1007/s00382-013-1774-0.
  1516. Fletcher, C. G., C. W. Thackeray and T. M. Burgers, 2015: Evaluating biases in simulated snow albedo feedback in two generations of climate models. Journal of Geophysical Research: Atmospheres, 120 (1), 12-26, doi:10.1002/2014jd022546.
  1517. Li, Y. et al., 2016b: Evaluating biases in simulated land surface albedo from CMIP5 global climate models. Journal of Geophysical Research: Atmospheres, 121 (11), 6178-6190, doi:10.1002/2016jd024774.
  1518. Brutel-Vuilmet, C., M. Ménégoz and G. Krinner, 2013: An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models. The Cryosphere, 7 (1), 67-80, doi:10.5194/tc-7-67-2013.
  1519. Mudryk, L., P. Kushner, C. Derksen and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles. Geophysical Research Letters, 44 (2), 919-926, doi:doi:10.1002/2016GL071789.
  1520. Thackeray, C. W. and C. G. Fletcher, 2016: Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Progress in Physical Geography, 40 (3), 392-408, doi:10.1177/0309133315620999.
  1521. Thackeray, C. W. and C. G. Fletcher, 2016: Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Progress in Physical Geography, 40 (3), 392-408, doi:10.1177/0309133315620999.
  1522. Brower, A. A. et al., 2017: Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 156-174, doi:10.1016/j.dsr2.2016.12.007.
  1523. Thackeray, C. W. and C. G. Fletcher, 2016: Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Progress in Physical Geography, 40 (3), 392-408, doi:10.1177/0309133315620999.
  1524. Mudryk, L., P. Kushner, C. Derksen and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles. Geophysical Research Letters, 44 (2), 919-926, doi:doi:10.1002/2016GL071789.
  1525. Hodson, D. L. R. et al., 2013: Identifying uncertainties in Arctic climate change projections. Climate Dynamics, 40 (11), 2849-2865, doi:10.1007/s00382-012-1512-z.
  1526. Brower, A. A. et al., 2017: Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 156-174, doi:10.1016/j.dsr2.2016.12.007.
  1527. Brower, A. A. et al., 2017: Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 156-174, doi:10.1016/j.dsr2.2016.12.007.
  1528. Brower, A. A. et al., 2017: Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 156-174, doi:10.1016/j.dsr2.2016.12.007.
  1529. Krasting, J. P., A. J. Broccoli, K. W. Dixon and J. R. Lanzante, 2013: Future Changes in Northern Hemisphere Snowfall. Journal of Climate, 26 (20), 7813-7828, doi:10.1175/jcli-d-12-00832.1.
  1530. Koven, C. D., 2013: Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nature Geoscience, 6 (6), 452-456, doi:10.1038/ngeo1801.
  1531. Slater, A. G. and D. M. Lawrence, 2013: Diagnosing Present and Future Permafrost from Climate Models. Journal of Climate, 26 (15), 5608-5623, doi:10.1175/jcli-d-12-00341.1.
  1532. McGuire, A. D. et al., 2018: Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc Natl Acad Sci U S A, 115 (15), 3882-3887, doi:10.1073/pnas.1719903115.
  1533. Balshi, M. S. et al., 2009: Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Global Change Biology, 15 (6), 1491-1510, doi:10.1111/j.1365-2486.2009.01877.x.
  1534. Kloster, S., N. M. Mahowald, J. T. Randerson and P. J. Lawrence, 2012: The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences, 9 (1), 509-525, doi:10.5194/bg-9-509-2012.
  1535. Wotton, B. M., M. D. Flannigan and G. A. Marshall, 2017: Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environmental Research Letters, 12 (9), 095003, doi:10.1088/1748-9326/aa7e6e.
  1536. Johnstone, J. F., T. S. Rupp, M. Olson and D. Verbyla, 2011: Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests. Landscape Ecology, 26 (4), 487-500, doi:10.1007/s10980-011-9574-6.
  1537. Pastick, N. J. et al., 2017: Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska. Ecol Appl, 27 (5), 1383-1402, doi:10.1002/eap.1538.
  1538. Héon, J., D. Arseneault and M. A. Parisien, 2014: Resistance of the boreal forest to high burn rates. Proc Natl Acad Sci U S A, 111 (38), 13888-93, doi:10.1073/pnas.1409316111.
  1539. Pastick, N. J. et al., 2017: Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska. Ecol Appl, 27 (5), 1383-1402, doi:10.1002/eap.1538.
  1540. Jones, B. et al., 2009: Fire behavior, weather, and burn severity of the 2007 Anaktuvuk river tundra fire, North Slope, Alaska. Arctic, Antarctic, and Alpine Research, 41 (3), 309-316, doi:10.1657/1938-4246-41.3.309.
  1541. Hu, F. S. et al., 2010: Tundra burning in Alaska: Linkages to climatic change and sea ice retreat. Journal of Geophysical Research: Biogeosciences, 115 (G4), G04002, doi:10.1029/2009JG001270.
  1542. Hu, F. S. et al., 2015: Arctic tundra fires: natural variability and responses to climate change. Frontiers in Ecology and the Environment, 13 (7), 369-377, doi:10.1890/150063.
  1543. Hu, F. S. et al., 2015: Arctic tundra fires: natural variability and responses to climate change. Frontiers in Ecology and the Environment, 13 (7), 369-377, doi:10.1890/150063.
  1544. Young, A. M., P. E. Higuera, P. A. Duffy and F. S. Hu, 2017: Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography, 40 (5), 606-617, doi:10.1111/ecog.02205.
  1545. Walter Anthony, K. et al., 2018: 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat Commun, 9 (1), 3262, doi:10.1038/s41467-018-05738-9.
  1546. Muster, S. et al., 2017: PeRL: a circum-Arctic Permafrost Region Pond and Lake database. Earth System Science Data, 9 (1), 317-348, doi:10.5194/essd-9-317-2017.
  1547. Kokelj, S. V. et al., 2017: Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology, 45 (4), 371-374, doi:10.1130/G38626.1.
  1548. Krasting, J. P., A. J. Broccoli, K. W. Dixon and J. R. Lanzante, 2013: Future Changes in Northern Hemisphere Snowfall. Journal of Climate, 26 (20), 7813-7828, doi:10.1175/jcli-d-12-00832.1.
  1549. Laîné, A., H. Nakamura, K. Nishii and T. Miyasaka, 2014: A diagnostic study of future evaporation changes projected in CMIP5 climate models. Climate Dynamics, 42 (9), 2745-2761, doi:10.1007/s00382-014-2087-7.
  1550. Skific, N. and J. A. Francis, 2013: Drivers of projected change in arctic moist static energy transport. Journal of Geophysical Research: Atmospheres, 118 (7), 2748-2761, doi:10.1002/jgrd.50292.
  1551. Lique, C. et al., 2016: Modeling the Arctic freshwater system and its integration in the global system: Lessons learned and future challenges. Journal of Geophysical Research: Biogeosciences, 121 (3), 540-566, doi:10.1002/2015jg003120.
  1552. Zhang, J., R. Lindsay, A. Schweiger and M. Steele, 2013: The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophysical Research Letters, 40 (4), 720-726, doi:10.1002/grl.50190.
  1553. Bintanja, R. and F. M. Selten, 2014: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509, 479, doi:10.1038/nature13259.
  1554. Kharin, V. V., F. W. Zwiers, X. Zhang and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119 (2), 345-357, doi:10.1007/s10584-013-0705-8.
  1555. Sillmann, J. et al., 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research: Atmospheres, 118 (6), 2473-2493, doi:10.1002/jgrd.50188.
  1556. Hansen, B., B. et al., 2014: Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic. Environmental Research Letters, 9 (11), 114021, doi:10.1088/1748-9326/9/11/114021.
  1557. Haine, T. W. N. et al., 2015: Arctic freshwater export: Status, mechanisms, and prospects. Global and Planetary Change, 125 (Supplement C), 13-35, doi:10.1016/j.gloplacha.2014.11.013.
  1558. van Vliet, M. T. H. et al., 2013: Global river discharge and water temperature under climate change. Global Environmental Change, 23 (2), 450-464, doi:10.1016/j.gloenvcha.2012.11.002.
  1559. Gelfan, A. et al., 2016: Climate change impact on the water regime of two great Arctic rivers: modeling and uncertainty issues. Climatic Change, 141 (3), 499-515, doi:10.1007/s10584-016-1710-5.
  1560. MacDonald, M. K. et al., 2018: Impacts of 1.5 and 2.0 °C Warming on Pan-Arctic River Discharge Into the Hudson Bay Complex Through 2070. Geophysical Research Letters, 45 (15), 7561-7570, doi:10.1029/2018gl079147.
  1561. van Vliet, M. T. H. et al., 2013: Global river discharge and water temperature under climate change. Global Environmental Change, 23 (2), 450-464, doi:10.1016/j.gloenvcha.2012.11.002.
  1562. Sharma, S. et al., 2019: Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change, 9 (3), 227-231, doi:10.1038/s41558-018-0393-5.
  1563. Brown, L. C. and C. R. Duguay, 2011: The fate of lake ice in the North American Arctic. The Cryosphere, 5 (4), 869-892, doi:10.5194/tc-5-869-2011.
  1564. Dibike, Y., T. Prowse, T. Saloranta and R. Ahmed, 2011: Response of Northern Hemisphere lake-ice cover and lake-water thermal structure patterns to a changing climate. Hydrological Processes, 25 (19), 2942-2953, doi:10.1002/hyp.8068.
  1565. Prowse, T. et al., 2011: Effects of Changes in Arctic Lake and River Ice. AMBIO, 40 (1), 63-74, doi:10.1007/s13280-011-0217-6.
  1566. Brown, L. C. and C. R. Duguay, 2011: The fate of lake ice in the North American Arctic. The Cryosphere, 5 (4), 869-892, doi:10.5194/tc-5-869-2011.
  1567. Cooley, S. W. and T. M. Pavelsky, 2016: Spatial and temporal patterns in Arctic river ice breakup revealed by automated ice detection from MODIS imagery. Remote Sensing of Environment, 175 (Supplement C), 310-322, doi:10.1016/j.rse.2016.01.004.
  1568. Prowse, T., R. Shrestha, B. Bonsal and Y. Dibike, 2010: Changing spring air-temperature gradients along large northern rivers: Implications for severity of river-ice floods. Geophysical Research Letters, 37 (19), L19706, doi:10.1029/2010gl044878.
  1569. Prowse, T. et al., 2011: Effects of Changes in Arctic Lake and River Ice. AMBIO, 40 (1), 63-74, doi:10.1007/s13280-011-0217-6.
  1570. Loisel, J. et al., 2014: A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene, 24 (9), 1028-1042, doi:10.1177/0959683614538073.
  1571. Lind, S., R. B. Ingvaldsen and T. Furevik, 2018: Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nature Climate Change, 8 (7), 634–639, doi:10.1038/s41558-018-0205-y.
  1572. McGuire, A. D. et al., 2012: An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences, 9 (8), 3185-3204, doi:10.5194/bg-9-3185-2012.
  1573. Belshe, E. F., E. A. G. Schuur and B. M. Bolker, 2013: Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecology Letters, 16 (10), 1307-1315, doi:10.1111/ele.12164.
  1574. Ueyama, M. et al., 2013: Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA). Ecological Applications, 23 (8), 1798-1816, doi:10.1890/11-0875.1.
  1575. Webb, E. E. et al., 2016: Increased wintertime CO2loss as a result of sustained tundra warming. Journal of Geophysical Research: Biogeosciences, 121 (2), 249-265, doi:10.1002/2014jg002795.
  1576. Lund, M. et al., 2010: Variability in exchange of CO2 across 12 northern peatland and tundra sites. Global Change Biology, 16 (9), 2436-2448, doi:10.1111/j.1365-2486.2009.02104.x.
  1577. Commane, R. et al., 2017: Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proceedings of the National Academy of Sciences USA, 114 (21), 5361-5366, doi:10.1073/pnas.1618567114.
  1578. Schuster, P. F. et al., 2018: Permafrost Stores a Globally Significant Amount of Mercury. Geophysical Research Letters, 45 (3), 1463-1471, doi:10.1002/2017GL075571.
  1579. Schuur, E. A. G. et al., 2013: Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119 (2), 359-374, doi:10.1007/s10584-013-0730-7.
  1580. Zhuang, Q. et al., 2006: CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophysical Research Letters, 33 (17), L17403, doi:10.1029/2006gl026972.
  1581. Koven, C. D. et al., 2011: Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences USA, 108 (36), 14769-14774, doi:10.1073/pnas.1103910108.
  1582. Schaefer, K., T. Zhang, L. Bruhwiler and A. P. Barrett, 2011: Amount and timing of permafrost carbon release in response to climate warming. Tellus B: Chemical and Physical Meteorology, 63 (2), 165-180, doi:10.1111/j.1600-0889.2011.00527.x.
  1583. MacDougall, A. H., C. A. Avis and A. J. Weaver, 2012: Significant contribution to climate warming from the permafrost carbon feedback. Nature Geoscience, 5 (10), 719-721, doi:10.1038/ngeo1573.
  1584. Burke, E. J., C. D. Jones and C. D. Koven, 2013: Estimating the permafrost-carbon climate response in the CMIP5 climate models using a simplified approach. Journal of Climate, 26 (14), 4897-4909, doi:10.1175/jcli-d-12-00550.1.
  1585. Schaphoff, S. et al., 2013: Contribution of permafrost soils to the global carbon budget. Environmental Research Letters, 8 (1), 014026, doi:10.1088/1748-9326/8/1/014026.
  1586. Schneider, D. P., C. Deser and T. Fan, 2015: Comparing the Impacts of Tropical SST Variability and Polar Stratospheric Ozone Loss on the Southern Ocean Westerly Winds. Journal of Climate, 28 (23), 9350-9372, doi:10.1175/jcli-d-15-0090.1.
  1587. Koven, C. D. et al., 2015: A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373 (2054), 20140423, doi:10.1098/rsta.2014.0423.
  1588. Schneider, D. P., C. Deser and T. Fan, 2015: Comparing the Impacts of Tropical SST Variability and Polar Stratospheric Ozone Loss on the Southern Ocean Westerly Winds. Journal of Climate, 28 (23), 9350-9372, doi:10.1175/jcli-d-15-0090.1.
  1589. MacDougall, A. H. and R. Knutti, 2016: Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences, 13 (7), 2123-2136, doi:10.5194/bg-13-2123-2016.
  1590. Burke, E. J. et al., 2017a: Quantifying uncertainties of permafrost carbon–climate feedbacks. Biogeosciences, 14 (12), 3051-3066, doi:10.5194/bg-14-3051-2017.
  1591. McGuire, A. D. et al., 2016: Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochemical Cycles, 30 (7), 1015-1037, doi:10.1002/2016gb005405.
  1592. Klein, E. S. et al., 2018: Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. Plos One, 13 (1), e0191011, doi:10.1371/journal.pone.0191011.
  1593. McGuire, A. D. et al., 2018: Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc Natl Acad Sci U S A, 115 (15), 3882-3887, doi:10.1073/pnas.1719903115.
  1594. Saunois, M. et al., 2016: The global methane budget 2000–2012. Earth System Science Data, 8 (2), 697-751, doi:10.5194/essd-8-697-2016.
  1595. Sweeney, C. et al., 2016: No significant increase in long-term CH4 emissions on North Slope of Alaska despite significant increase in air temperature. Geophysical Research Letters, 43 (12), 6604-6611, doi:10.1002/2016GL069292.
  1596. Walter Anthony, K. M. et al., 2014: A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature, 511 (7510), 452-456, doi:10.1038/nature13560.
  1597. Zona, D. et al., 2016: Cold season emissions dominate the Arctic tundra methane budget. Proceedings of the National Academy of Sciences USA, 113 (1), 40-45, doi:10.1073/pnas.1516017113.
  1598. Walter Anthony, K. M., P. Anthony, G. Grosse and J. Chanton, 2012: Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nature Geoscience, 5 (6), 419-426, doi:10.1038/ngeo1480.
  1599. Rupp, T. S. et al., 2016: Climate Scenarios, Land Cover, and Wildland Fire. In: Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of Alaska [Zhu, Z. and A. D. McGuire (eds.)], USGS Professional Paper 1826, 196.
  1600. Kohnert, K. et al., 2017: Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada. Scientific Reports, 7 (1), 5828, doi:10.1038/s41598-017-05783-2.
  1601. Thornton, B. F. et al., 2016: Methane fluxes from the sea to the atmosphere across the Siberian shelf seas. Geophysical Research Letters, 43 (11), 5869-5877, doi:10.1002/2016GL068977.
  1602. Shakhova, N. et al., 2013: Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience, 7, 64, doi:10.1038/ngeo2007.
  1603. Saunois, M. et al., 2016: The global methane budget 2000–2012. Earth System Science Data, 8 (2), 697-751, doi:10.5194/essd-8-697-2016.
  1604. Crill, P. M. and B. F. Thornton, 2017: Whither methane in the IPCC process? Nature Climate Change, 7, 678, doi:10.1038/nclimate3403.
  1605. Riley, W. J. et al., 2011: Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences, 8 (7), 1925-1953, doi:10.5194/bg-8-1925-2011.
  1606. Gao, X. et al., 2013: Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback. Environmental Research Letters, 8 (3), 035014, doi:10.1088/1748-9326/8/3/035014.
  1607. Poulter, B. et al., 2017: Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environmental Research Letters, 12 (9), 094013, doi:10.1088/1748-9326/aa8391.
  1608. Zhang, Z. et al., 2017: Emerging role of wetland methane emissions in driving 21st century climate change. Proceedings of the National Academy of Sciences, 114 (36), 9647.
  1609. Lawrence, D. M. et al., 2015: Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO 2 and CH 4 emissions. Environmental Research Letters, 10 (9), 094011.
  1610. McGuire, A. D. et al., 2018: Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc Natl Acad Sci U S A, 115 (15), 3882-3887, doi:10.1073/pnas.1719903115.
  1611. Schuur, E. A. G. et al., 2013: Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119 (2), 359-374, doi:10.1007/s10584-013-0730-7.
  1612. Koven, C. D. et al., 2015: A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373 (2054), 20140423, doi:10.1098/rsta.2014.0423.
  1613. Lawrence, D. M. et al., 2015: Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO 2 and CH 4 emissions. Environmental Research Letters, 10 (9), 094011.
  1614. Schneider, D. P., C. Deser and T. Fan, 2015: Comparing the Impacts of Tropical SST Variability and Polar Stratospheric Ozone Loss on the Southern Ocean Westerly Winds. Journal of Climate, 28 (23), 9350-9372, doi:10.1175/jcli-d-15-0090.1.
  1615. Walter Anthony, K. et al., 2018: 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat Commun, 9 (1), 3262, doi:10.1038/s41467-018-05738-9.
  1616. Schneider, D. P., C. Deser and T. Fan, 2015: Comparing the Impacts of Tropical SST Variability and Polar Stratospheric Ozone Loss on the Southern Ocean Westerly Winds. Journal of Climate, 28 (23), 9350-9372, doi:10.1175/jcli-d-15-0090.1.
  1617. Walter Anthony, K. et al., 2018: 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat Commun, 9 (1), 3262, doi:10.1038/s41467-018-05738-9.
  1618. Christensen, T. R. et al., 2019: Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Sci Rep, 9 (1), 1146, doi:10.1038/s41598-018-37719-9.
  1619. Flanner, M. G. et al., 2011: Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nature Geoscience, 4 (3), 151-155, doi:10.1038/ngeo1062.
  1620. Qu, X. and A. Hall, 2014: On the persistent spread in snow-albedo feedback. Climate Dynamics, 42 (1), 69-81, doi:10.1007/s00382-013-1774-0.
  1621. Thackeray, C. W. and C. G. Fletcher, 2016: Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Progress in Physical Geography, 40 (3), 392-408, doi:10.1177/0309133315620999.
  1622. Flanner, M. G. et al., 2011: Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nature Geoscience, 4 (3), 151-155, doi:10.1038/ngeo1062.
  1623. Chen, X. et al., 2015: Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Scientific Reports, 5, 16820, doi:10.1038/srep16820.
  1624. Singh, D., M. G. Flanner and J. Perket, 2015: The global land shortwave cryosphere radiative effect during the MODIS era. The Cryosphere, 9 (6), 2057-2070, doi:10.5194/tc-9-2057-2015.
  1625. Chen, X. N., S. L. Liang and Y. F. Cao, 2016b: Satellite observed changes in the Northern Hemisphere snow cover phenology and the associated radiative forcing and feedback between 1982 and 2013. Environmental Research Letters, 11 (8), 084002, doi:10.1088/1748-9326/11/8/084002.
  1626. Hori, M. et al., 2017: A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sensing of Environment, 191, 402–418, doi:doi:10.1016/j.rse.2017.01.023.
  1627. Sedlar, J., 2018: Spring Arctic Atmospheric Preconditioning: Do Not Rule Out Shortwave Radiation Just Yet. Journal of Climate, 31 (11), 4225-4240, doi:10.1175/jcli-d-17-0710.1.
  1628. Sledd, A. and T. L’Ecuyer, 2019: How much do clouds mask the impacts of Arctic sea ice and snow cover variations? Different perspectives from observations and reanalyses. Atmosphere, 10 (1), 12, doi:10.3390/atmos10010012.
  1629. Huang, X. et al., 2018: Improved Representation of Surface Spectral Emissivity in a Global Climate Model and Its Impact on Simulated Climate. Journal of Climate, 31 (9), 3711-3727, doi:10.1175/jcli-d-17-0125.1.
  1630. Euskirchen, E. S. et al., 2016: Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada. Environmental Research Letters, 11 (10), 105003, doi:10.1088/1748-9326/11/10/105003.
  1631. Loranty, M. M. et al., 2014: Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations. Global Change Biology, 20 (2), 594-606, doi:10.1111/gcb.12391.
  1632. Forzieri, G., R. Alkama, D. G. Miralles and A. Cescatti, 2017: Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science, 356 (6343), 1180-1184, doi:10.1126/science.aal1727.
  1633. Frost, G. V. and H. E. Epstein, 2014: Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology, 20 (4), 1264-1277, doi:10.1111/gcb.12406.
  1634. Nauta, A. L. et al., 2014: Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nature Climate Change, 5, 67, doi:10.1038/nclimate2446
  1635. Horstkotte, T. et al., 2017: Human–animal agency in reindeer management: Sámi herders’ perspectives on vegetation dynamics under climate change. Ecosphere, 8 (9), e01931, doi:10.1002/ecs2.1931.
  1636. Xu, L. et al., 2013a: Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, 3, 581, doi:10.1038/nclimate1836
  1637. Ju, J. and J. G. Masek, 2016: The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sensing of Environment, 176, 1-16, doi:10.1016/j.rse.2016.01.001.
  1638. Bhatt, U. et al., 2017: Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environmental Research Letters, 12 (5), doi:10.1088/1748-9326/aa6b0b.
  1639. Myers-Smith, I. H. et al., 2015: Climate sensitivity of shrub growth across the tundra biome. Nature Clim. Change, 5 (9), 887-891, doi:10.1038/nclimate2697.
  1640. Lara, M. J. et al., 2018: Reduced arctic tundra productivity linked with landform and climate change interactions. Sci Rep, 8 (1), 2345, doi:10.1038/s41598-018-20692-8.
  1641. Myers-Smith, I. and D. Hik, 2018: Climate warming as a driver of tundra shrubline advance. Journal of Ecology, 106 (2), 547-560, doi:10.1111/1365-2745.12817.
  1642. Bhatt, U. et al., 2017: Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environmental Research Letters, 12 (5), doi:10.1088/1748-9326/aa6b0b.
  1643. Macias-Fauria, M., S. Karlsen and B. Forbes, 2017: Disentangling the coupling between sea ice and tundra productivity in Svalbard. Scientific Reports, 7 (1), 8586, doi:10.1038/s41598-017-06218-8.
  1644. Westergaard-Nielsen, A. et al., 2017: Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013. AMBIO, 46 (1), 39-52, doi:10.1007/s13280-016-0864-8.
  1645. Schuur, E. A. G. et al., 2013: Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119 (2), 359-374, doi:10.1007/s10584-013-0730-7.
  1646. Schaefer, J. M. et al., 2016: Greenland was nearly ice-free for extended periods during the Pleistocene. Nature, 540 (7632), 252-255, doi:10.1038/nature20146.
  1647. Schuur, E. A. G. et al., 2015: Climate change and the permafrost carbon feedback. Nature, 520 (7546), 171-179, doi:10.1038/nature14338.
  1648. Koven, C. D. et al., 2015: A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373 (2054), 20140423, doi:10.1098/rsta.2014.0423.
  1649. Schneider, D. P., C. Deser and T. Fan, 2015: Comparing the Impacts of Tropical SST Variability and Polar Stratospheric Ozone Loss on the Southern Ocean Westerly Winds. Journal of Climate, 28 (23), 9350-9372, doi:10.1175/jcli-d-15-0090.1.
  1650. Walter Anthony, K. et al., 2018: 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat Commun, 9 (1), 3262, doi:10.1038/s41467-018-05738-9.
  1651. MacDougall, A. H. and R. Knutti, 2016: Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences, 13 (7), 2123-2136, doi:10.5194/bg-13-2123-2016.
  1652. Burke, E. J. et al., 2017a: Quantifying uncertainties of permafrost carbon–climate feedbacks. Biogeosciences, 14 (12), 3051-3066, doi:10.5194/bg-14-3051-2017.
  1653. Klein, E. S. et al., 2018: Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. Plos One, 13 (1), e0191011, doi:10.1371/journal.pone.0191011.
  1654. McGuire, A. D. et al., 2018: Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc Natl Acad Sci U S A, 115 (15), 3882-3887, doi:10.1073/pnas.1719903115.
  1655. Horstkotte, T. et al., 2017: Human–animal agency in reindeer management: Sámi herders’ perspectives on vegetation dynamics under climate change. Ecosphere, 8 (9), e01931, doi:10.1002/ecs2.1931.
  1656. Martin-Español, A., J. L. Bamber and A. Zammit-Mangion, 2017: Constraining the mass balance of East Antarctica. Geophysical Research Letters, 44 (9), 4168-4175, doi:10.1002/2017GL072937.
  1657. Yu, Q., H. Epstein, R. Engstrom and D. Walker, 2017: Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory. Global Change Biology, 23 (9), 3895-3907, doi:10.1111/gcb.13632.
  1658. Phoenix, G. K. and J. W. Bjerke, 2016: Arctic browning: extreme events and trends reversing Arctic greening. Global Change Biology, 22 (9), 2960-2962, doi:10.1111/gcb.13261.
  1659. Bjerke, J. et al., 2017: Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: Insights from field surveys in the aftermath of damage. Science of the Total Environment, 599, 1965-1976, doi:10.1016/j.scitotenv.2017.05.050.
  1660. Pearson, R. G. et al., 2013: Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change, 3 (7), 673-677, doi:10.1038/nclimate1858.
  1661. Mack, M. C. et al., 2011: Carbon loss from an unprecedented Arctic tundra wildfire. Nature, 475 (7357), 489-492, doi:10.1038/nature10283.
  1662. Bret-Harte, M. S. et al., 2013: The response of Arctic vegetation and soils following an unusually severe tundra fire. Philosophical Transactions of the Royal Society B: Biological Sciences, 368 (1624), doi:10.1098/rstb.2012.0490.
  1663. Jones, B. M. et al., 2015a: Recent Arctic tundra fire initiates widespread thermokarst development. Scientific Reports, 5, 15865, doi:10.1038/srep15865.
  1664. Pastick, N. J. et al., 2017: Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska. Ecol Appl, 27 (5), 1383-1402, doi:10.1002/eap.1538.
  1665. Beck, P. S. A. and S. J. Goetz, 2011: Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environmental Research Letters, 6 (4), 049501.
  1666. Ju, J. and J. G. Masek, 2016: The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sensing of Environment, 176, 1-16, doi:10.1016/j.rse.2016.01.001.
  1667. Pearson, R. G. et al., 2013: Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change, 3 (7), 673-677, doi:10.1038/nclimate1858.
  1668. Koven, C. D., 2013: Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nature Geoscience, 6 (6), 452-456, doi:10.1038/ngeo1801.
  1669. Gauthier, S. et al., 2015: Boreal forest health and global change. Science, 349 (6250), 819-22, doi:10.1126/science.aaa9092.
  1670. Johnstone, J. et al., 2009: Postfire seed rain of black spruce, a semiserotinous conifer, in forests of interior Alaska. Canadian Journal of Forest Research, 39 (8), 1575-1588, doi:10.1139/X09-068.
  1671. Johnstone, J. F. et al., 2010: Fire, climate change, and forest resilience in interior AlaskaThis article is one of a selection of papers from The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming. Canadian Journal of Forest Research, 40 (7), 1302-1312, doi:10.1139/X10-061.
  1672. Johnstone, J. F. et al., 2010: Fire, climate change, and forest resilience in interior AlaskaThis article is one of a selection of papers from The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming. Canadian Journal of Forest Research, 40 (7), 1302-1312, doi:10.1139/X10-061.
  1673. Mann, D. H., T. Scott Rupp, M. A. Olson and P. A. Duffy, 2012: Is Alaska’s Boreal Forest Now Crossing a Major Ecological Threshold? Arctic, Antarctic, and Alpine Research, 44 (3), 319-331, doi:10.1657/1938-4246-44.3.319.
  1674. Shakhova, N. et al., 2013: Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience, 7, 64, doi:10.1038/ngeo2007.
  1675. Shuman, J. K. et al., 2015: Forest forecasting with vegetation models across Russia. Canadian Journal of Forest Research, 45 (2), 175-184, doi:10.1139/cjfr-2014-0138.
  1676. Wu, C. et al., 2017: Present-day and future contribution of climate and fires to vegetation composition in the boreal forest of China. Ecosphere, 8 (8), e01917, doi:10.1002/ecs2.1917.
  1677. Gunn, A., 2016: Rangifer tarandus. The IUCN Red List of Threatened Species 2016: e.T29742A22167140; https://www.iucnredlist.org/species/29742/22167140.
  1678. Fauchald, P., V. H. Hausner, J. I. Schmidt and D. A. Clark, 2017a: Transitions of social-ecological subsistence systems in the Arctic. International Journal of the Commons, 11 (1), 275-329, doi:10.18352/ijc.698.
  1679. Dabros, A., M. Pyper and G. Castilla, 2018: Seismic lines in the boreal and arctic ecosystems of North America: environmental impacts, challenges, and opportunities. Environmental Reviews, 26 (2), 214-229, doi:10.1139/er-2017-0080.
  1680. Mallory, C. D. and M. S. Boyce, 2017: Observed and predicted effects of climate change on Arctic caribou and reindeer. Environmental Reviews, 26 (1), 13-25, doi:10.1139/er-2017-0032.
  1681. Poole, K. G., A. Gunn, B. R. Patterson and M. Dumond, 2010: Sea Ice and Migration of the Dolphin and Union Caribou Herd in the Canadian Arctic: An Uncertain Future. Arctic, 63 (4), 414-428, doi:10.14430/arctic3331.
  1682. Albon, S., D. et al., 2017: Contrasting effects of summer and winter warming on body mass explain population dynamics in a food‐limited Arctic herbivore. Global Change Biology, 23 (4), 1374-1389, doi:10.1111/gcb.13435.
  1683. Schmidt, N. M., S. H. Pedersen, J. B. Mosbacher and L. H. Hansen, 2015: Long-term patterns of muskox (Ovibos moschatus) demographics in high arctic Greenland. Polar Biology, 38 (10), 1667-1675, doi:10.1007/s00300-015-1733-9.
  1684. Schmidt, N. M. et al., 2017: Interaction webs in arctic ecosystems: Determinants of arctic change? AMBIO, 46 (1), 12-25, doi:10.1007/s13280-016-0862-x.
  1685. Hansen, B. B. et al., 2013: Climate Events Synchronize the Dynamics of a Resident Vertebrate Community in the High Arctic. Science, 339 (6117), 313, doi:10.1126/science.1226766.
  1686. Klaczek, M. R., C. J. Johnson and H. D. Cluff, 2016: Wolf–caribou dynamics within the central Canadian Arctic. The Journal of Wildlife Management, 80 (5), 837-849, doi:10.1002/jwmg.1070.
  1687. Kumpula, J., M. Kurkilahti, T. Helle and A. Colpaert, 2014: Both reindeer management and several other land use factors explain the reduction in ground lichens (Cladonia spp.) in pastures grazed by semi-domesticated reindeer in Finland. Regional Environmental Change, 14 (2), 541-559, doi:10.1007/s10113-013-0508-5.
  1688. Lavrillier, A. and S. Gabyshev, 2017: An Arctic Indigenous Knowledge System of Landscape, Climate, and Human Interactions. Evenki Reindeer Herders and Hunters. Fürstenberg/Havel: Verlag der Kulturstiftung Sibirien SEC Publications, Published online by Cambridge University Press, 467 pp.
  1689. Turunen, M. T. et al., 2016: Coping with difficult weather and snow conditions: Reindeer herders’ views on climate change impacts and coping strategies. Climate Risk Management, 11, 15-36, doi:10.1016/j.crm.2016.01.002.
  1690. Bartsch, A., T. Kumpula, B. C. Forbes and F. Stammler, 2010: Detection of snow surface thawing and refreezing in the Eurasian Arctic with QuikSCAT: implications for reindeer herding. Ecological Applications, 20 (8), 2346-2358, doi:10.1890/09-1927.1.
  1691. Forbes, B. C. et al., 2016: Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia. Biology Letters, 12 (11), doi:10.1098/rsbl.2016.0466.
  1692. Cohen, J., H. Ye and J. Jones, 2015: Trends and variability in rain-on-snow events. Geophysical Research Letters, 42 (17), 7115-7122, doi:10.1002/2015gl065320.
  1693. Dolant, C. et al., 2017: Meteorological inventory of rain-on-snow events in the Canadian Arctic Archipelago and satellite detection assessment using passive microwave data. Physical Geography, 39 (5), 428-444, doi:10.1080/02723646.2017.1400339.
  1694. Hoberg, e. a. Arctic Biodiversity Assessment 2013: Chapter 15, Parasites. [Available at: https://www.caff.is/assessment-series/arctic-biodiversity-assessment/220-arctic-biodiversity-assessment-2013-chapter-15-parasites%5D
  1695. Jenkins, E. J. et al., 2013: Tradition and transition: parasitic zoonoses of people and animals in Alaska, northern Canada, and Greenland. Adv Parasitol, 82, 33-204, doi:10.1016/B978-0-12-407706-5.00002-2.
  1696. Cook, J. A. et al., 2017: The Beringian Coevolution Project: holistic collections of mammals and associated parasites reveal novel perspectives on evolutionary and environmental change in the North. Arctic Science, 3 (3), 585-617, doi:10.1139/as-2016-0042.
  1697. Kutz, S. J. et al., 2013: Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Glob Chang Biol, 19 (11), 3254-62, doi:10.1111/gcb.12315.
  1698. Hoberg, E. P. and D. R. Brooks, 2015: Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philos Trans R Soc Lond B Biol Sci, 370 (1665), 20130553, doi:10.1098/rstb.2013.0553.
  1699. Laaksonen, S. et al., 2017: Filarioid nematodes, threat to arctic food safety and security. In: Food safety and security [Paulsen, P., A. Bauer and F. J. M. Smulders (eds.)]. Wageningen Academic Publishers, 101-120.
  1700. Kafle, P. et al., 2018: Temperature-dependent development and freezing survival of protostrongylid nematodes of Arctic ungulates: implications for transmission. Parasites & Vectors, 11 (1), 400, doi:10.1186/s13071-018-2946-x.
  1701. Kutz, S. et al., 2015: Erysipelothrix rhusiopathiae associated with recent widespread muskox mortalities in the Canadian Arctic. Can Vet J, 56 (6), 560-563.
  1702. Forde, T. et al., 2016a: Genomic analysis of the multi-host pathogen Erysipelothrix rhusiopathiae reveals extensive recombination as well as the existence of three generalist clades with wide geographic distribution. BMC Genomics, 17, 461, doi:10.1186/s12864-016-2643-0.
  1703. Forde, T. L. et al., 2016b: Bacterial Genomics Reveal the Complex Epidemiology of an Emerging Pathogen in Arctic and Boreal Ungulates. Frontiers in Microbiology, 7, 1759, doi:10.3389/fmicb.2016.01759.
  1704. Walsh, M. G., A. W. de Smalen and S. M. Mor, 2018: Climatic influence on anthrax suitability in warming northern latitudes. Sci Rep, 8 (1), 9269, doi:10.1038/s41598-018-27604-w.
  1705. Jenkins, E. J. et al., 2013: Tradition and transition: parasitic zoonoses of people and animals in Alaska, northern Canada, and Greenland. Adv Parasitol, 82, 33-204, doi:10.1016/B978-0-12-407706-5.00002-2.
  1706. Kutz, S. J. et al., 2014: A walk on the tundra: Host-parasite interactions in an extreme environment. Int J Parasitol Parasites Wildl, 3 (2), 198-208, doi:10.1016/j.ijppaw.2014.01.002.
  1707. Hoberg, E. P. et al., 2017: Arctic systems in the Quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate. J Helminthol, 91 (4), 409-421, doi:10.1017/S0022149X17000347.
  1708. Hodgson, D. A. and J. P. Smol, 2008: High latitude paleolimnology. In: In Polar lakes and rivers—Limnology of Arctic and Antarctic aquatic ecosystems [Vincent, W. F. and J. Laybourn-Parry (eds.)]. Oxford University Press, Oxford, 43-64.
  1709. Vincent, W. F. et al., 2011: Ecological Implications of Changes in the Arctic Cryosphere. AMBIO, 40 (1), 87-99, doi:10.1007/s13280-011-0218-5.
  1710. Griffiths, K. et al., 2017b: Ice-cover is the principal driver of ecological change in High Arctic lakes and ponds. Plos One, 12 (3), e0172989, doi:10.1371/journal.pone.0172989.
  1711. Greene, S. et al., 2014: Modeling the impediment of methane ebullition bubbles by seasonal lake ice. Biogeosciences, 11 (23), 6791-6811, doi:10.5194/bg-11-6791-2014.
  1712. Tan, Z. and Q. Zhuang, 2015: Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environmental Research Letters, 10 (5), 054016, doi:10.1088/1748-9326/10/5/054016.
  1713. Connon, R. F., W. L. Quinton, J. R. Craig and M. Hayashi, 2014: Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrological Processes, 28 (14), 4163-4178, doi:10.1002/hyp.10206.
  1714. Kokelj, S. V. et al., 2013: Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales. Journal of Geophysical Research: Earth Surface, 118 (2), 681-692, doi:10.1002/jgrf.20063.
  1715. Abbott, B. W. et al., 2015: Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences, 12 (12), 3725-3740, doi:10.5194/bg-12-3725-2015.
  1716. Vonk, J. E. et al., 2015: Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences, 12 (23), 7129-7167, doi:10.5194/bg-12-7129-2015.
  1717. Wrona, F. J. et al., 2016: Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime. Journal of Geophysical Research: Biogeosciences, 121 (3), 650-674, doi:10.1002/2015jg003133.
  1718. Abbott, B. W. et al., 2014: Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. Journal of Geophysical Research: Biogeosciences, 119 (10), 2049-2063, doi:10.1002/2014jg002678.
  1719. Wickland, K. P. et al., 2018: Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska. Environmental Research Letters, 13 (6), 065011, doi:10.1088/1748-9326/aac4ad.
  1720. Walvoord, M. A., C. I. Voss, B. A. Ebel and B. J. Minsley, 2019: Development of perennial thaw zones in boreal hillslopes enhances potential mobilization of permafrost carbon. Environmental Research Letters, 14 (1), doi:10.1088/1748-9326/aaf0cc.
  1721. Semiletov, I. et al., 2016: Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon (vol 9, pg 361, 2016). Nature Geoscience, 9 (9), 1, doi:10.1038/ngeo2799.
  1722. Striegl, R. G. et al., 2005: A decrease in discharge‐normalized DOC export by the Yukon River during summer through autumn. Geophysical Research Letters, 32 (21), doi:10.1029/2005gl024413.
  1723. Walvoord, M. A. and R. G. Striegl, 2007: Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophysical Research Letters, 34 (L12402), doi:doi:10.1029/2007GL030216.
  1724. Zolkos, S., S. E. Tank and S. V. Kokelj, 2018: Mineral Weathering and the Permafrost Carbon-Climate Feedback. Geophysical Research Letters, 45 (18), 9623-9632, doi:10.1029/2018gl078748.
  1725. Schuster, P. F. et al., 2018: Permafrost Stores a Globally Significant Amount of Mercury. Geophysical Research Letters, 45 (3), 1463-1471, doi:10.1002/2017GL075571.
  1726. Colombo, N. et al., 2018: Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water. Global and Planetary Change, 162, 69-83, doi:10.1016/j.gloplacha.2017.11.017.
  1727. AMAP, 2017c: AMAP Assessment 2016: Chemicals of Emerging Arctic Concern. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, xvi+353pp [Available at: https://www.amap.no/documents/doc/AMAP-Assessment-2016-Chemicals-of-Emerging-Arctic-Concern/1624; Access Date: 10 October 2018].
  1728. Hodson, A. J., 2014: Understanding the dynamics of black carbon and associated contaminants in glacial systems. Wiley Interdisciplinary Reviews: Water, 1 (2), 141-149, doi:10.1002/wat2.1016.
  1729. Leppi, J. C., C. D. Arp and M. S. Whitman, 2016: Predicting Late Winter Dissolved Oxygen Levels in Arctic Lakes Using Morphology and Landscape Metrics. Environmental Management, 57 (2), 463-473, doi:10.1007/s00267-015-0622-x.
  1730. Poesch, M., S. et al., 2016: Climate Change Impacts on Freshwater Fishes: A Canadian Perspective. Fisheries, 41 (7), 385-391, doi:10.1080/03632415.2016.1180285.
  1731. Chin, K. S. et al., 2016: Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates. Glob Chang Biol, 22 (8), 2715-28, doi:10.1111/gcb.13225.
  1732. Rowland, J. C. et al., 2011: Arctic Landscapes in Transition: Responses to Thawing Permafrost. Eos, Transactions American Geophysical Union, 91 (26), 229-230, doi:10.1029/2010eo260001.
  1733. Liljedahl, A. K. et al., 2016: Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nature Geoscience, 9 (4), 312-318, doi:10.1038/ngeo2674.
  1734. Haynes, T. B. et al., 2014: Patterns of lake occupancy by fish indicate different adaptations to life in a harsh Arctic environment. Freshwater Biology, 59 (9), 1884-1896, doi:10.1111/fwb.12391.
  1735. Laske, S. M. et al., 2016: Surface water connectivity drives richness and composition of Arctic lake fish assemblages. Freshwater Biology, 61 (7), 1090-1104, doi:10.1111/fwb.12769.
  1736. Heim, K. C. et al., 2016: Seasonal cues of Arctic grayling movement in a small Arctic stream: the importance of surface water connectivity. Environmental Biology of Fishes, 99 (1), 49-65, doi:10.1007/s10641-015-0453-x.
  1737. McFarland, J. J., M. S. Wipfli and M. S. Whitman, 2017: Trophic pathways supporting Arctic grayling in a small stream on the Arctic Coastal Plain, Alaska. Ecology of Freshwater Fish, 27 (1), 184-197, doi:10.1111/eff.12336.
  1738. Heim, K. C. et al., 2016: Seasonal cues of Arctic grayling movement in a small Arctic stream: the importance of surface water connectivity. Environmental Biology of Fishes, 99 (1), 49-65, doi:10.1007/s10641-015-0453-x.
  1739. Lique, C. et al., 2016: Modeling the Arctic freshwater system and its integration in the global system: Lessons learned and future challenges. Journal of Geophysical Research: Biogeosciences, 121 (3), 540-566, doi:10.1002/2015jg003120.
  1740. Taylor, S. G., 2007: Climate warming causes phenological shift in Pink Salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska. Global Change Biology, 14 (2), 229-235, doi:10.1111/j.1365-2486.2007.01494.x.
  1741. Xu, L. et al., 2013a: Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, 3, 581, doi:10.1038/nclimate1836
  1742. Sformo, T. L. et al., 2017: Observations and first reports of saprolegniosis in Aanaakłiq, broad whitefish (Coregonus nasus), from the Colville River near Nuiqsut, Alaska. Polar Science, 14, 78-82, doi:10.1016/j.polar.2017.07.002.
  1743. Wedekind, C. et al., 2010: Elevated resource availability sufficient to turn opportunistic into virulent fish pathogens. Ecology, 91 (5), 1251-1256, doi:10.1890/09-1067.1.
  1744. Régnière, J., J. Powell, B. Bentz and V. Nealis, 2012: Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. Journal of Insect Physiology, 58 (5), 634-647, doi:10.1016/j.jinsphys.2012.01.010.
  1745. Frey, K. E., J. W. McClelland, R. M. Holmes and L. C. Smith, 2007: Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea. Journal of Geophysical Research: Biogeosciences, 112 (G4), G04S5, doi:10.1029/2006jg000369.
  1746. Duffy, G. A. et al., 2017: Barriers to globally invasive species are weakening across the Antarctic. Diversity and Distributions, 23 (9), 982-996, doi:10.1111/ddi.12593.
  1747. Frenot, Y. et al., 2005: Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 80 (1), 45-72, doi:10.1017/s1464793104006542.
  1748. Frederiksen, M., 2017: Synthesis: Status and trends of Arctic marine biodiversity and monitoring. In: CAFF State of the Arctic Marine Biodiversity Report. Conservation of Arctic Flora and Fauna International Secretariat Akureyri, Iceland, 175-195.
  1749. McCarthy, A. H., L. S. Peck, K. A. Hughes and D. C. Aldridge, 2019: Antarctica: The final frontier for marine biological invasions. Glob Chang Biol, 25 (7), 2221-2241, doi:10.1111/gcb.14600.
  1750. Brower, A. A. et al., 2017: Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 156-174, doi:10.1016/j.dsr2.2016.12.007.
  1751. Storrie, L. et al., 2018: Determining the species assemblage and habitat use of cetaceans in the Svalbard Archipelago, based on observations from 2002 to 2014. Polar Research, 37 (1), 1463065, doi:10.1080/17518369.2018.1463065.
  1752. Grebmeier, J. M., 2012: Shifting patterns of life in the Pacific Arctic and sub-Arctic Seas. Annual Reviews in Marine Science, 2012 (4), 63-78, doi:10.1146/annurev-marine-120710-100926.
  1753. Renaud, P. E. et al., 2015: The future of Arctic benthos: Expansion, invasion, and biodiversity. Progress in Oceanography, 139, 244-257, doi:10.1016/j.pocean.2015.07.007.
  1754. Kortsch, S. et al., 2012: Climate-driven regime shifts in Arctic marine benthos. Proceedings of the National Academy of Sciences of the United States of America, 109 (35), 14052-14057, doi:10.1073/pnas.1207509109.
  1755. Winfield, I. J. et al., 2010: Population trends of Arctic charr (Salvelinus alpinus) in the UK: assessing the evidence for a widespread decline in response to climate change. Hydrobiologia, 650 (1), 55-65, doi:10.1007/s10750-009-0078-1.
  1756. Bromaghin, J. F. et al., 2015: Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecological Applications, 25 (3), 634-651, doi:10.1890/14-1129.1.
  1757. Laidre, K. L. et al., 2018: Range contraction and increasing isolation of a polar bear subpopulation in an era of sea-ice loss. Ecology and Evolution, 8 (4), 2062-2075, doi:10.1002/ece3.3809.
  1758. Berge, J. et al., 2015: First Records of Atlantic Mackerel (Scomber scombrus) from the Svalbard Archipelago, Norway, with Possible Explanations for the Extension of Its Distribution. Arctic, 68 (1), 54-61, doi:10.14430/arctic4455.
  1759. Jansen, T. et al., 2016: Ocean warming expands habitat of a rich natural resource and benefits a national economy. Ecological Applications, 26 (7), 2021-2032, doi:10.1002/eap.1384.
  1760. Nøttestad, L. et al., 2016: Quantifying changes in abundance, biomass, and spatial distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic seas from 2007 to 2014. ICES Journal of Marine Science, 73 (2), 359-373, doi:10.1093/icesjms/fsv218.
  1761. Berge, J. et al., 2015: First Records of Atlantic Mackerel (Scomber scombrus) from the Svalbard Archipelago, Norway, with Possible Explanations for the Extension of Its Distribution. Arctic, 68 (1), 54-61, doi:10.14430/arctic4455.
  1762. Olafsdottir, A. H. et al., 2019: Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep Sea Research Part II: Topical Studies in Oceanography, 159, 152-168, doi:10.1016/j.dsr2.2018.05.023.
  1763. Jansen, T. et al., 2016: Ocean warming expands habitat of a rich natural resource and benefits a national economy. Ecological Applications, 26 (7), 2021-2032, doi:10.1002/eap.1384.
  1764. Sundby, S., K. F. Drinkwater and O. S. Kjesbu, 2016: The North Atlantic Spring-Bloom System—Where the Changing Climate Meets the Winter Dark. Frontiers in Marine Science, 3, doi:10.3389/fmars.2016.00028.
  1765. Alabia, I. D. et al., 2018: Distribution shifts of marine taxa in the Pacific Arctic under contemporary climate changes. Diversity and Distributions, 24 (11), 1583-1597, doi:10.1111/ddi.12788.
  1766. Stevenson, D. E. and R. R. Lauth, 2018: Bottom trawl surveys in the northern Bering Sea indicate recent shifts in the distribution of marine species. Polar Biology, 42 (2), 407-421, doi:10.1007/s00300-018-2431-1.
  1767. Ingvaldsen, R. B. and H. Gjøsæter, 2013: Responses in spatial distribution of Barents Sea capelin to changes in stock size, ocean temperature and ice cover. Marine Biology Research, 9 (9), 867-877, doi:10.1080/17451000.2013.775450.
  1768. Kjesbu, O. S. et al., 2014: Synergies between climate and management for Atlantic cod fisheries at high latitudes. Proceedings of the National Academy of Sciences, 111 (9), 3478-3483, doi:10.1073/pnas.1316342111.
  1769. Landa, C. S. et al., 2014: Recruitment, distribution boundary and habitat temperature of an arcto-boreal gadoid in a climatically changing environment: a case study on Northeast Arctic haddock (Melanogrammus aeglefinus). Fisheries Oceanography, 23 (6), 506-520, doi:10.1111/fog.12085.
  1770. Fossheim, M. et al., 2015: Recent warming leads to a rapid borealization of fish communities in the Arctic. Nature Climate Change, 5, 673, doi:10.1038/nclimate2647.
  1771. Kortsch, S. et al., 2015: Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proceedings of the Royal Society B: Biological Sciences, 282 (1814), 20151546, doi:10.1098/rspb.2015.1546.
  1772. Frainer, A. et al., 2017: Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc Natl Acad Sci U S A, 114 (46), 12202-12207, doi:10.1073/pnas.1706080114.
  1773. Fossheim, M. et al., 2015: Recent warming leads to a rapid borealization of fish communities in the Arctic. Nature Climate Change, 5, 673, doi:10.1038/nclimate2647.
  1774. Kortsch, S. et al., 2015: Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proceedings of the Royal Society B: Biological Sciences, 282 (1814), 20151546, doi:10.1098/rspb.2015.1546.
  1775. Frainer, A. et al., 2017: Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc Natl Acad Sci U S A, 114 (46), 12202-12207, doi:10.1073/pnas.1706080114.
  1776. Andrews, A. J. et al., 2019: Boreal marine fauna from the Barents Sea disperse to Arctic Northeast Greenland. Sci Rep, 9 (1), 5799, doi:10.1038/s41598-019-42097-x.
  1777. Fraser, C. I., G. M. Kay, M. d. Plessis and P. G. Ryan, 2017: Breaking down the barrier: dispersal across the Antarctic Polar Front. Ecography, 40 (1), 235-237, doi:10.1111/ecog.02449.
  1778. Fraser, C. I. et al., 2018: Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nature Climate Change, 8, 704-708, doi:10.1038/s41558-018-0209-7.
  1779. McCarthy, A. H., L. S. Peck, K. A. Hughes and D. C. Aldridge, 2019: Antarctica: The final frontier for marine biological invasions. Glob Chang Biol, 25 (7), 2221-2241, doi:10.1111/gcb.14600.
  1780. Griffiths, H. J. et al., 2013: Antarctic Crabs: Invasion or Endurance? Plos One, 8 (7), e66981, doi:10.1371/journal.pone.0066981.
  1781. Aronson, R. B. et al., 2015: No barrier to emergence of bathyal king crabs on the Antarctic shelf. Proc Natl Acad Sci U S A, 112 (42), 12997-13002, doi:10.1073/pnas.1513962112.
  1782. Smith, K. E. et al., 2017d: Climate change and the threat of novel marine predators in Antarctica. Ecosphere, 8 (11), 1-3, doi:10.1002/ecs2.2017.
  1783. CAFF, 2013a: Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna (CAFF), Akureyri, Iceland, 28pp [Available at: http://arcticlcc.org/assets/resources/ABA2013Science.pdf; Accecss Date: 10 October 2018].
  1784. AMAP, 2017a: Adaptation Actions for a Changing Arctic (AACA) – Bering/Chukchi/Beaufort Region Overview report. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 24 pp.
  1785. AMAP, 2017b: Adaptation Actions for a Changing Arctic: Perspectives from the Barents Area. Arctic Monitoring and Assessment Programme (AMAP), xiv + 267pp.
  1786. AMAP, 2015: AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vi+71pp [Available at: https://www.amap.no/documents/doc/amap-assessment-2015-temporal-trends-in-persistent-organic-pollutants-in-the-arctic/1521; Access Date: 25 October 2018].
  1787. Safronov, V. M., 2016: Climate change and mammals of Yakutia. Biology Bulletin, 43 (9), 1256-1270, doi:10.1134/S1062359016110121.
  1788. Tape, K. D. et al., 2016: Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat. Plos One, 11 (4), e0152636, doi:10.1371/journal.pone.0152636.
  1789. Tape, K. D. et al., 2018: Tundra be dammed: Beaver colonization of the Arctic. Global Change Biology, 24 (10), 4478-4488, doi:10.1111/gcb.14332.
  1790. CAFF, 2013a: Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna (CAFF), Akureyri, Iceland, 28pp [Available at: http://arcticlcc.org/assets/resources/ABA2013Science.pdf; Accecss Date: 10 October 2018].
  1791. Taylor, D. J., M. J. Ballinger, A. S. Medeiros and A. A. Kotov, 2015: Climate-associated tundra thaw pond formation and range expansion of boreal zooplankton predators. Ecography, 39 (1), 43-53, doi:10.1111/ecog.01514.
  1792. Forde, T. L. et al., 2016b: Bacterial Genomics Reveal the Complex Epidemiology of an Emerging Pathogen in Arctic and Boreal Ungulates. Frontiers in Microbiology, 7, 1759, doi:10.3389/fmicb.2016.01759.
  1793. Burke, J. L., J. Bohlmann and A. L. Carroll, 2017b: Consequences of distributional asymmetry in a warming environment: invasion of novel forests by the mountain pine beetle. Ecosphere, 8 (4), e01778, doi:10.1002/ecs2.1778.
  1794. Kafle, P. et al., 2018: Temperature-dependent development and freezing survival of protostrongylid nematodes of Arctic ungulates: implications for transmission. Parasites & Vectors, 11 (1), 400, doi:10.1186/s13071-018-2946-x.
  1795. Myers-Smith, I. H. et al., 2015: Climate sensitivity of shrub growth across the tundra biome. Nature Clim. Change, 5 (9), 887-891, doi:10.1038/nclimate2697.
  1796. Bhatt, U. et al., 2017: Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environmental Research Letters, 12 (5), doi:10.1088/1748-9326/aa6b0b.
  1797. CAFF, 2013a: Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna (CAFF), Akureyri, Iceland, 28pp [Available at: http://arcticlcc.org/assets/resources/ABA2013Science.pdf; Accecss Date: 10 October 2018].
  1798. CAVM Team, 2003: Circumpolar Arctic Vegetation Map. Scale 1:7,500,000. Conservation of Arctic Flora and Fauna (CAFF) Map No. 1., Anchorage, Alaska.
  1799. Walker, D. A. et al., 2016: Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data. Environmental Research Letters, 11 (5), 055005, doi:10.1088/1748-9326/11/5/055005.
  1800. AMAP, 2015: AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vi+71pp [Available at: https://www.amap.no/documents/doc/amap-assessment-2015-temporal-trends-in-persistent-organic-pollutants-in-the-arctic/1521; Access Date: 25 October 2018].
  1801. CAFF, 2013a: Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna (CAFF), Akureyri, Iceland, 28pp [Available at: http://arcticlcc.org/assets/resources/ABA2013Science.pdf; Accecss Date: 10 October 2018].
  1802. CAFF, 2013b: Arctic Biodiversity Assessment: Report for Policy Makers. Conservation of Arctic Flora and Fauna (CAFF), Akureyri, Iceland, 678pp.
  1803. AMAP, 2015: AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vi+71pp [Available at: https://www.amap.no/documents/doc/amap-assessment-2015-temporal-trends-in-persistent-organic-pollutants-in-the-arctic/1521; Access Date: 25 October 2018].
  1804. Walker, D. A. et al., 2015: A hierarchic approach for examining panarctic vegetation with a focus on the linkages between remote-sensing and plot-based studies: A prototype example from Toolik Lake, Alaska. In: AGU Fall meeting 14-19 Dec 2015, San Francisco, USA, AGU Fall Meeting.
  1805. Walker, D. A. et al., 2015: A hierarchic approach for examining panarctic vegetation with a focus on the linkages between remote-sensing and plot-based studies: A prototype example from Toolik Lake, Alaska. In: AGU Fall meeting 14-19 Dec 2015, San Francisco, USA, AGU Fall Meeting.
  1806. Myers‐Smith, I. H. et al., 2019: Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecological Monographs, 89 (2), e01351, doi:10.1002/ecm.1351.
  1807. CAFF, 2017: State of the Arctic Marine Biodiversity Report. Conservation of Arctic Flora and Fauna International Secretariat, Akureyri, Iceland, 200pp.
  1808. Frenot, Y. et al., 2005: Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 80 (1), 45-72, doi:10.1017/s1464793104006542.
  1809. Chown, S. L. et al., 2012: Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proceedings of the National Academy of Sciences, 109 (13), 4938, doi:10.1073/pnas.1119787109.
  1810. McClelland, G. T. W. et al., 2017: Climate change leads to increasing population density and impacts of a key island invader. Ecological Applications, 28 (1), 212-224, doi:10.1002/eap.1642.
  1811. Hughes, K. A., L. R. Pertierra, M. A. Molina-Montenegro and P. Convey, 2015: Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodiversity and Conservation, 24 (5), 1031-1055, doi:10.1007/s10531-015-0896-6.
  1812. Hughes, K. A., L. R. Pertierra, M. A. Molina-Montenegro and P. Convey, 2015: Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodiversity and Conservation, 24 (5), 1031-1055, doi:10.1007/s10531-015-0896-6.
  1813. Frenot, Y. et al., 2005: Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 80 (1), 45-72, doi:10.1017/s1464793104006542.
  1814. Duffy, G. A. et al., 2017: Barriers to globally invasive species are weakening across the Antarctic. Diversity and Distributions, 23 (9), 982-996, doi:10.1111/ddi.12593.
  1815. Lee, J. R. et al., 2017a: Climate change drives expansion of Antarctic ice-free habitat. Nature, 547 (7661), 49, doi:10.1038/nature22996.
  1816. Chown, S. L. et al., 2012: Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proceedings of the National Academy of Sciences, 109 (13), 4938, doi:10.1073/pnas.1119787109.
  1817. Hughes, K. A., L. R. Pertierra, M. A. Molina-Montenegro and P. Convey, 2015: Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodiversity and Conservation, 24 (5), 1031-1055, doi:10.1007/s10531-015-0896-6.
  1818. Heleniak, T., 2014: Arctic Populations and Migration. In: Arctic Human Development Report: Regional Processes and Global Linkages [Nymand Larsen, J. and G. Fondhal (eds.)]. Nordic Council of Ministers, Copenhagen, 53-104.
  1819. Schweitzer, P., P. Sköld and O. Ulturgasheva, 2014: Cultures and Identities. In: Arctic Human Development Report: Regional Processes and Global Linkages [Nymand Larsen, J. and G. Fondhal (eds.)]. Nordic Council of Ministers, Copenhagen, 105-150.
  1820. Cunsolo Willox, A. et al., 2012: From this place and of this place:” Climate change, sense of place, and health in Nunatsiavut, Canada. Social Science & Medicine, 75 (3), 538-547, doi:10.1016/j.socscimed.2012.03.043.
  1821. Durkalec, A., C. Furgal, M. W. Skinner and T. Sheldon, 2014: Investigating environmental determinants of injury and trauma in the Canadian north. Int J Environ Res Public Health, 11 (2), 1536-1548, doi:10.3390/ijerph110201536.
  1822. Cochran, P. et al., 2013: Indigenous frameworks for observing and responding to climate change in Alaska. Climatic Change, 120 (3), 557-567, doi:10.1007/s10584-013-0735-2.
  1823. Donaldson, S. G. et al., 2010: Environmental contaminants and human health in the Canadian Arctic. Science of the Total Environment, 408 (22), 5165-5234, doi:10.1016/j.scitotenv.2010.04.059.
  1824. Cunsolo Willox, A. et al., 2015: Examining relationships between climate change and mental health in the Circumpolar North. Regional Environmental Change, 15 (1), 169-182, doi:10.1007/s10113-014-0630-z.
  1825. Parlee, B. and C. Furgal, 2012: Well-being and environmental change in the arctic: a synthesis of selected research from Canada’s International Polar Year program. Climatic Change, 115 (1), 13-34, doi:10.1007/s10584-012-0588-0.
  1826. Rautio, A., B. Poppel and K. Young, 2014: Human Health and Well-Being. In: Arctic Human Development Report [Nymand Larson, J. and G. Fondahl (eds.)]. Nordic Council of Ministers, Copenhagen, 299-348.
  1827. Lavrillier, A., 2013: Climate change among nomadic and settled Tungus of Siberia: continuity and changes in economic and ritual relationships with the natural environment. Polar Record, 49 (3), 260-271, doi:10.1017/s0032247413000284.
  1828. Rosol, R., S. Powell-Hellyer and L. H. M. Chan, 2016: Impacts of decline harvest of country food on nutrient intake among Inuit in Arctic Canada: Impact of climate change and possible adaptation plan. International Journal of Circumpolar Health, 75, 31127, doi:10.3402/ijch.v75.31127.
  1829. Donaldson, S. G. et al., 2010: Environmental contaminants and human health in the Canadian Arctic. Science of the Total Environment, 408 (22), 5165-5234, doi:10.1016/j.scitotenv.2010.04.059.
  1830. Hansen, B. B. et al., 2013: Climate Events Synchronize the Dynamics of a Resident Vertebrate Community in the High Arctic. Science, 339 (6117), 313, doi:10.1126/science.1226766.
  1831. Dudley, J. P., E. P. Hoberg, E. J. Jenkins and A. J. Parkinson, 2015: Climate Change in the North American Arctic: A One Health Perspective. EcoHealth, 12 (4), 713-725, doi:10.1007/s10393-015-1036-1.
  1832. Laidler, G., 2012: Societal Aspects of Changing Cold Environments. In: Changing Cold Environments: A Canadian Perspective [French, H. and O. Slaymaker (eds.)]. Wiley-Blackwell, Oxford, 267-300.
  1833. Goldhar, C., T. Bell and J. Wolf, 2014: Vulnerability to Freshwater Changes in the Inuit Settlement Region of Nunatsiavut, Labrador: A Case Study from Rigolet. Arctic, 67 (1), 71-83, doi:10.14430/arctic4365.
  1834. Laidler, G., 2012: Societal Aspects of Changing Cold Environments. In: Changing Cold Environments: A Canadian Perspective [French, H. and O. Slaymaker (eds.)]. Wiley-Blackwell, Oxford, 267-300.
  1835. Cochran, P. et al., 2013: Indigenous frameworks for observing and responding to climate change in Alaska. Climatic Change, 120 (3), 557-567, doi:10.1007/s10584-013-0735-2.
  1836. Cozzetto, K. et al., 2013: Climate change impacts on the water resources of American Indians and Alaska Natives in the U.S. Climatic Change, 120 (3), 569-584, doi:10.1007/s10584-013-0852-y.
  1837. Rautio, A., B. Poppel and K. Young, 2014: Human Health and Well-Being. In: Arctic Human Development Report [Nymand Larson, J. and G. Fondahl (eds.)]. Nordic Council of Ministers, Copenhagen, 299-348.
  1838. Beaumier, M. C., J. D. Ford and S. Tagalik, 2015: The food security of Inuit women in Arviat, Nunavut: the role of socio-economic factors and climate change. Polar Record, 51 (5), 550-559, doi:10.1017/s0032247414000618.
  1839. Harder, M. T. and G. W. Wenzel, 2012: Inuit subsistence, social economy and food security in Clyde River, Nunavut. Arctic, 65 (3), 305-318.
  1840. Parlee, B. and C. Furgal, 2012: Well-being and environmental change in the arctic: a synthesis of selected research from Canada’s International Polar Year program. Climatic Change, 115 (1), 13-34, doi:10.1007/s10584-012-0588-0.
  1841. Nymand, L. J. and G. Fondahl, 2014: Major Findings and Emerging Trends in Arctic Human Development. In: Arctic Human Development Report: Regional Processes and Global Linkages [Nymand Larsen, J. and G. Fondhal (eds.)]. Nordic Council of Ministers, Copenhagen, 479-502.
  1842. Beaumier, M. C., J. D. Ford and S. Tagalik, 2015: The food security of Inuit women in Arviat, Nunavut: the role of socio-economic factors and climate change. Polar Record, 51 (5), 550-559, doi:10.1017/s0032247414000618.
  1843. Hoberg, E. P. and D. R. Brooks, 2015: Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philos Trans R Soc Lond B Biol Sci, 370 (1665), 20130553, doi:10.1098/rstb.2013.0553.
  1844. Kafle, P. et al., 2018: Temperature-dependent development and freezing survival of protostrongylid nematodes of Arctic ungulates: implications for transmission. Parasites & Vectors, 11 (1), 400, doi:10.1186/s13071-018-2946-x.
  1845. Laidler, G., 2012: Societal Aspects of Changing Cold Environments. In: Changing Cold Environments: A Canadian Perspective [French, H. and O. Slaymaker (eds.)]. Wiley-Blackwell, Oxford, 267-300.
  1846. Ford, J. D. et al., 2019: Changing access to ice, land and water in Arctic communities. Nature Climate Change, 9 (4), 335-339, doi:10.1038/s41558-019-0435-7.
  1847. Ford, J. D., 2012: Indigenous health and climate change. American Journal of Public Health, 102 (7), 1260-1266, doi:10.2105/AJPH.2012.300752.
  1848. Laidler, G., 2012: Societal Aspects of Changing Cold Environments. In: Changing Cold Environments: A Canadian Perspective [French, H. and O. Slaymaker (eds.)]. Wiley-Blackwell, Oxford, 267-300.
  1849. Ford, J. D. and D. King, 2013: A framework for examining adaptation readiness. Mitigation and Adaptation Strategies for Global Change, 20 (4), 505-526, doi:10.1007/s11027-013-9505-8.
  1850. Clark, D. G., J. D. Ford, T. Pearce and L. Berrang-Ford, 2016b: Vulnerability to unintentional injuries associated with land-use activities and search and rescue in Nunavut, Canada. Social Science and Medicine, 169, 18-26, doi:10.1016/j.socscimed.2016.09.026.
  1851. Goldhar, C., T. Bell and J. Wolf, 2014: Vulnerability to Freshwater Changes in the Inuit Settlement Region of Nunatsiavut, Labrador: A Case Study from Rigolet. Arctic, 67 (1), 71-83, doi:10.14430/arctic4365.
  1852. Brinkman, T. J. et al., 2016: Arctic communities perceive climate impacts on access as a critical challenge to availability of subsistence resources. Climatic Change, 139 (3), 413-427, doi:10.1007/s10584-016-1819-6.
  1853. Dodd, W. et al., 2018: Lived experience of a record wildfire season in the Northwest Territories, Canada. Can J Public Health, 109 (3), 327-337, doi:10.17269/s41997-018-0070-5.
  1854. Inuit Circumpolar Council, 2014: The Sea Ice Never Stops. Circumpolar Inuit Reflections on Sea Ice Use and Shipping in Inuit Nunaat. (ICC), I. C. C., Canada [Available at: http://hdl.handle.net/11374/1478%5D.
  1855. Gearheard, S. F. et al., 2013: The meaning of ice: People and sea ice in three Arctic communities. International Polar Institute, Montreal.
  1856. Eicken, H. et al., 2014: A framework and database for community sea ice observations in a changing Arctic: an Alaskan prototype for multiple users. Polar Geography, 37 (1), 5-27, doi:10.1080/1088937x.2013.873090.
  1857. Baztan, J. et al., 2017: Life on thin ice: Insights from Uummannaq, Greenland for connecting climate science with Arctic communities. Polar Science, 13, 100-108, doi:10.1016/j.polar.2017.05.002.
  1858. Hansen, B. B. et al., 2013: Climate Events Synchronize the Dynamics of a Resident Vertebrate Community in the High Arctic. Science, 339 (6117), 313, doi:10.1126/science.1226766.
  1859. Eicken, H. et al., 2014: A framework and database for community sea ice observations in a changing Arctic: an Alaskan prototype for multiple users. Polar Geography, 37 (1), 5-27, doi:10.1080/1088937x.2013.873090.
  1860. Clark, D. G. et al., 2016a: The role of environmental factors in search and rescue incidents in Nunavut, Canada. Public Health, 137 (Supplement C), 44-49, doi:10.1016/j.puhe.2016.06.003.
  1861. Hansen, B. B. et al., 2013: Climate Events Synchronize the Dynamics of a Resident Vertebrate Community in the High Arctic. Science, 339 (6117), 313, doi:10.1126/science.1226766.
  1862. Eicken, H. et al., 2014: A framework and database for community sea ice observations in a changing Arctic: an Alaskan prototype for multiple users. Polar Geography, 37 (1), 5-27, doi:10.1080/1088937x.2013.873090.
  1863. Ford, J. D. and D. King, 2013: A framework for examining adaptation readiness. Mitigation and Adaptation Strategies for Global Change, 20 (4), 505-526, doi:10.1007/s11027-013-9505-8.
  1864. Hansen, B. B. et al., 2013: Climate Events Synchronize the Dynamics of a Resident Vertebrate Community in the High Arctic. Science, 339 (6117), 313, doi:10.1126/science.1226766.
  1865. Durkalec, A., C. Furgal, M. W. Skinner and T. Sheldon, 2014: Investigating environmental determinants of injury and trauma in the Canadian north. Int J Environ Res Public Health, 11 (2), 1536-1548, doi:10.3390/ijerph110201536.
  1866. Ford, J. D. and D. King, 2013: A framework for examining adaptation readiness. Mitigation and Adaptation Strategies for Global Change, 20 (4), 505-526, doi:10.1007/s11027-013-9505-8.
  1867. Eicken, H. et al., 2014: A framework and database for community sea ice observations in a changing Arctic: an Alaskan prototype for multiple users. Polar Geography, 37 (1), 5-27, doi:10.1080/1088937x.2013.873090.
  1868. Cochran, P. et al., 2013: Indigenous frameworks for observing and responding to climate change in Alaska. Climatic Change, 120 (3), 557-567, doi:10.1007/s10584-013-0735-2.
  1869. Goldhar, C., T. Bell and J. Wolf, 2013: Rethinking Existing Approaches to Water Security in Remote Communities: An Analysis of Two Drinking Water Systems in Nunatsiavut, Labrador, Canada. Water Alternatives, 6 (3), 462-486.
  1870. Nymand, L. J. and G. Fondahl, 2014: Major Findings and Emerging Trends in Arctic Human Development. In: Arctic Human Development Report: Regional Processes and Global Linkages [Nymand Larsen, J. and G. Fondhal (eds.)]. Nordic Council of Ministers, Copenhagen, 479-502.
  1871. Daley, K. et al., 2015: Water systems, sanitation, and public health risks in remote communities: Inuit resident perspectives from the Canadian Arctic. Social Science & Medicine, 135 (Supplement C), 124-132, doi:10.1016/j.socscimed.2015.04.017.
  1872. Dudley, J. P., E. P. Hoberg, E. J. Jenkins and A. J. Parkinson, 2015: Climate Change in the North American Arctic: A One Health Perspective. EcoHealth, 12 (4), 713-725, doi:10.1007/s10393-015-1036-1.
  1873. Masina, S. et al., 2019: Weather, environmental conditions, and waterborne Giardia and Cryptosporidium in Iqaluit, Nunavut. J Water Health, 17 (1), 84-97, doi:10.2166/wh.2018.323.
  1874. Cozzetto, K. et al., 2013: Climate change impacts on the water resources of American Indians and Alaska Natives in the U.S. Climatic Change, 120 (3), 569-584, doi:10.1007/s10584-013-0852-y.
  1875. Goldhar, C., T. Bell and J. Wolf, 2013: Rethinking Existing Approaches to Water Security in Remote Communities: An Analysis of Two Drinking Water Systems in Nunatsiavut, Labrador, Canada. Water Alternatives, 6 (3), 462-486.
  1876. Dudley, J. P., E. P. Hoberg, E. J. Jenkins and A. J. Parkinson, 2015: Climate Change in the North American Arctic: A One Health Perspective. EcoHealth, 12 (4), 713-725, doi:10.1007/s10393-015-1036-1.
  1877. Masina, S. et al., 2019: Weather, environmental conditions, and waterborne Giardia and Cryptosporidium in Iqaluit, Nunavut. J Water Health, 17 (1), 84-97, doi:10.2166/wh.2018.323.
  1878. Daley, K. et al., 2015: Water systems, sanitation, and public health risks in remote communities: Inuit resident perspectives from the Canadian Arctic. Social Science & Medicine, 135 (Supplement C), 124-132, doi:10.1016/j.socscimed.2015.04.017.
  1879. Eicken, H. et al., 2014: A framework and database for community sea ice observations in a changing Arctic: an Alaskan prototype for multiple users. Polar Geography, 37 (1), 5-27, doi:10.1080/1088937x.2013.873090.
  1880. Durkalec, A., C. Furgal, M. W. Skinner and T. Sheldon, 2014: Investigating environmental determinants of injury and trauma in the Canadian north. Int J Environ Res Public Health, 11 (2), 1536-1548, doi:10.3390/ijerph110201536.
  1881. Ford, J. D., 2012: Indigenous health and climate change. American Journal of Public Health, 102 (7), 1260-1266, doi:10.2105/AJPH.2012.300752.
  1882. Parlee, B. and C. Furgal, 2012: Well-being and environmental change in the arctic: a synthesis of selected research from Canada’s International Polar Year program. Climatic Change, 115 (1), 13-34, doi:10.1007/s10584-012-0588-0.
  1883. Eicken, H. et al., 2014: A framework and database for community sea ice observations in a changing Arctic: an Alaskan prototype for multiple users. Polar Geography, 37 (1), 5-27, doi:10.1080/1088937x.2013.873090.
  1884. Pearce, T., J. Ford, A. C. Willox and B. Smit, 2015: Inuit Traditional Ecological Knowledge (TEK), Subsistence Hunting and Adaptation to Climate Change in the Canadian Arctic. Arctic, 68 (2), 233-245, doi:10.14430/arctic4475.
  1885. Parlee, B. and C. Furgal, 2012: Well-being and environmental change in the arctic: a synthesis of selected research from Canada’s International Polar Year program. Climatic Change, 115 (1), 13-34, doi:10.1007/s10584-012-0588-0.
  1886. Golovnev, A., 2017: Challenges to Arctic Nomadism: Yamal Nenets Facing Climate Change Era Calamities. Arctic Anthropology, 54, 40-51.
  1887. Ford, J. D. et al., 2019: Changing access to ice, land and water in Arctic communities. Nature Climate Change, 9 (4), 335-339, doi:10.1038/s41558-019-0435-7.
  1888. Harder, M. T. and G. W. Wenzel, 2012: Inuit subsistence, social economy and food security in Clyde River, Nunavut. Arctic, 65 (3), 305-318.
  1889. Cochran, P. et al., 2013: Indigenous frameworks for observing and responding to climate change in Alaska. Climatic Change, 120 (3), 557-567, doi:10.1007/s10584-013-0735-2.
  1890. Clark, D. G., J. D. Ford, T. Pearce and L. Berrang-Ford, 2016b: Vulnerability to unintentional injuries associated with land-use activities and search and rescue in Nunavut, Canada. Social Science and Medicine, 169, 18-26, doi:10.1016/j.socscimed.2016.09.026.
  1891. Fall, J., 2016: Regional Patterns of Fish and Wildlife Harvests in Contemporary Alaska. Arctic, 69 (1), 47-54, doi:10.14430/arctic4547.
  1892. Ford, J. D. et al., 2016: Including indigenous knowledge and experience in IPCC assessment reports. Nature Climate Change, 6, 349, doi:10.1038/nclimate2954
  1893. Lavrillier, A., S. Gabyshev and M. Rojo, 2016: The Sable for Evenk Reindeer Herders in Southeastern Siberia: Interplaying Drivers of Changes on Biodiversity and Ecosystem Services. In: Indigenous and Local Knowledge of Biodiversity and Ecosystems Services in Europe and Central Asia: Contributions to an IPBES regional assessment [Roué, M. and Z. Molnar (eds.)]. UNESCO, Paris, 111-128.
  1894. Ford, J. D., 2012: Indigenous health and climate change. American Journal of Public Health, 102 (7), 1260-1266, doi:10.2105/AJPH.2012.300752.
  1895. Huskey, L., I. Maenpaa and A. Pelyasov, 2014: Economic Systems. In: Arctic Human Development Report [Nymand Larson, J. and G. Fondahl (eds.)]. Nordic Council of Ministers, Copenhagen, 151-184.
  1896. Overland, J. et al., 2017: Synthesis: summary and implications of findings. Snow, Water, Ice and Permafrost in the Arctic (SWIPA), Arctic Monitoring and Assessment Programme, Oslo, Norway, 269p.
  1897. Cochran, P. et al., 2013: Indigenous frameworks for observing and responding to climate change in Alaska. Climatic Change, 120 (3), 557-567, doi:10.1007/s10584-013-0735-2.
  1898. Parlee, B. and C. Furgal, 2012: Well-being and environmental change in the arctic: a synthesis of selected research from Canada’s International Polar Year program. Climatic Change, 115 (1), 13-34, doi:10.1007/s10584-012-0588-0.
  1899. Ostapchuk, J. et al., 2015: Exploring Elders ’ and Seniors ’ Perceptions of How Climate Change is Impacting Health and Well-being in Rigolet, Nunatsiavut. Journal of Aboriginal Health, 9, 6-24, doi:10.18357/ijih92201214358.
  1900. Gearheard, S. et al., 2006: “It’s Not that Simple”: A Collaborative Comparison of Sea Ice Environments, Their Uses, Observed Changes, and Adaptations in Barrow, Alaska, USA, and Clyde River, Nunavut, Canada. AMBIO: A Journal of the Human Environment, 35 (4), 203-211, doi:10.1579/0044-7447(2006)35[203:intsac]2.0.co;2.
  1901. Laidler, G. J., 2006: Inuit and Scientific Perspectives on the Relationship Between Sea Ice and Climate Change: The Ideal Complement? Climatic Change, 78 (2), 407, doi:10.1007/s10584-006-9064-z.
  1902. Ford, J. D. and D. King, 2013: A framework for examining adaptation readiness. Mitigation and Adaptation Strategies for Global Change, 20 (4), 505-526, doi:10.1007/s11027-013-9505-8.
  1903. Clark, D. G. et al., 2016a: The role of environmental factors in search and rescue incidents in Nunavut, Canada. Public Health, 137 (Supplement C), 44-49, doi:10.1016/j.puhe.2016.06.003.
  1904. Durkalec, A., C. Furgal, M. W. Skinner and T. Sheldon, 2014: Investigating environmental determinants of injury and trauma in the Canadian north. Int J Environ Res Public Health, 11 (2), 1536-1548, doi:10.3390/ijerph110201536.
  1905. Durkalec, A., C. Furgal, M. W. Skinner and T. Sheldon, 2014: Investigating environmental determinants of injury and trauma in the Canadian north. Int J Environ Res Public Health, 11 (2), 1536-1548, doi:10.3390/ijerph110201536.
  1906. Clark, D. G., J. D. Ford, T. Pearce and L. Berrang-Ford, 2016b: Vulnerability to unintentional injuries associated with land-use activities and search and rescue in Nunavut, Canada. Social Science and Medicine, 169, 18-26, doi:10.1016/j.socscimed.2016.09.026.
  1907. Driscoll, D. L. et al., 2016: Assessing the health effects of climate change in Alaska with community-based surveillance. Climatic Change, 137 (3), 455-466, doi:10.1007/s10584-016-1687-0.
  1908. Parkinson, A. J. and J. Berner, 2009: Climate change and impacts on human health in the Arctic: an international workshop on emerging threats and the response of Arctic communities to climate change. International Journal of Circumpolar Health, 68 (1), 84-91, doi:10.3402/ijch.v68i1.18295.
  1909. McLaughlin, J. B. et al., 2005: Outbreak of Vibrio parahaemolyticus Gastroenteritis Associated with Alaskan Oysters. New England Journal of Medicine, 353 (14), 1463-1470, doi:10.1056/NEJMoa051594.
  1910. Young, I., K. Gropp, A. Fazil and B. A. Smith, 2015: Knowledge synthesis to support risk assessment of climate change impacts on food and water safety: A case study of the effects of water temperature and salinity on Vibrio parahaemolyticus in raw oysters and harvest waters. Food Research International, 68, 86-93, doi:10.1016/j.foodres.2014.06.035.
  1911. Schuster, P. F. et al., 2018: Permafrost Stores a Globally Significant Amount of Mercury. Geophysical Research Letters, 45 (3), 1463-1471, doi:10.1002/2017GL075571.
  1912. Parkinson, A. J. and J. Berner, 2009: Climate change and impacts on human health in the Arctic: an international workshop on emerging threats and the response of Arctic communities to climate change. International Journal of Circumpolar Health, 68 (1), 84-91, doi:10.3402/ijch.v68i1.18295.
  1913. Brubaker, M., J. Berner, R. Chavan and J. Warren, 2011: Climate change and health effects in Northwest Alaska. Global Health Action, 4 (1), 8445, doi:10.3402/gha.v4i0.8445.
  1914. Dudley, J. P., E. P. Hoberg, E. J. Jenkins and A. J. Parkinson, 2015: Climate Change in the North American Arctic: A One Health Perspective. EcoHealth, 12 (4), 713-725, doi:10.1007/s10393-015-1036-1.
  1915. Harper, S. L. et al., 2011: Weather, Water Quality and Infectious Gastrointestinal Illness in Two Inuit Communities in Nunatsiavut, Canada: Potential Implications for Climate Change. EcoHealth, 8 (1), 93-108, doi:10.1007/s10393-011-0690-1.
  1916. Goldhar, C., T. Bell and J. Wolf, 2014: Vulnerability to Freshwater Changes in the Inuit Settlement Region of Nunatsiavut, Labrador: A Case Study from Rigolet. Arctic, 67 (1), 71-83, doi:10.14430/arctic4365.
  1917. Daley, K. et al., 2015: Water systems, sanitation, and public health risks in remote communities: Inuit resident perspectives from the Canadian Arctic. Social Science & Medicine, 135 (Supplement C), 124-132, doi:10.1016/j.socscimed.2015.04.017.
  1918. Goldhar, C., T. Bell and J. Wolf, 2014: Vulnerability to Freshwater Changes in the Inuit Settlement Region of Nunatsiavut, Labrador: A Case Study from Rigolet. Arctic, 67 (1), 71-83, doi:10.14430/arctic4365.
  1919. Wright, C. J. et al., 2018: Water quality and health in northern Canada: stored drinking water and acute gastrointestinal illness in Labrador Inuit. Environ Sci Pollut Res Int, 25 (33), 32975-32987, doi:10.1007/s11356-017-9695-9.
  1920. Masina, S. et al., 2019: Weather, environmental conditions, and waterborne Giardia and Cryptosporidium in Iqaluit, Nunavut. J Water Health, 17 (1), 84-97, doi:10.2166/wh.2018.323.
  1921. Cunsolo Willox, A. et al., 2012: From this place and of this place:” Climate change, sense of place, and health in Nunatsiavut, Canada. Social Science & Medicine, 75 (3), 538-547, doi:10.1016/j.socscimed.2012.03.043.
  1922. Durkalec, A., C. Furgal, M. W. Skinner and T. Sheldon, 2014: Investigating environmental determinants of injury and trauma in the Canadian north. Int J Environ Res Public Health, 11 (2), 1536-1548, doi:10.3390/ijerph110201536.
  1923. Cunsolo, A. and N. R. Ellis, 2018: Ecological grief as a mental health response to climate change-related loss. Nature Climate Change, 8 (4), 275-281, doi:10.1038/s41558-018-0092-2.
  1924. Bunce, A. and J. Ford, 2015: How is adaptation, resilience, and vulnerability research engaging with gender? Environmental Research Letters, 10 (12), 123003, doi:10.1088/1748-9326/10/12/123003/meta.
  1925. Ostapchuk, J. et al., 2015: Exploring Elders ’ and Seniors ’ Perceptions of How Climate Change is Impacting Health and Well-being in Rigolet, Nunatsiavut. Journal of Aboriginal Health, 9, 6-24, doi:10.18357/ijih92201214358.
  1926. Bunce, A. et al., 2016: Vulnerability and adaptive capacity of Inuit women to climate change: a case study from Iqaluit, Nunavut. Natural Hazards, 83 (3), 1419-1441, doi:10.1007/s11069-016-2398-6.
  1927. Petrasek-MacDonald, J., J. D. Ford, A. C. Willox and N. A. Ross, 2013: A review of protective factors and causal mechanisms that enhance the mental health of Indigenous Circumpolar youth. International Journal of Circumpolar Health, 72 (1), 21775, doi:10.3402/ijch.v72i0.21775.
  1928. Ostapchuk, J. et al., 2015: Exploring Elders ’ and Seniors ’ Perceptions of How Climate Change is Impacting Health and Well-being in Rigolet, Nunatsiavut. Journal of Aboriginal Health, 9, 6-24, doi:10.18357/ijih92201214358.
  1929. Ostapchuk, J. et al., 2015: Exploring Elders ’ and Seniors ’ Perceptions of How Climate Change is Impacting Health and Well-being in Rigolet, Nunatsiavut. Journal of Aboriginal Health, 9, 6-24, doi:10.18357/ijih92201214358.
  1930. Bunce, A. and J. Ford, 2015: How is adaptation, resilience, and vulnerability research engaging with gender? Environmental Research Letters, 10 (12), 123003, doi:10.1088/1748-9326/10/12/123003/meta.
  1931. Cunsolo Willox, A. et al., 2013a: The land enriches the soul: On climatic and environmental change, affect, and emotional health and well-being in Rigolet, Nunatsiavut, Canada. Emotion, Space and Society, 6, 14-24.
  1932. Cunsolo Willox, A. et al., 2013b: Climate change and mental health: an exploratory case study from Rigolet, Nunatsiavut, Canada. Climatic Change, 121 (2), 255-270, doi:10.1007/s10584-013-0875-4.
  1933. Gearheard, S. F. et al., 2013: The meaning of ice: People and sea ice in three Arctic communities. International Polar Institute, Montreal.
  1934. Durkalec, A., C. Furgal, M. W. Skinner and T. Sheldon, 2014: Investigating environmental determinants of injury and trauma in the Canadian north. Int J Environ Res Public Health, 11 (2), 1536-1548, doi:10.3390/ijerph110201536.
  1935. AMAP, 2017d: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Council Secretariat, Oslo, Norway, xiv + 269 pp [Available at: https://www.amap.no/documents/download/2987/inline; Access Date: 10 October 2018].
  1936. Romanovsky, V. E., S. L. Smith and H. H. Christiansen, 2010: Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis. Permafrost and Periglacial Processes, 21 (2), 106-116, doi:10.1002/ppp.689.
  1937. Romanovsky, V. et al., 2017: Changing permafrost and its impacts. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 65-102.
  1938. Biskaborn, B. K. et al., 2019: Permafrost is warming at a global scale. Nat Commun, 10 (1), 264, doi:10.1038/s41467-018-08240-4.
  1939. Larsen, J. N. et al., 2014: Polar regions. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change [Barros, V. R., C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea and L. L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1567-1612.
  1940. Dore, G., F. J. Niu and H. Brooks, 2016: Adaptation Methods for Transportation Infrastructure Built on Degrading Permafrost. Permafrost and Periglacial Processes, 27 (4), 352-364, doi:10.1002/ppp.1919.
  1941. AMAP, 2017d: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Council Secretariat, Oslo, Norway, xiv + 269 pp [Available at: https://www.amap.no/documents/download/2987/inline; Access Date: 10 October 2018].
  1942. Pendakur, K., 2017: Northern Territories. In: Climate risks and adaptation practices for the Canadian transportation sector 2016 [Palko, K. and D. S. Lemmen (eds.)]. Government of Canada, Ottawa, 27-64.
  1943. Shiklomanov, N. I., D. A. Streletskiy, V. I. Grebenets and L. Suter, 2017a: Conquering the permafrost: urban infrastructure development in Norilsk, Russia. Polar Geography, 40 (4), 273-290, doi:10.1080/1088937X.2017.1329237.
  1944. Shiklomanov, N. I., D. A. Streletskiy, T. B. Swales and V. A. Kokorev, 2017b: Climate Change and Stability of Urban Infrastructure in Russian Permafrost Regions: Prognostic Assessment based on GCM Climate Projections. Geographical Review, 107 (1), 125-142, doi:10.1111/gere.12214.
  1945. Vincent, W. F., M. Lemay and M. Allard, 2017: Arctic permafrost landscapes in transition: towards an integrated Earth system approach. Arctic Science, 3 (2), 39-64, doi:10.1139/as-2016-0027.
  1946. Hjort, J. et al., 2018: Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat Commun, 9 (1), 5147, doi:10.1038/s41467-018-07557-4.
  1947. Shiklomanov, N. I., D. A. Streletskiy, T. B. Swales and V. A. Kokorev, 2017b: Climate Change and Stability of Urban Infrastructure in Russian Permafrost Regions: Prognostic Assessment based on GCM Climate Projections. Geographical Review, 107 (1), 125-142, doi:10.1111/gere.12214.
  1948. Melvin, A. M. et al., 2017: Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proceedings of the National Academy of Sciences, 114 (2), E122, doi:10.1073/pnas.1611056113.
  1949. Berman, M. and J. I. Schmidt, 2019: Economic Effects of Climate Change in Alaska. Weather, Climate, and Society, 11 (2), 245-258, doi:10.1175/wcas-d-18-0056.1.
  1950. Parlee, B. and C. Furgal, 2012: Well-being and environmental change in the arctic: a synthesis of selected research from Canada’s International Polar Year program. Climatic Change, 115 (1), 13-34, doi:10.1007/s10584-012-0588-0.
  1951. Huskey, L., I. Maenpaa and A. Pelyasov, 2014: Economic Systems. In: Arctic Human Development Report [Nymand Larson, J. and G. Fondahl (eds.)]. Nordic Council of Ministers, Copenhagen, 151-184.
  1952. Overland, J. et al., 2017: Synthesis: summary and implications of findings. Snow, Water, Ice and Permafrost in the Arctic (SWIPA), Arctic Monitoring and Assessment Programme, Oslo, Norway, 269p.
  1953. Laidler, G., 2012: Societal Aspects of Changing Cold Environments. In: Changing Cold Environments: A Canadian Perspective [French, H. and O. Slaymaker (eds.)]. Wiley-Blackwell, Oxford, 267-300.
  1954. Ford, J. D. and D. King, 2013: A framework for examining adaptation readiness. Mitigation and Adaptation Strategies for Global Change, 20 (4), 505-526, doi:10.1007/s11027-013-9505-8.
  1955. Goldhar, C., T. Bell and J. Wolf, 2014: Vulnerability to Freshwater Changes in the Inuit Settlement Region of Nunatsiavut, Labrador: A Case Study from Rigolet. Arctic, 67 (1), 71-83, doi:10.14430/arctic4365.
  1956. Sturm, M., M. A. Goldstein, H. Huntington and T. A. Douglas, 2017: Using an option pricing approach to evaluate strategic decisions in a rapidly changing climate: Black–Scholes and climate change. Climatic Change, 140 (3), 437-449, doi:10.1007/s10584-016-1860-5.
  1957. Mullan, D. et al., 2017: Climate change and the long-term viability of the World’s busiest heavy haul ice road. Theoretical and Applied Climatology, 129 (3), 1089-1108, doi:10.1007/s00704-016-1830-x.
  1958. AHDR, 2014: Arctic Human Development Report: Regional Processes and Global Linkages. Nordic Council of Ministers, Larsen, J. N. and G. Fondahl, Copenhagen [Available at: http://norden.diva-portal.org/smash/get/diva2:788965/FULLTEXT03.pdf; Access Date: 10 October 2017].
  1959. AHDR, 2014: Arctic Human Development Report: Regional Processes and Global Linkages. Nordic Council of Ministers, Larsen, J. N. and G. Fondahl, Copenhagen [Available at: http://norden.diva-portal.org/smash/get/diva2:788965/FULLTEXT03.pdf; Access Date: 10 October 2017].
  1960. Heleniak, T., 2014: Arctic Populations and Migration. In: Arctic Human Development Report: Regional Processes and Global Linkages [Nymand Larsen, J. and G. Fondhal (eds.)]. Nordic Council of Ministers, Copenhagen, 53-104.
  1961. Greaves, W., 2016: Arctic (in)security and Indigenous peoples: Comparing Inuit in Canada and Sámi in Norway. Security Dialogue, 47 (6), 461-480, doi:10.1177/0967010616665957.
  1962. Nymand, L. J. and G. Fondahl, 2014: Major Findings and Emerging Trends in Arctic Human Development. In: Arctic Human Development Report: Regional Processes and Global Linkages [Nymand Larsen, J. and G. Fondhal (eds.)]. Nordic Council of Ministers, Copenhagen, 479-502.
  1963. Shadian, J. M., 2014: The Politics of Arctic Sovereignty: oil, ice and Inuit goverance. Routledge Press, London.
  1964. Huskey, L., 2018: An Arctic development strategy? The North Slope Inupiat and the resource curse. Canadian Journal of Development Studies / Revue canadienne d’études du développement, 39 (1), 89-100, doi:10.1080/02255189.2017.1391067.
  1965. Southcott, C. and D. Natcher, 2018: Extractive industries and Indigenous subsistence economies: a complex and unresolved relationship. Canadian Journal of Development Studies / Revue canadienne d’études du développement, 39 (1), 137-154, doi:10.1080/02255189.2017.1400955.
  1966. Nymand, L. J. and G. Fondahl, 2014: Major Findings and Emerging Trends in Arctic Human Development. In: Arctic Human Development Report: Regional Processes and Global Linkages [Nymand Larsen, J. and G. Fondhal (eds.)]. Nordic Council of Ministers, Copenhagen, 479-502.
  1967. Descamps, S. et al., 2017: Circumpolar dynamics of a marine top-predator track ocean warming rates. Global Change Biology, 23 (9), 3770-3780, doi:10.1111/gcb.13715.
  1968. Field, L. et al., 2018: Increasing Arctic Sea Ice Albedo Using Localized Reversible Geoengineering. Earths Future, 6 (6), 882-901, doi:10.1029/2018ef000820.
  1969. NPFMC, 2018: Draft Bering Sea Fishery Ecosystem Plan. North Pacific Fishery Management Council, 605 West 4th, Site 306, Anchorage, Alaska.
  1970. Cahalan, J., J. Gasper and J. Mondragon, 2014: Catch sampling and estimation in the federal groundfish fisheries off Alaska, 2015edition. U.S. Dep. Commer., NOAA Tech. Memo., NMFS-AFSC-286, 46 p [Available at: http://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-286.pdf%5D.
  1971. Ganz, P. et al., 2018: Deployment performance review of the 2017 North Pacific Observer Program. U.S. Dep. Commer., NOAA Tech. Memo. , NMFS-AFSC-379, 68p [Available at: https://www.afsc.noaa.gov/publications/AFSC-TM/NOAA-TM-AFSC-379.pdf%5D.
  1972. Busch, D. S. et al., 2016: Climate science strategy of the US National Marine Fisheries Service. Marine Policy, 74, 58-67, doi:10.1016/j.marpol.2016.09.001.
  1973. NPFMC, 2019: Bering Sea Fishery Ecosystem Plan. North Pacific Fishery Management Council, 605 West 4th, Suite 306. Anchorage, Alaska 99501.
  1974. Haug, T. et al., 2017: Future harvest of living resources in the Arctic Ocean north of the Nordic and Barents Seas: A review of possibilities and constraints. Fisheries Research, 188, 38-57, doi:10.1016/j.fishres.2016.12.002.
  1975. Haug, T. et al., 2017: Future harvest of living resources in the Arctic Ocean north of the Nordic and Barents Seas: A review of possibilities and constraints. Fisheries Research, 188, 38-57, doi:10.1016/j.fishres.2016.12.002.
  1976. Gullestad, P. et al., 2017: Towards ecosystem-based fisheries management in Norway – Practical tools for keeping track of relevant issues and prioritising management efforts. Marine Policy, 77, 104-110, doi:10.1016/j.marpol.2016.11.032.
  1977. Planque, B. et al., 2019: A participatory scenario method to explore the future of marine social‐ecological systems. Fish and Fisheries, 20 (3), 434-451, doi:10.1111/faf.12356.
  1978. NPFMC, 2018: Draft Bering Sea Fishery Ecosystem Plan. North Pacific Fishery Management Council, 605 West 4th, Site 306, Anchorage, Alaska.
  1979. Ono, K. et al., 2017: Management strategy analysis for multispecies fisheries including technical interactions and human behavior in modeling management decisions and fishing. Canadian Journal of Fisheries and Aquatic Sciences, 75 (8), 1185-1202, doi:10.1139/cjfas-2017-0135.
  1980. DiCosimo, J., S. Cunningham and D. Brannan, 2015: Pacific Halibut Bycatch Management in Gulf of Alaska Groundfish Trawl Fisheries. In: Fisheries Bycatch: Global Issues and Creative Solutions [Kruse, G. H., H. C. An, J. DiCosimo, C. A. Eischens, G. S. Gislason, D. N. McBride, C. S. Rose and C. E. Siddo (eds.)]. Alaska Sea Grant, University of Alaska Fairbanks, Fairbanks, Alaska, 19.
  1981. Anderson, S. C. et al., 2017b: Benefits and risks of diversification for individual fishers. Proceedings of the National Academy of Sciences, 114 (40), 10797-10802, doi:10.1073/pnas.1702506114.
  1982. Punt, A. E. et al., 2016: Effects of long-term exposure to ocean acidification conditions on future southern Tanner crab (Chionoecetes bairdi) fisheries management. ICES Journal of Marine Science: Journal du Conseil, 73 (3), 849-864, doi:10.1093/icesjms/fsv205.
  1983. Holsman, K. et al., 2017: An ecosystem-based approach to marine risk assessment. Ecosystem Health and Sustainability, 3 (1), e01256, doi:10.1002/ehs2.1256.
  1984. Zador, S. G. et al., 2017: Ecosystem considerations in Alaska: the value of qualitative assessments. ICES Journal of Marine Science, 74 (1), 421-430, doi:10.1093/icesjms/fsw144.
  1985. Holsman, K. K. et al., 2019: Towards climate resiliency in fisheries management. ICES Journal of Marine Science, 76 (5), 1368-1378, doi:10.1093/icesjms/fsz031.
  1986. Ianelli, J., K. K. Holsman, A. E. Punt and K. Aydin, 2016: Multi-model inference for incorporating trophic and climate uncertainty into stock assessments. Deep Sea Research Part II: Topical Studies in Oceanography, 134 (Supplement C), 379-389, doi:10.1016/j.dsr2.2015.04.002.
  1987. Wilson, W. J. and O. A. Ormseth, 2009: A new management plan for Arctic waters of the United States. Fisheries, 34 (11), 555-558.
  1988. Ayles, B., L. Porta and R. M. Clarke, 2016: Development of an integrated fisheries co-management framework for new and emerging commercial fisheries in the Canadian Beaufort Sea. Marine Policy, 72, 246-254, doi:10.1016/j.marpol.2016.04.032.
  1989. CCAMLR, 1982: Convention on the Conservation of Antarctic Marine Living Resources, opened for signature 20 May 1980, 1329 UNTS 47 (entered into force 7 April 1982) (‘CCAMLR’). Canberra [Available at: https://treaties.un.org/pages/showDetails.aspx?objid=08000002800dc364; Access Date: 05 December 2018].
  1990. Constable, A. J., 2011: Lessons from CCAMLR on the implementation of the ecosystem approach to managing fisheries. Fish and Fisheries, 12 (2), 138-151, doi:10.1111/j.1467-2979.2011.00410.x.
  1991. Pecl, G. T. et al., 2017: Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355 (6332), eaai9214, doi:10.1126/science.aai9214
  1992. ATCM, 2017: Final Report of the Fortieth Antarctic Treaty Consultative Meeting. In: Antarctic Treaty Consultative Meeting XL, 22 May – 1 June 2017, Beijing, China [Secretariat, A. T. (ed.)], 285pp.
  1993. Jabour, J., 2017: 25. Southern Ocean search and rescue: platforms and procedures. Handbook on the Politics of Antarctica, 392.
  1994. AMAP, 2017a: Adaptation Actions for a Changing Arctic (AACA) – Bering/Chukchi/Beaufort Region Overview report. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 24 pp.
  1995. AMAP, 2017b: Adaptation Actions for a Changing Arctic: Perspectives from the Barents Area. Arctic Monitoring and Assessment Programme (AMAP), xiv + 267pp.
  1996. AMAP, 2015: AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vi+71pp [Available at: https://www.amap.no/documents/doc/amap-assessment-2015-temporal-trends-in-persistent-organic-pollutants-in-the-arctic/1521; Access Date: 25 October 2018].
  1997. Brinkman, T. J. et al., 2016: Arctic communities perceive climate impacts on access as a critical challenge to availability of subsistence resources. Climatic Change, 139 (3), 413-427, doi:10.1007/s10584-016-1819-6.
  1998. Rosales, J. and L. J. Chapman, 2015: Perceptions of Obvious and Disruptive Climate Change: Community-Based Risk Assessment for Two Native Villages in Alaska. Climate, 3 (4), 812-832, doi:10.3390/cli3040812.
  1999. AMAP, 2015: AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vi+71pp [Available at: https://www.amap.no/documents/doc/amap-assessment-2015-temporal-trends-in-persistent-organic-pollutants-in-the-arctic/1521; Access Date: 25 October 2018].
  2000. BurnSilver, S. et al., 2016: Are Mixed Economies Persistent or Transitional? Evidence Using Social Networks from Arctic Alaska. American Anthropologist, 118 (1), 121-129, doi:10.1111/aman.12447.
  2001. AMAP, 2017a: Adaptation Actions for a Changing Arctic (AACA) – Bering/Chukchi/Beaufort Region Overview report. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 24 pp.
  2002. Fauchald, P. et al., 2017b: Arctic greening from warming promotes declines in caribou populations. Sci Adv, 3 (4), e1601365, doi:10.1126/sciadv.1601365.
  2003. AMAP, 2017a: Adaptation Actions for a Changing Arctic (AACA) – Bering/Chukchi/Beaufort Region Overview report. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 24 pp.
  2004. Loring, P. A., S. C. Gerlach and H. J. Penn, 2016: “Community Work” in a Climate of Adaptation: Responding to Change in Rural Alaska. Human Ecology, 44 (1), 119-128, doi:10.1007/s10745-015-9800-y.
  2005. AMAP, 2015: AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vi+71pp [Available at: https://www.amap.no/documents/doc/amap-assessment-2015-temporal-trends-in-persistent-organic-pollutants-in-the-arctic/1521; Access Date: 25 October 2018].
  2006. AMAP, 2017a: Adaptation Actions for a Changing Arctic (AACA) – Bering/Chukchi/Beaufort Region Overview report. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 24 pp.
  2007. AMAP, 2017b: Adaptation Actions for a Changing Arctic: Perspectives from the Barents Area. Arctic Monitoring and Assessment Programme (AMAP), xiv + 267pp.
  2008. AMAP, 2015: AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vi+71pp [Available at: https://www.amap.no/documents/doc/amap-assessment-2015-temporal-trends-in-persistent-organic-pollutants-in-the-arctic/1521; Access Date: 25 October 2018].
  2009. Kocho-Schellenberg, J.-E. and F. Berkes, 2014: Tracking the development of co-management: using network analysis in a case from the Canadian Arctic. Polar Record, 51 (4), 422-431, doi:10.1017/S0032247414000436.
  2010. Forbes, B. C. et al., 2015: Arctic Human Development Report II [Larsen, J. N. and G. Fondal (eds.)]. Chapter 7 Resource Governanc, Denmark, 253-289.
  2011. AMAP, 2015: AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vi+71pp [Available at: https://www.amap.no/documents/doc/amap-assessment-2015-temporal-trends-in-persistent-organic-pollutants-in-the-arctic/1521; Access Date: 25 October 2018].
  2012. Penn, H. J. F., S. C. Gerlach and P. A. Loring, 2016: Seasons of Stress: Understanding the Dynamic Nature of People’s Ability to Respond to Change and Surprise. Weather, Climate, and Society, 8 (4), 435-446, doi:10.1175/WCAS-D-15-0061.1.
  2013. Ford, J. D. et al., 2016: Including indigenous knowledge and experience in IPCC assessment reports. Nature Climate Change, 6, 349, doi:10.1038/nclimate2954
  2014. Ford, J. D., G. McDowell and T. Pearce, 2015: The adaptation challenge in the Arctic. Nature Climate Change, 5, 1046, doi:10.1038/nclimate2723.
  2015. Klokov, K., 2012: Changes in reindeer population numbers in Russia: an effect of the political context or climate? Rangifer, 32 (1), 19, doi:10.7557/2.32.1.2234.
  2016. Forbes, B. C. et al., 2016: Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia. Biology Letters, 12 (11), doi:10.1098/rsbl.2016.0466.
  2017. Uboni, A. et al., 2016: Long-term trends and role of climate in the population dynamics of eurasian reindeer. Plos One, 11 (6), 1-20, doi:10.1371/journal.pone.0158359.
  2018. Mallory, C. D. and M. S. Boyce, 2017: Observed and predicted effects of climate change on Arctic caribou and reindeer. Environmental Reviews, 26 (1), 13-25, doi:10.1139/er-2017-0032.
  2019. Lavrillier, A. and S. Gabyshev, 2018: An emic science of climate. Reindeer Evenki environmental knowledge and the notion of an “extreme process”, Études mongoles et sibériennes, centrasiatiques et tibétaines. 49.
  2020. Forbes, B. C. et al., 2015: Arctic Human Development Report II [Larsen, J. N. and G. Fondal (eds.)]. Chapter 7 Resource Governanc, Denmark, 253-289.
  2021. Forbes, B. C., 2013: Cultural Resilience of Social-ecological Systems in the Nenets and Yamal-Nenets Autonomous Okrugs, Russia: A Focus on Reindeer Nomads of the Tundra. Ecology and Society, 18 (4), doi:10.5751/ES-05791-180436.
  2022. Forbes, B. C. et al., 2016: Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia. Biology Letters, 12 (11), doi:10.1098/rsbl.2016.0466.
  2023. Johnston, M., J. Dawson, E. De Souza and E. J. Stewart, 2017: Management challenges for the fastest growing marine shipping sector in Arctic Canada: pleasure crafts. Polar Record, 53 (1), 67-78, doi:10.1017/s0032247416000565.
  2024. Pizzolato, L. et al., 2016: The influence of declining sea ice on shipping activity in the Canadian Arctic. Geophysical Research Letters, 43 (23), 12,146-12,154, doi:10.1002/2016gl071489.
  2025. Kaján, E., 2014: Arctic Tourism and Sustainable Adaptation: Community Perspectives to Vulnerability and Climate Change. Scandinavian Journal of Hospitality and Tourism, 14 (1), 60-79, doi:10.1080/15022250.2014.886097.
  2026. Stokke, K. B. and J. V. Haukeland, 2017: Balancing tourism development and nature protection across national park borders – a case study of a coastal protected area in Norway. Journal of Environmental Planning and Management, 61 (12), 2151-2165, doi:10.1080/09640568.2017.1388772.
  2027. Pizzolato, L. et al., 2016: The influence of declining sea ice on shipping activity in the Canadian Arctic. Geophysical Research Letters, 43 (23), 12,146-12,154, doi:10.1002/2016gl071489.
  2028. AMAP, 2017a: Adaptation Actions for a Changing Arctic (AACA) – Bering/Chukchi/Beaufort Region Overview report. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 24 pp.
  2029. AMAP, 2017b: Adaptation Actions for a Changing Arctic: Perspectives from the Barents Area. Arctic Monitoring and Assessment Programme (AMAP), xiv + 267pp.
  2030. AMAP, 2015: AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vi+71pp [Available at: https://www.amap.no/documents/doc/amap-assessment-2015-temporal-trends-in-persistent-organic-pollutants-in-the-arctic/1521; Access Date: 25 October 2018].
  2031. Stewart, E. J. et al., 2013: Local-level responses to sea ice change and cruise tourism in Arctic Canada’s Northwest Passage. Polar Geography, 36 (1-2), 142-162, doi:10.1080/1088937x.2012.705352.
  2032. Arctic Council, 2015a: Arctic Marine Tourism Project (AMTP): best practices guidelines. Protection of the Arctic Marine Environment (PAME), Iceland, 17 pp [Available at: https://oaarchive.arctic-council.org/bitstream/handle/11374/414/AMTP%20Best%20Practice%20Guidelines.pdf?sequence=1&isAllowed=y; Access Date: 10 October 2018].
  2033. Stewart, E., J. Dawson and M. Johnston, 2015: Risks and opportunities associated with change in the cruise tourism sector: community perspectives from Arctic Canada. The Polar Journal, 5 (2), 403-427, doi:10.1080/2154896x.2015.1082283.
  2034. ATCM, 2016: Final Report of the Thirty-Ninth Antarctic Treaty Consultative Meeting. In: Antarctic Treaty Consultative Meeting XXXIX, 23 May – 1 June 2016, Santiago, Chile [Secretariat, A. T. (ed.)], 406pp.
  2035. AHDR, 2014: Arctic Human Development Report: Regional Processes and Global Linkages. Nordic Council of Ministers, Larsen, J. N. and G. Fondahl, Copenhagen [Available at: http://norden.diva-portal.org/smash/get/diva2:788965/FULLTEXT03.pdf; Access Date: 10 October 2017].
  2036. Petrick, S. et al., 2017: Climate change, future Arctic Sea ice, and the competitiveness of European Arctic offshore oil and gas production on world markets. AMBIO, 46 (Suppl 3), 410-422, doi:10.1007/s13280-017-0957-z.
  2037. Smith, A. J. et al., 2017a: Beluga whale summer habitat associations in the Nelson River estuary, western Hudson Bay, Canada. Plos One, 12 (8), e0181045, doi:10.1371/journal.pone.0181045.
  2038. Forbes, B. C. et al., 2015: Arctic Human Development Report II [Larsen, J. N. and G. Fondal (eds.)]. Chapter 7 Resource Governanc, Denmark, 253-289.
  2039. Young, O. R., 2016: The shifting landscape of Arctic politics: implications for international cooperation. The Polar Journal, 6 (2), 209-223, doi:10.1080/2154896X.2016.1253823.
  2040. Wehrmann, D., 2016: The Polar Regions as “barometers” in the Anthropocene: towards a new significance of non-state actors in international cooperation? The Polar Journal, 6 (2), 379-397, doi:10.1080/2154896X.2016.1241483.
  2041. Hori, Y. et al., 2018: Implications of projected climate change on winter road systems in Ontario’s Far North, Canada. Climatic Change, 148 (1-2), 109-122, doi:10.1007/s10584-018-2178-2.
  2042. Kiani, S. et al., 2018: Effects of recent temperature variability and warming on the Oulu-Hailuoto ice road season in the northern Baltic Sea. Cold Regions Science and Technology, 151, 1-8, doi:10.1016/j.coldregions.2018.02.010.
  2043. Mullan, D. et al., 2017: Climate change and the long-term viability of the World’s busiest heavy haul ice road. Theoretical and Applied Climatology, 129 (3), 1089-1108, doi:10.1007/s00704-016-1830-x.
  2044. Lilly, M. R., 2017: Alaskan North Slope Oil & Gas Transportation Support. United States [Available at: http://www.osti.gov/scitech/servlets/purl/1350972%5D.
  2045. Dabros, A., M. Pyper and G. Castilla, 2018: Seismic lines in the boreal and arctic ecosystems of North America: environmental impacts, challenges, and opportunities. Environmental Reviews, 26 (2), 214-229, doi:10.1139/er-2017-0080.
  2046. Kirkfeldt, T. S. et al., 2016: Why cumulative impacts assessments of hydrocarbon activities in the Arctic fail to meet their purpose. Regional Environmental Change, 17 (3), 725-737, doi:10.1007/s10113-016-1059-3.
  2047. Melvin, A. M. et al., 2017: Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proceedings of the National Academy of Sciences, 114 (2), E122, doi:10.1073/pnas.1611056113.
  2048. AMAP, 2017a: Adaptation Actions for a Changing Arctic (AACA) – Bering/Chukchi/Beaufort Region Overview report. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 24 pp.
  2049. AMAP, 2017b: Adaptation Actions for a Changing Arctic: Perspectives from the Barents Area. Arctic Monitoring and Assessment Programme (AMAP), xiv + 267pp.
  2050. AMAP, 2015: AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vi+71pp [Available at: https://www.amap.no/documents/doc/amap-assessment-2015-temporal-trends-in-persistent-organic-pollutants-in-the-arctic/1521; Access Date: 25 October 2018].
  2051. Bronen, R., 2015: Climate-induced community relocations: using integrated social-ecological assessments to foster adaptation and resilience. Ecology and Society, 20 (3), doi:10.5751/es-07801-200336.
  2052. Romero Manrique, D., S. Corral and Â. Guimarães Pereira, 2018: Climate-related displacements of coastal communities in the Arctic: Engaging traditional knowledge in adaptation strategies and policies. Environmental Science & Policy, 85, 90-100, doi:10.1016/j.envsci.2018.04.007.
  2053. Bronen, R., 2017: The Human Rights of Climate-Induced community relocation. In: Climate change, migration, and human rights [Mano, D., A. Baldwin, D. Cubie, A. Mihr and T. Thorp (eds.)]. Routledge Press., Abingdon UK, 129-148.
  2054. Kates, R. W., W. R. Travis and T. J. Wilbanks, 2012: Transformational adaptation when incremental adaptations to climate change are insufficient. Proceedings of the National Academy of Sciences of the United States of America, 109 (19), 7156-7161, doi:10.1073/pnas.1115521109.
  2055. Radosavljevic, B. et al., 2015: Erosion and Flooding—Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada. Estuaries and Coasts, 39 (4), 900-915, doi:10.1007/s12237-015-0046-0.
  2056. Iverson, J., 2013: Funding Alaska Village Relocation Caused by Climate Change and Preserving Cultural Values During Relocation. Seattle Journal for Social Justice, 12 (2), Article 12.
  2057. Marino, E., 2012: The long history of environmental migration: Assessing vulnerability construction and obstacles to successful relocation in Shishmaref, Alaska. Global Environmental Change, 22 (2), 374-381, doi:10.1016/j.gloenvcha.2011.09.016.
  2058. Romero Manrique, D., S. Corral and Â. Guimarães Pereira, 2018: Climate-related displacements of coastal communities in the Arctic: Engaging traditional knowledge in adaptation strategies and policies. Environmental Science & Policy, 85, 90-100, doi:10.1016/j.envsci.2018.04.007.
  2059. Bronen, R., 2015: Climate-induced community relocations: using integrated social-ecological assessments to foster adaptation and resilience. Ecology and Society, 20 (3), doi:10.5751/es-07801-200336.
  2060. Ristroph, E. B., 2017: Presenting a Picture of Alaska Native Village Adaptation: A Method of Analysis. Sociology and Anthropology, 5 (9), 762-775, doi:10.13189/sa.2017.050908.
  2061. Bronen, R. and F. S. Chapin, 3rd, 2013: Adaptive governance and institutional strategies for climate-induced community relocations in Alaska. Proc Natl Acad Sci U S A, 110 (23), 9320-5, doi:10.1073/pnas.1210508110.
  2062. Matthews, T. and R. Potts, 2018: Planning for climigration: a framework for effective action. Climatic Change, 148 (4), 607-621, doi:10.1007/s10584-018-2205-3.
  2063. Hamilton, L. C. et al., 2016: Climigration? Population and climate change in Arctic Alaska. Population and Environment, 38 (2), 115-133, doi:10.1007/s11111-016-0259-6.
  2064. Hunt, G. L. et al., 2018: Timing of sea-ice retreat affects the distribution of seabirds and their prey in the southeastern Bering Sea. Marine Ecology Progress Series, 593, 209-230, doi:10.3354/meps12383.
  2065. AHDR, 2014: Arctic Human Development Report: Regional Processes and Global Linkages. Nordic Council of Ministers, Larsen, J. N. and G. Fondahl, Copenhagen [Available at: http://norden.diva-portal.org/smash/get/diva2:788965/FULLTEXT03.pdf; Access Date: 10 October 2017].
  2066. Streletskiy, D., N. Shiklomanov and E. Hatleberg, 2012: Infrastructure and a Changing Climate in the Russian Arctic: A Geographic Impact Assessment. In: Proceedings of the 10th International Conference on Permafrost, June 25 – 29, 2012, Salekhard, Russia, 1, 407-412.
  2067. Dore, G., F. J. Niu and H. Brooks, 2016: Adaptation Methods for Transportation Infrastructure Built on Degrading Permafrost. Permafrost and Periglacial Processes, 27 (4), 352-364, doi:10.1002/ppp.1919.
  2068. Melvin, A. M. et al., 2017: Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proceedings of the National Academy of Sciences, 114 (2), E122, doi:10.1073/pnas.1611056113.
  2069. Heininen, L. and M. Finger, 2017: The “Global Arctic” as a New Geopolitical Context and Method. Journal of Borderlands Studies, 33 (2), 199-202, doi:10.1080/08865655.2017.1315605.
  2070. AMAP, 2015: AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vi+71pp [Available at: https://www.amap.no/documents/doc/amap-assessment-2015-temporal-trends-in-persistent-organic-pollutants-in-the-arctic/1521; Access Date: 25 October 2018].
  2071. Drewniak, M. et al., 2018: Geopolitics of Arctic shipping: the state of icebreakers and future needs. Polar Geography, 41 (2), 107-125, doi:10.1080/1088937x.2018.1455756.
  2072. Nilsson, A. E. and M. Christensen, 2019: Arctic Geopolitics, Media and Power. Taylor & Francis Group, London.
  2073. Andersen, M., A. E. Derocher, Ø. Wiig and J. Aars, 2012: Polar bear (Ursus maritimus) maternity den distribution in Svalbard, Norway. Polar Biology, 35 (4), 499-508, doi:10.1007/s00300-011-1094-y.
  2074. Sakhuja, V., 2014: The Polar Code and Arctic Navigation. Strategic Analysis, 38 (6), 803-811, doi:10.1080/09700161.2014.952943.
  2075. Arctic Council, 2015a: Arctic Marine Tourism Project (AMTP): best practices guidelines. Protection of the Arctic Marine Environment (PAME), Iceland, 17 pp [Available at: https://oaarchive.arctic-council.org/bitstream/handle/11374/414/AMTP%20Best%20Practice%20Guidelines.pdf?sequence=1&isAllowed=y; Access Date: 10 October 2018].
  2076. Chénier, R., L. Abado, O. Sabourin and L. Tardif, 2017: Northern marine transportation corridors: Creation and analysis of northern marine traffic routes in Canadian waters. Transactions in GIS, 21 (6), 1085-1097, doi:10.1111/tgis.12295.
  2077. Stephenson, S. R., L. C. Smith and J. A. Agnew, 2011: Divergent long-term trajectories of human access to the Arctic. Nature Climate Change, 1, 156, doi:10.1038/nclimate1120.
  2078. Stephenson, S. R., L. C. Smith, L. W. Brigham and J. A. Agnew, 2013: Projected 21st-century changes to Arctic marine access. Climatic Change, 118 (3), 885-899, doi:10.1007/s10584-012-0685-0.
  2079. Lindstad, H., R. M. Bright and A. H. Strømman, 2016: Economic savings linked to future Arctic shipping trade are at odds with climate change mitigation. Transport Policy, 45, 24-30, doi:10.1016/j.tranpol.2015.09.002.
  2080. Bullock, R., S. Aggarwal, R. A. Perkins and W. Schnabel, 2017: Scale-up considerations for surface collecting agent assisted in-situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations.
  2081. Dilliplaine, K. B., 2017: The effect of under ice crude oil spills on sympagic biota of the Arctic: a mesocosm approach. University of Alaska Fairbanks, Fairbanks, Alaska.
  2082. Holsman, K. et al., 2017: An ecosystem-based approach to marine risk assessment. Ecosystem Health and Sustainability, 3 (1), e01256, doi:10.1002/ehs2.1256.
  2083. Lewis, A. and R. C. Prince, 2018: Integrating Dispersants in Oil Spill Response in Arctic and Other Icy Environments. Environ Sci Technol, 52 (11), 6098-6112, doi:10.1021/acs.est.7b06463.
  2084. Robinson, H., W. Gardiner, R. J. Wenning and M. A. Rempel-Hester, 2017: Spill Impact Mitigation Assessment Framework for Oil Spill Response Planning in the Arctic Environment. International Oil Spill Conference Proceedings, 2017 (1), 1325-1344, doi:10.7901/2169-3358-2017.1.1325.
  2085. Utvik, T. I. R. and C. Jahre-Nilsen, 2016: The Importance of Early Identification of Safety and Sustainability Related Risks in Arctic Oil and Gas Operations. In: SPE International Conference and Exhibition on Health, Safety, Security, Environment, and Social Responsibility, 2016/4/11/, Stavanger, Norway, Society of Petroleum Engineers, SPE, doi:10.2118/179325-MS.
  2086. AHDR, 2014: Arctic Human Development Report: Regional Processes and Global Linkages. Nordic Council of Ministers, Larsen, J. N. and G. Fondahl, Copenhagen [Available at: http://norden.diva-portal.org/smash/get/diva2:788965/FULLTEXT03.pdf; Access Date: 10 October 2017].
  2087. Lesnikowski, A. C. et al., 2011: Adapting to health impacts of climate change: a study of UNFCCC Annex I parties. Environmental Research Letters, 6 (4), 044009, doi:10.1088/1748-9326/6/4/044009.
  2088. Lesnikowski, A. C. et al., 2011: Adapting to health impacts of climate change: a study of UNFCCC Annex I parties. Environmental Research Letters, 6 (4), 044009, doi:10.1088/1748-9326/6/4/044009.
  2089. Panic, M. and J. D. Ford, 2013: A review of national-level adaptation planning with regards to the risks posed by climate change on infectious diseases in 14 OECD nations. International Journal of Environmental Research and Public Health, 10 (12), 7083-7109, doi:10.3390/ijerph10127083.
  2090. Ford, J. D. et al., 2014b: Adapting to the Effects of Climate Change on Inuit Health. American Journal of Public Health, 104 (S3), e9-e17, doi:10.2105/AJPH.2013.301724.
  2091. Loboda, T. V., 2014: Adaptation strategies to climate change in the Arctic: a global patchwork of reactive community-scale initiatives. Environmental Research Letters, 9 (11), 111006, doi:10.1088/1748-9326/9/11/111006.
  2092. Pearce, T. et al., 2011: Advancing adaptation planning for climate change in the Inuvialuit Settlement Region (ISR): a review and critique. Regional Environmental Change, 11 (1), 1-17, doi:10.1007/s10113-010-0126-4.
  2093. Ford, J. D. et al., 2014b: Adapting to the Effects of Climate Change on Inuit Health. American Journal of Public Health, 104 (S3), e9-e17, doi:10.2105/AJPH.2013.301724.
  2094. National Research Council, 2015: Enhancing the Effectiveness of Team Science. The National Academies Press, Washington, DC, 280 pp.
  2095. Ford, J. D., G. McDowell and J. Jones, 2014a: The state of climate change adaptation in the Arctic. Environmental Research Letters, 9 (10), 104005, doi:10.1088/1748-9326/9/10/104005.
  2096. Loboda, T. V., 2014: Adaptation strategies to climate change in the Arctic: a global patchwork of reactive community-scale initiatives. Environmental Research Letters, 9 (11), 111006, doi:10.1088/1748-9326/9/11/111006.
  2097. Lesnikowski, A. C. et al., 2011: Adapting to health impacts of climate change: a study of UNFCCC Annex I parties. Environmental Research Letters, 6 (4), 044009, doi:10.1088/1748-9326/6/4/044009.
  2098. Panic, M. and J. D. Ford, 2013: A review of national-level adaptation planning with regards to the risks posed by climate change on infectious diseases in 14 OECD nations. International Journal of Environmental Research and Public Health, 10 (12), 7083-7109, doi:10.3390/ijerph10127083.
  2099. Austin, S. E. et al., 2015: Public health adaptation to climate change in canadian jurisdictions. International Journal of Environmental Research and Public Health, 12 (1), 623-651, doi:10.3390/ijerph120100623.
  2100. Austin, S. E. et al., 2015: Public health adaptation to climate change in canadian jurisdictions. International Journal of Environmental Research and Public Health, 12 (1), 623-651, doi:10.3390/ijerph120100623.
  2101. Gagnon-Lebrun, F. and S. Agrawala, 2007: Implementing adaptation in developed countries : an analysis of progress and trends Implementing adaptation in developed countries : an analysis of progress and trends. Climate Policy, 7 (5), 37-41, doi:10.1080/14693062.2007.9685664.
  2102. Parkinson, A. J. et al., 2014: Climate change and infectious diseases in the Arctic: establishment of a circumpolar working group. International Journal of Circumpolar Health, 73 (1), 25163, doi:10.3402/ijch.v73.25163.
  2103. Ford, J. D., G. McDowell and J. Jones, 2014a: The state of climate change adaptation in the Arctic. Environmental Research Letters, 9 (10), 104005, doi:10.1088/1748-9326/9/10/104005.
  2104. Ford, J. D. et al., 2014b: Adapting to the Effects of Climate Change on Inuit Health. American Journal of Public Health, 104 (S3), e9-e17, doi:10.2105/AJPH.2013.301724.
  2105. Pearce, T. et al., 2010: Inuit vulnerability and adaptive capacity to climate change in Ulukhaktok, Northwest Territories, Canada. Polar Record, 46 (2), 157-177, doi:10.1017/S0032247409008602.
  2106. Brubaker, M., J. Berner, R. Chavan and J. Warren, 2011: Climate change and health effects in Northwest Alaska. Global Health Action, 4 (1), 8445, doi:10.3402/gha.v4i0.8445.
  2107. Harper, S. L., V. L. Edge, A. Cunsolo Willox and G. Rigolet Inuit Community, 2012: ‘Changing climate, changing health, changing stories’ profile: Using an EcoHealth approach to explore impacts of climate change on inuit health. EcoHealth, 9 (1), 89-101, doi:10.1007/s10393-012-0762-x.
  2108. Brubaker, M., J. Berner and M. Tcheripanoff, 2013: LEO, the Local Environmental Observer Network: a community-based system for surveillance of climate, environment, and health events. International Journal of Circumpolar Health, 72, 513-514.
  2109. Douglas, V. et al., 2014: Reconciling traditional knowledge, food security, and climate change: experience from Old Crow, YT, Canada. Progress in community health partnerships : research, education, and action, 8 (1), 21-7, doi:10.1353/cpr.2014.0007.
  2110. Austin, S. E. et al., 2015: Public health adaptation to climate change in canadian jurisdictions. International Journal of Environmental Research and Public Health, 12 (1), 623-651, doi:10.3390/ijerph120100623.
  2111. Bunce, A. et al., 2016: Vulnerability and adaptive capacity of Inuit women to climate change: a case study from Iqaluit, Nunavut. Natural Hazards, 83 (3), 1419-1441, doi:10.1007/s11069-016-2398-6.
  2112. Cunsolo, A., I. Shiwak and M. Wood, 2017: “You Need to Be a Well-Rounded Cultural Person”: Youth Mentorship Programs for Cultural Preservation, Promotion, and Sustainability in the Nunatsiavut Region of Labrador. In: Northern Sustainabilities: Understanding and Addressing Change in the Circumpolar World [Fondahl, G. and G. Wilson (eds.)]. Springer Polar Sciences, Springer, 285-303.
  2113. Kofinas, G. et al., 2016: Building resilience in the Arctic: From theory to practice. In: Arctic Resilience Report [Council, A. (ed.)][Carson, M. and G. Peterson (eds.)]. Stockholm Environment Institute and Stockholm Resilience Centre, Stockholm, 180-208.
  2114. Watts, P., K. Koutouki, S. Booth and S. Blum, 2017: Inuit food security in canada: arctic marine ethnoecology. Food Security, 9 (3), 421-440, doi:10.1007/s12571-017-0668-0.
  2115. Loring, P., S. Gerlach and H. Harrison, 2013: Seafood as Local Food: Food Security and Locally Caught Seafood on Alaska’s Kenai Peninsula. Journal of Agriculture, Food Systems, and Community Development, 3 (3), 13-30, doi:10.5304/jafscd.2013.033.006.
  2116. Beaumier, M. C., J. D. Ford and S. Tagalik, 2015: The food security of Inuit women in Arviat, Nunavut: the role of socio-economic factors and climate change. Polar Record, 51 (5), 550-559, doi:10.1017/s0032247414000618.
  2117. Islam, D. and F. Berkes, 2016: Indigenous peoples’ fisheries and food security: a case from northern Canada. Food Security, 8 (4), 815-826, doi:10.1007/s12571-016-0594-6.
  2118. Ruscio, B. A. et al., 2015: One Health – a strategy for resilience in a changing arctic. International Journal of Circumpolar Health, 74 (1), 27913, doi:10.3402/ijch.v74.27913.
  2119. Dudley, J. P., E. P. Hoberg, E. J. Jenkins and A. J. Parkinson, 2015: Climate Change in the North American Arctic: A One Health Perspective. EcoHealth, 12 (4), 713-725, doi:10.1007/s10393-015-1036-1.
  2120. Ford, J. D., L. Berrang-Ford, M. King and C. Furgal, 2010: Vulnerability of Aboriginal health systems in Canada to climate change. Global Environmental Change, 20 (4), 668-680, doi:10.1016/j.gloenvcha.2010.05.003.
  2121. Durkalec, A., C. Furgal, M. W. Skinner and T. Sheldon, 2014: Investigating environmental determinants of injury and trauma in the Canadian north. Int J Environ Res Public Health, 11 (2), 1536-1548, doi:10.3390/ijerph110201536.
  2122. AMAP, 2017b: Adaptation Actions for a Changing Arctic: Perspectives from the Barents Area. Arctic Monitoring and Assessment Programme (AMAP), xiv + 267pp.
  2123. Sheppard, S. R. J. et al., 2011: Future visioning of local climate change: A framework for community engagement and planning with scenarios and visualisation. Futures, 43 (4), 400-412, doi:10.1016/j.futures.2011.01.009.
  2124. Fünfgeld, H., 2015: Facilitating local climate change adaptation through transnational municipal networks. Current Opinion in Environmental Sustainability, 12, 67-73, doi:10.1016/j.cosust.2014.10.011.
  2125. Fünfgeld, H., 2015: Facilitating local climate change adaptation through transnational municipal networks. Current Opinion in Environmental Sustainability, 12, 67-73, doi:10.1016/j.cosust.2014.10.011.
  2126. Baird, J., R. Plummer and Ö. Bodin, 2016: Collaborative governance for climate change adaptation in Canada: experimenting with adaptive co-management. Regional Environmental Change, 16 (3), 747-758, doi:10.1007/s10113-015-0790-5.
  2127. Huet, C. et al., 2017: Food insecurity and food consumption by season in households with children in an Arctic city: a cross-sectional study. BMC Public Health, 17 (1), 578, doi:10.1186/s12889-017-4393-6.
  2128. AHDR, 2014: Arctic Human Development Report: Regional Processes and Global Linkages. Nordic Council of Ministers, Larsen, J. N. and G. Fondahl, Copenhagen [Available at: http://norden.diva-portal.org/smash/get/diva2:788965/FULLTEXT03.pdf; Access Date: 10 October 2017].
  2129. Ford, J. D. et al., 2014b: Adapting to the Effects of Climate Change on Inuit Health. American Journal of Public Health, 104 (S3), e9-e17, doi:10.2105/AJPH.2013.301724.
  2130. Forbes, B. C. et al., 2015: Arctic Human Development Report II [Larsen, J. N. and G. Fondal (eds.)]. Chapter 7 Resource Governanc, Denmark, 253-289.
  2131. AHDR, 2014: Arctic Human Development Report: Regional Processes and Global Linkages. Nordic Council of Ministers, Larsen, J. N. and G. Fondahl, Copenhagen [Available at: http://norden.diva-portal.org/smash/get/diva2:788965/FULLTEXT03.pdf; Access Date: 10 October 2017].
  2132. Ford, J. D. et al., 2014b: Adapting to the Effects of Climate Change on Inuit Health. American Journal of Public Health, 104 (S3), e9-e17, doi:10.2105/AJPH.2013.301724.
  2133. Forbes, B. C. et al., 2015: Arctic Human Development Report II [Larsen, J. N. and G. Fondal (eds.)]. Chapter 7 Resource Governanc, Denmark, 253-289.
  2134. Dannevig, H. and C. Aall, 2015: The regional level as boundary organization? An analysis of climate change adaptation governance in Norway. Environmental Science & Policy, 54, 168-175, doi:10.1016/j.envsci.2015.07.001.
  2135. Stokke, O. S., 2009: Protecting the Arctic Environment: The Interplay of Global and Regional Regimes. The Yearbook of Polar Law Online, 1 (1), 349-369, doi:10.1163/22116427-91000018.
  2136. Cassotta, S., K. Hossain, J. Ren and M. E. Goodsite, 2016: Climate Change and Human Security in a Regulatory Multilevel and Multidisciplinary Dimension: The Case of the Arctic Environmental Ocean. In: Climate Change Adaptation, Resilience and Hazards [Leal Filho, W., H. Musa, G. Cavan, P. O’Hare and J. Seixas (eds.)]. Springer International Publishing, Cham, 71-91.
  2137. Jabour, J., 2017: 25. Southern Ocean search and rescue: platforms and procedures. Handbook on the Politics of Antarctica, 392.
  2138. Keil, K. and S. E. Knecht, 2017: Governing Arctic Change: Global Perspectives. Palgrave Macmillan, Basingstoke, UK.
  2139. Pincus, R. and S. H. Ali, 2016: Have you been to ‘The Arctic’? Frame theory and the role of media coverage in shaping Arctic discourse. Polar Geography, 39 (2), 83-97, doi:10.1080/1088937X.2016.1184722.
  2140. Young, O. R., 2016: The shifting landscape of Arctic politics: implications for international cooperation. The Polar Journal, 6 (2), 209-223, doi:10.1080/2154896X.2016.1253823.
  2141. Young, O. R., 2016: The shifting landscape of Arctic politics: implications for international cooperation. The Polar Journal, 6 (2), 209-223, doi:10.1080/2154896X.2016.1253823.
  2142. Jabour, J., 2017: 25. Southern Ocean search and rescue: platforms and procedures. Handbook on the Politics of Antarctica, 392.
  2143. Stokke, O. S., 2009: Protecting the Arctic Environment: The Interplay of Global and Regional Regimes. The Yearbook of Polar Law Online, 1 (1), 349-369, doi:10.1163/22116427-91000018.
  2144. Berkman, P. A. and A. N. Vylegzhanin, 2010: Environmental Security in the Arctic Ocean. In: Environmental Security in the Arctic Ocean, Dordrecht, [Berkman, P. A. and A. N. Vylegzhanin (eds.)], Springer Netherlands.
  2145. Tuori, K., 2011: The Disputed Roots of Legal Pluralism. Law, Culture and the Humanities, 9 (2), 330-351, doi:10.1177/1743872111412718.
  2146. Young, O. R., 2011: If an Arctic Ocean treaty is not the solution, what is the alternative? Polar Record, 47 (4), 327-334, doi:10.1017/S0032247410000677.
  2147. Koivurova, T., 2013: Gaps in International Regulatory Frameworks for the Arctic Ocean. In: Environmental Security in the Arctic Ocean, 2013//, Dordrecht, [Berkman, P. A. and A. N. Vylegzhanin (eds.)], Springer Netherlands, 139-155.
  2148. Prior, T. L., 2013: Breaking the Wall of Monocentric Governance: Polycentricity in the Governance of Persistent Organic Pollutants in the Arctic. The Yearbook of Polar Law Online, 5 (1), 185-232, doi:10.1163/22116427-91000123.
  2149. Shibata, A., 2015: Japan and 100 Years of Antarctic Legal Order: Any Lessons for the Arctic? The Yearbook of Polar Law Online, 7 (1), 1-54, doi:10.1163/2211-6427_002.
  2150. Young, O. R., 2016: The shifting landscape of Arctic politics: implications for international cooperation. The Polar Journal, 6 (2), 209-223, doi:10.1080/2154896X.2016.1253823.
  2151. Jakobsen, I., 2014: Extractive Industries in Arctic: The International Legal Framework for the Protection of the Environment. Nordic Environmental Law Journal I, 1, 39-52.
  2152. Hossain, K., 2015: Governance of Arctic Ocean Marine Resources. In: Climate Change Impacts on Ocean and Coastal Law: U.S. and International Perspectives [Abate, R. S. (ed.)]. Oxford Scholarship Online, New York.
  2153. Verschuuren, J., 2013: Legal Aspects of Climate Change Adaptation In: Climate Change and the Law Part III: Comparative Perspectives on Law and Justice. [Hollo, E., K. Kulovesi and M. Mehling (eds.)]. Spinger, Dordrecht, 21.
  2154. Berkman, A. and A. Vylegzhanin, 2013: Environmental Security in the Arctic Ocean. NATO Science for Peace and Security Series -C: Environmental Security., Springer.
  2155. Kullerud, L. et al., 2013: The Arctic Ocean and UNCLOS Article 76: Are There Any Commons? In: Environmental Security in the Arctic Ocean, Dordrecht, [Berkman, P. and A. Vylegzhanin (eds.)], Springer Netherlands, 185-194.
  2156. Stokke, O. S., 2013: Political Stability and Multi-level Governance in the Arctic. In: Environmental Security in the Arctic Ocean, Dordrecht, [Berkman, P. and A. Vylegzhanin (eds.)], Springer Netherlands, 297-311.
  2157. Verschuuren, J., 2013: Legal Aspects of Climate Change Adaptation In: Climate Change and the Law Part III: Comparative Perspectives on Law and Justice. [Hollo, E., K. Kulovesi and M. Mehling (eds.)]. Spinger, Dordrecht, 21.
  2158. Kraska, J., 2011: Arctic Security in an Age of Climate Change [Kraska, J. (ed.)]. Cambridge University Press, Cambridge.
  2159. Åtland, K., 2013: The Security Implications of Climate Change in the Arctic Ocean. In: Environmental Security in the Arctic Ocean, Dordrecht, [Berkman, P. and A. Vylegzhanin (eds.)], Springer Netherlands, 205-216.
  2160. Huebert, R., 2013: Cooperation or Conflict in the New Arctic? Too Simple of a Dichotomy! In: Environmental Security in the Arctic Ocean, Dordrecht, [P., B. and V. A. (eds.)], Springer Netherlands, 195-203.
  2161. Cassotta, S., K. Hossain, J. Ren and M. E. Goodsite, 2015: Climate Change and China as a Global Emerging Regulatory Sea Power in the Arctic Ocean: Is China a Threat for Arctic Ocean Security? Beijing Law Review, 6 (3), 119-207, doi:10.4236/blr.2015.63020.
  2162. Barret, J., 2016: Securing the Polar Regions through International Law. In: Security and International Law [Footer, M. E., J. Schmidt, N. D. White and L. Davies (eds.)]. Bright, Oxford and Portland, Oregan, USA.
  2163. Cassotta, S., K. Hossain, J. Ren and M. E. Goodsite, 2016: Climate Change and Human Security in a Regulatory Multilevel and Multidisciplinary Dimension: The Case of the Arctic Environmental Ocean. In: Climate Change Adaptation, Resilience and Hazards [Leal Filho, W., H. Musa, G. Cavan, P. O’Hare and J. Seixas (eds.)]. Springer International Publishing, Cham, 71-91.
  2164. Brooks, C. M. et al., 2018: Antarctic fisheries: factor climate change into their management. Nature, 558 (7709), 177-180, doi:10.1038/d41586-018-05372-x.
  2165. Morgera, E. and K. Kulovesi, 2016: Research Handbook on International Law and Natural Resources.[Morgera, E. and K. Kulovesi (eds.)]. Research Handbooks in International Law, 349-365.
  2166. Tesar, C., M.-A. Dubois, M. Sommerkorn and A. Shestakov, 2016a: Warming to the subject: the Arctic Council and climate change. The Polar Journal, 6 (2), 417-429, doi:10.1080/2154896X.2016.1247025.
  2167. Wehrmann, D., 2016: The Polar Regions as “barometers” in the Anthropocene: towards a new significance of non-state actors in international cooperation? The Polar Journal, 6 (2), 379-397, doi:10.1080/2154896X.2016.1241483.
  2168. Young, O. R., 2016: The shifting landscape of Arctic politics: implications for international cooperation. The Polar Journal, 6 (2), 209-223, doi:10.1080/2154896X.2016.1253823.
  2169. Baker, B. and B. Yeager, 2015: Coordinated Ocean Stewardship in the Arctic: Needs, Challenges and Possible Models for an Arctic Ocean Coordinating Agreement. Transnational Environmental Law, 4 (2), 359-394, doi:10.1017/S2047102515000151.
  2170. Cassotta, S., K. Hossain, J. Ren and M. E. Goodsite, 2015: Climate Change and China as a Global Emerging Regulatory Sea Power in the Arctic Ocean: Is China a Threat for Arctic Ocean Security? Beijing Law Review, 6 (3), 119-207, doi:10.4236/blr.2015.63020.
  2171. Pincus, R. and J. G. Speth, 2015: Security in the Arctic
  2172. Morgera, E. and K. Kulovesi, 2016: Research Handbook on International Law and Natural Resources.[Morgera, E. and K. Kulovesi (eds.)]. Research Handbooks in International Law, 349-365.
  2173. Shapovalova, D., 2016: The Effectiveness of the Regulatory Regime for Black Carbon Mitigation in the Arctic. Arctic Review on Law and Politics, 7 (2), 136-151, doi:10.17585/arctic.v7.427.
  2174. Morgera, E. and K. Kulovesi, 2016: Research Handbook on International Law and Natural Resources.[Morgera, E. and K. Kulovesi (eds.)]. Research Handbooks in International Law, 349-365.
  2175. Shapovalova, D., 2016: The Effectiveness of the Regulatory Regime for Black Carbon Mitigation in the Arctic. Arctic Review on Law and Politics, 7 (2), 136-151, doi:10.17585/arctic.v7.427.
  2176. Baker, B. and B. Yeager, 2015: Coordinated Ocean Stewardship in the Arctic: Needs, Challenges and Possible Models for an Arctic Ocean Coordinating Agreement. Transnational Environmental Law, 4 (2), 359-394, doi:10.1017/S2047102515000151.
  2177. Young, O. R., 2016: The shifting landscape of Arctic politics: implications for international cooperation. The Polar Journal, 6 (2), 209-223, doi:10.1080/2154896X.2016.1253823.
  2178. Koivurova, T. and R. Caddell, 2018: Managing Biodiversity Beyond National Jurisdiction in the Changing Arctic. The American Society of International Law, 112, 134-138, doi:10.1017/aju.2018.44.
  2179. Aakre, S., S. Kallbekken, R. Van Dingenen and D. G. Victor, 2018: Incentives for small clubs of Arctic countries to limit black carbon and methane emissions. Nature Climate Change, 8 (1), 85-90, doi:10.1038/s41558-017-0030-8.
  2180. Stokke, O. S., 2013: Political Stability and Multi-level Governance in the Arctic. In: Environmental Security in the Arctic Ocean, Dordrecht, [Berkman, P. and A. Vylegzhanin (eds.)], Springer Netherlands, 297-311.
  2181. Baker, B. and B. Yeager, 2015: Coordinated Ocean Stewardship in the Arctic: Needs, Challenges and Possible Models for an Arctic Ocean Coordinating Agreement. Transnational Environmental Law, 4 (2), 359-394, doi:10.1017/S2047102515000151.
  2182. Pincus, R. and J. G. Speth, 2015: Security in the Arctic
  2183. Cassotta, S., K. Hossain, J. Ren and M. E. Goodsite, 2016: Climate Change and Human Security in a Regulatory Multilevel and Multidisciplinary Dimension: The Case of the Arctic Environmental Ocean. In: Climate Change Adaptation, Resilience and Hazards [Leal Filho, W., H. Musa, G. Cavan, P. O’Hare and J. Seixas (eds.)]. Springer International Publishing, Cham, 71-91.
  2184. Tesar, C., M.-A. Dubois, M. Sommerkorn and A. Shestakov, 2016a: Warming to the subject: the Arctic Council and climate change. The Polar Journal, 6 (2), 417-429, doi:10.1080/2154896X.2016.1247025.
  2185. Wehrmann, D., 2016: The Polar Regions as “barometers” in the Anthropocene: towards a new significance of non-state actors in international cooperation? The Polar Journal, 6 (2), 379-397, doi:10.1080/2154896X.2016.1241483.
  2186. Young, O. R., 2016: The shifting landscape of Arctic politics: implications for international cooperation. The Polar Journal, 6 (2), 209-223, doi:10.1080/2154896X.2016.1253823.
  2187. Koivurova, T. and R. Caddell, 2018: Managing Biodiversity Beyond National Jurisdiction in the Changing Arctic. The American Society of International Law, 112, 134-138, doi:10.1017/aju.2018.44.
  2188. Baker, B. and B. Yeager, 2015: Coordinated Ocean Stewardship in the Arctic: Needs, Challenges and Possible Models for an Arctic Ocean Coordinating Agreement. Transnational Environmental Law, 4 (2), 359-394, doi:10.1017/S2047102515000151.
  2189. Nengye, L., A. K. Elizabeth and H. Tore, 2017: The European Union and the Arctic. Brill, Leiden, The Netherlands.
  2190. Koivurova, T. and R. Caddell, 2018: Managing Biodiversity Beyond National Jurisdiction in the Changing Arctic. The American Society of International Law, 112, 134-138, doi:10.1017/aju.2018.44.
  2191. ATCM, 2016: Final Report of the Thirty-Ninth Antarctic Treaty Consultative Meeting. In: Antarctic Treaty Consultative Meeting XXXIX, 23 May – 1 June 2016, Santiago, Chile [Secretariat, A. T. (ed.)], 406pp.
  2192. ATCM, 2017: Final Report of the Fortieth Antarctic Treaty Consultative Meeting. In: Antarctic Treaty Consultative Meeting XL, 22 May – 1 June 2017, Beijing, China [Secretariat, A. T. (ed.)], 285pp.
  2193. Brooks, C. M. et al., 2018: Antarctic fisheries: factor climate change into their management. Nature, 558 (7709), 177-180, doi:10.1038/d41586-018-05372-x.
  2194. Kennicutt, M. C. et al., 2014a: Polar research: Six priorities for Antarctic science. Nature, (512), 23-25, doi:10.1038/512023a.
  2195. Kennicutt, M. C. et al., 2014b: A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarctic Science, 27 (1), 3-18, doi:10.1017/S0954102014000674.
  2196. Duyck, S., 2011: Participation of Non-State Actors in Arctic Environmental Governance Nordia Geographical Publications, 40 (4), 99-110.
  2197. Makki, M., 2012: Evaluating arctic dialogue: A case study of stakeholder relations for sustainable oil and gas development. Journal of Sustainable Development, 5 (3), 34-45, doi:10.5539/jsd.v5n3p34.
  2198. Keil, K. and S. E. Knecht, 2017: Governing Arctic Change: Global Perspectives. Palgrave Macmillan, Basingstoke, UK.
  2199. Keil, K. and S. E. Knecht, 2017: Governing Arctic Change: Global Perspectives. Palgrave Macmillan, Basingstoke, UK.
  2200. Turner, J. et al., 2009: Antarctic Climate Change and the Environment. Scientific Committee on Antarctic Research Scott Polar Research Institute, Cambridge, UK.
  2201. Biggs, R. et al., 2012: Toward Principles for Enhancing the Resilience of Ecosystem Services. Annual Review of Environment and Resources, Vol 37, 37 (1), 421-448, doi:10.1146/annurev-environ-051211-123836.
  2202. Quinlan, A. E. et al., 2016: Measuring and assessing resilience: broadening understanding through multiple disciplinary perspectives. Journal of Applied Ecology, 53 (3), 677-687, doi:10.1111/1365-2664.12550.
  2203. Antarctic Treaty Meeting of Experts, 2010: Co-Chairs’ Report from Antarctic Treaty Meeting of Experts on Implications of Climate Change for Antarctic Management and Governance. Antarctic Treaty Secretariat, Buenos Aires, Argentina.
  2204. ATCM, 2017: Final Report of the Fortieth Antarctic Treaty Consultative Meeting. In: Antarctic Treaty Consultative Meeting XL, 22 May – 1 June 2017, Beijing, China [Secretariat, A. T. (ed.)], 285pp.
  2205. Biggs, R. et al., 2012: Toward Principles for Enhancing the Resilience of Ecosystem Services. Annual Review of Environment and Resources, Vol 37, 37 (1), 421-448, doi:10.1146/annurev-environ-051211-123836.
  2206. Quinlan, A. E. et al., 2016: Measuring and assessing resilience: broadening understanding through multiple disciplinary perspectives. Journal of Applied Ecology, 53 (3), 677-687, doi:10.1111/1365-2664.12550.
  2207. AMAP, 2017a: Adaptation Actions for a Changing Arctic (AACA) – Bering/Chukchi/Beaufort Region Overview report. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 24 pp.
  2208. AMAP, 2017b: Adaptation Actions for a Changing Arctic: Perspectives from the Barents Area. Arctic Monitoring and Assessment Programme (AMAP), xiv + 267pp.
  2209. AMAP, 2015: AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vi+71pp [Available at: https://www.amap.no/documents/doc/amap-assessment-2015-temporal-trends-in-persistent-organic-pollutants-in-the-arctic/1521; Access Date: 25 October 2018].
  2210. Miller, C. A. and C. Wyborn, 2018: Co-production in global sustainability: Histories and theories. Environmental Science & Policy, doi:10.1016/j.envsci.2018.01.016.
  2211. Robards, M. D. et al., 2018: Understanding and adapting to observed changes in the Alaskan Arctic: Actionable knowledge co-production with Alaska Native communities. Deep Sea Research Part II: Topical Studies in Oceanography, doi:10.1016/j.dsr2.2018.02.008.
  2212. Meadow, A. M. et al., 2015: Moving toward the Deliberate Coproduction of Climate Science Knowledge. Weather, Climate, and Society, 7 (2), 179-191, doi:10.1175/WCAS-D-14-00050.1.
  2213. National Research Council, 2015: Enhancing the Effectiveness of Team Science. The National Academies Press, Washington, DC, 280 pp.
  2214. Petrov, A. N. et al., 2016: Arctic sustainability research: toward a new agenda. Polar Geography, 39 (3), 165-178, doi:10.1080/1088937x.2016.1217095.
  2215. Armitage, D. et al., 2011: Co-management and the co-production of knowledge: Learning to adapt in Canada’s Arctic. Global Environmental Change, 21 (3), 995-1004, doi:10.1016/j.gloenvcha.2011.04.006.
  2216. Robards, M. D. et al., 2018: Understanding and adapting to observed changes in the Alaskan Arctic: Actionable knowledge co-production with Alaska Native communities. Deep Sea Research Part II: Topical Studies in Oceanography, doi:10.1016/j.dsr2.2018.02.008.
  2217. van den Broeke, M. R. et al., 2016: On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10 (5), 1933-1946, doi:10.5194/tc-10-1933-2016.
  2218. Vlasova, T. and S. Volkov, 2016: Towards transdisciplinarity in Arctic sustainability knowledge co-production: Socially-Oriented Observations as a participatory integrated activity. Polar Science, 10 (3), 425-432, doi:10.1016/j.polar.2016.06.002.
  2219. Berkes, F., 2017: Environmental Governance for the Anthropocene? Social-Ecological Systems, Resilience, and Collaborative Learning. Sustainability, 9 (7), 1232, doi:10.3390/su9071232.
  2220. Retter, G.-B. et al., 2004: Community-based Monitoring Discussion paper. Supporting publication to the CAFF Circumpolar Biodiversity Monitoring Program – Framework Document, CAFF CBMP Report No. 9, CAFF International Secretariat, Council, A., Akureyri, Iceland, 21 pp [Available at: https://oaarchive.arctic-council.org/handle/11374/178%5D.
  2221. Johnson, N. et al., 2015a: The Contributions of Community-Based Monitoring and Traditional Knowledge to Arctic Observing Networks: Reflections on the State of the Field. Arctic, 68 (28-40), doi:10.14430/arctic4447.
  2222. Johnson, N. et al., 2015b: Community-Based Monitoring and Indigenous Knowledge in a Changing Arctic: A Review for the Sustaining Arctic Observing Networks. Brown University’s Voss Interdisciplinary Postdoctoral Fellowship, Brown University.
  2223. Kouril, D., C. Furgal and T. Whillans, 2016: Trends and key elements in community-based monitoring: a systematic review of the literature with an emphasis on Arctic and Subarctic regions. Environmental Reviews, 24 (2), 151-163, doi:10.1139/er-2015-0041.
  2224. AMAP, 2017a: Adaptation Actions for a Changing Arctic (AACA) – Bering/Chukchi/Beaufort Region Overview report. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 24 pp.
  2225. Williams, P. et al., 2018: Community-based observing networks and systems in the Arctic: Human perceptions of environmental change and instrument-derived data. Regional Environmental Change, 18 (2), 547-559, doi:10.1007/s10113-017-1220-7.
  2226. Brubaker, M., J. Berner, R. Chavan and J. Warren, 2011: Climate change and health effects in Northwest Alaska. Global Health Action, 4 (1), 8445, doi:10.3402/gha.v4i0.8445.
  2227. Brubaker, M., J. Berner and M. Tcheripanoff, 2013: LEO, the Local Environmental Observer Network: a community-based system for surveillance of climate, environment, and health events. International Journal of Circumpolar Health, 72, 513-514.
  2228. Griffith, D. L., L. Alessa and A. Kliskey, 2018: Community-based observing for social-ecological science: lessons from the Arctic. Frontiers in Ecology and the Environment, 16 (S1), S44-S51, doi:10.1002/fee.1798.
  2229. Pulsifer, P. et al., 2012: The role of data management in engaging communities in Arctic research: overview of the Exchange for Local Observations and Knowledge of the Arctic (ELOKA). Polar Geography, 35 (3-4), 271-290, doi:10.1080/1088937X.2012.708364.
  2230. Eicken, H. et al., 2014: A framework and database for community sea ice observations in a changing Arctic: an Alaskan prototype for multiple users. Polar Geography, 37 (1), 5-27, doi:10.1080/1088937x.2013.873090.
  2231. CAFF, 2015b: Traditional Knowledge & Community Based Monitoring Progress report 2015. Conservation of Arctic Flora and Fauna (CAFF), Akureyri, Iceland, 4pp [Available at: https://oaarchive.arctic-council.org/handle/11374/397; Access Date: 13 April 2019].
  2232. Robards, M. D. et al., 2018: Understanding and adapting to observed changes in the Alaskan Arctic: Actionable knowledge co-production with Alaska Native communities. Deep Sea Research Part II: Topical Studies in Oceanography, doi:10.1016/j.dsr2.2018.02.008.
  2233. Johnson, N. et al., 2015a: The Contributions of Community-Based Monitoring and Traditional Knowledge to Arctic Observing Networks: Reflections on the State of the Field. Arctic, 68 (28-40), doi:10.14430/arctic4447.
  2234. Johnson, N. et al., 2015b: Community-Based Monitoring and Indigenous Knowledge in a Changing Arctic: A Review for the Sustaining Arctic Observing Networks. Brown University’s Voss Interdisciplinary Postdoctoral Fellowship, Brown University.
  2235. Biggs, R., G. D. Peterson and J. C. Rocha, 2018: The Regime Shifts Database: a framework for analyzing regime shifts in social-ecological systems. Ecology and Society, 23 (3), doi:10.5751/es-10264-230309.
  2236. Rocha, J. C., G. Peterson, O. Bodin and S. Levin, 2018: Cascading regime shifts within and across scales. Science, 362 (6421), 1379-1383, doi:10.1126/science.aat7850.
  2237. Biggs, R., G. D. Peterson and J. C. Rocha, 2018: The Regime Shifts Database: a framework for analyzing regime shifts in social-ecological systems. Ecology and Society, 23 (3), doi:10.5751/es-10264-230309.
  2238. Rocha, J. C., G. Peterson, O. Bodin and S. Levin, 2018: Cascading regime shifts within and across scales. Science, 362 (6421), 1379-1383, doi:10.1126/science.aat7850.
  2239. Gerlach, C., P. A. Loring, G. Kofinas and H. Penn, 2017: Resilience to rapid change in Bering, Chukchi, and Beaufort communities. Chapter 6 of Adaptation Actions for a Changing Arctic: Perspectives from the Bering-Chukchi-Beaufort Region, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 155-176 [Available at: https://www.amap.no/documents/doc/Adaptation-Actions-for-a-Changing-Arctic-Perspectives-from-the-Bering-Chukchi-Beaufort-Region/1615%5D.
  2240. Biggs, R., G. D. Peterson and J. C. Rocha, 2018: The Regime Shifts Database: a framework for analyzing regime shifts in social-ecological systems. Ecology and Society, 23 (3), doi:10.5751/es-10264-230309.
  2241. Petrov, A. N. et al., 2016: Arctic sustainability research: toward a new agenda. Polar Geography, 39 (3), 165-178, doi:10.1080/1088937x.2016.1217095.
  2242. Carson, M. and M. Sommerkorn, 2017: A resilience approach to adaptation actions. Chapter 8 of Adaptation Actions for a Changing Arctic: Perspectives from the Barents Area, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 195-218 [Available at: https://www.amap.no/documents/doc/adaptation-actions-for-a-changing-arctic-perspectives-from-the-barents-area/1604%5D.
  2243. CAFF, 2017: State of the Arctic Marine Biodiversity Report. Conservation of Arctic Flora and Fauna International Secretariat, Akureyri, Iceland, 200pp.
  2244. Box, J. E. et al., 2019: Key indicators of Arctic climate change: 1971–2017. Environmental Research Letters, 14 (4), 045010, doi:10.1088/1748-9326/aafc1b.
  2245. Jarvis, D. et al., 2013: Review of the evidence on Indicators, metrics and monitoring systems. Department for International Development, UK Government [Available at: http://r4d.dfid.gov.uk/Output/192446/Default.aspx%5D.
  2246. Carson, M. and M. Sommerkorn, 2017: A resilience approach to adaptation actions. Chapter 8 of Adaptation Actions for a Changing Arctic: Perspectives from the Barents Area, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 195-218 [Available at: https://www.amap.no/documents/doc/adaptation-actions-for-a-changing-arctic-perspectives-from-the-barents-area/1604%5D.
  2247. Ford, J. D. and D. King, 2013: A framework for examining adaptation readiness. Mitigation and Adaptation Strategies for Global Change, 20 (4), 505-526, doi:10.1007/s11027-013-9505-8.
  2248. Petrov, A. N. et al., 2016: Arctic sustainability research: toward a new agenda. Polar Geography, 39 (3), 165-178, doi:10.1080/1088937x.2016.1217095.
  2249. Berman, M., G. Kofinas and S. BurnSilver, 2017: Measuring Community Adaptive and Transformative Capacity in the Arctic Context. In: Northern Sustainabilities: Understanding and Addressing Change in the Circumpolar World [Fondahl, G. and G. N. Wilson. (eds.)]. Springer International Publishing, Inc., Cham, Switzerland, 59-75.
  2250. Quinlan, A. E. et al., 2016: Measuring and assessing resilience: broadening understanding through multiple disciplinary perspectives. Journal of Applied Ecology, 53 (3), 677-687, doi:10.1111/1365-2664.12550.
  2251. Carson, M. and M. Sommerkorn, 2017: A resilience approach to adaptation actions. Chapter 8 of Adaptation Actions for a Changing Arctic: Perspectives from the Barents Area, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 195-218 [Available at: https://www.amap.no/documents/doc/adaptation-actions-for-a-changing-arctic-perspectives-from-the-barents-area/1604%5D.
  2252. Armitage, D. et al., 2011: Co-management and the co-production of knowledge: Learning to adapt in Canada’s Arctic. Global Environmental Change, 21 (3), 995-1004, doi:10.1016/j.gloenvcha.2011.04.006.
  2253. Tesar, C., M. A. Dubois and A. Shestakov, 2016b: Toward strategic, coherent, policy-relevant arctic science. Science, 353 (6306), 1368-1370, doi:10.1126/science.aai8198.
  2254. Baztan, J. et al., 2017: Life on thin ice: Insights from Uummannaq, Greenland for connecting climate science with Arctic communities. Polar Science, 13, 100-108, doi:10.1016/j.polar.2017.05.002.
  2255. Forbis Jr, R. and K. Hayhoe, 2018: Does Arctic governance hold the key to achieving climate policy targets? Environmental Research Letters, 13 (2), 020201, doi:10.1088/1748-9326/aaa359.
  2256. Armitage, D. et al., 2011: Co-management and the co-production of knowledge: Learning to adapt in Canada’s Arctic. Global Environmental Change, 21 (3), 995-1004, doi:10.1016/j.gloenvcha.2011.04.006.
  2257. Powledge, F., 2012: Scientists, Policymakers, and a Climate of UncertaintyCan research gain a foothold in the politics of climate change? Bioscience, 62 (1), 8-13, doi:10.1525/bio.2012.62.1.3.
  2258. Neff, T., 2009: Connecting Science and Policy to Combat Climate Change. Scientific American; https://www.scientificamerican.com/article/connecting-science-and-po/.
  2259. Beier, P. et al., 2015: Guiding Principles and Recommended Practices for Co-Producing Actionable Science. A How-to Guide for DOI Climate Science Centers and the National Climate Change and Wildlife Science Center. Report to the Secretary of the InteriorAdvisory Committee on Climate Change and Natural Resource Science, Washington, DC.
  2260. Fleming, A. H. and N. D. Pyenson, 2017: How to Produce Translational Research to Guide Arctic Policy. Bioscience, 67 (6), 490-493, doi:10.1093/biosci/bix002.
  2261. Baztan, J. et al., 2017: Life on thin ice: Insights from Uummannaq, Greenland for connecting climate science with Arctic communities. Polar Science, 13, 100-108, doi:10.1016/j.polar.2017.05.002.
  2262. Kofinas, G. et al., 2016: Building resilience in the Arctic: From theory to practice. In: Arctic Resilience Report [Council, A. (ed.)][Carson, M. and G. Peterson (eds.)]. Stockholm Environment Institute and Stockholm Resilience Centre, Stockholm, 180-208.
  2263. Garrett, R. A., T. C. Sharkey, M. Grabowski and W. A. Wallace, 2017: Dynamic resource allocation to support oil spill response planning for energy exploration in the Arctic. European Journal of Operational Research, 257 (1), 272-286, doi:10.1016/j.ejor.2016.07.023.
  2264. Holsman, K. et al., 2017: An ecosystem-based approach to marine risk assessment. Ecosystem Health and Sustainability, 3 (1), e01256, doi:10.1002/ehs2.1256.
  2265. Camus, L. and M. G. D. Smit, 2019: Environmental effects of Arctic oil spills and spill response technologies, introduction to a 5 year joint industry effort. Mar Environ Res, 144, 250-254, doi:10.1016/j.marenvres.2017.12.008.
  2266. Beier, P. et al., 2015: Guiding Principles and Recommended Practices for Co-Producing Actionable Science. A How-to Guide for DOI Climate Science Centers and the National Climate Change and Wildlife Science Center. Report to the Secretary of the InteriorAdvisory Committee on Climate Change and Natural Resource Science, Washington, DC.
  2267. AMAP, 2017a: Adaptation Actions for a Changing Arctic (AACA) – Bering/Chukchi/Beaufort Region Overview report. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 24 pp.
  2268. Crépin, A.-S., Å. Gren, G. Engström and D. Ospina, 2017: Operationalising a social–ecological system perspective on the Arctic Ocean. AMBIO, 46 (3), 475-485, doi:10.1007/s13280-017-0960-4.
  2269. Planque, B. et al., 2019: A participatory scenario method to explore the future of marine social‐ecological systems. Fish and Fisheries, 20 (3), 434-451, doi:10.1111/faf.12356.
  2270. Nilsson, A. E. et al., 2017: Towards extended shared socioeconomic pathways: A combined participatory bottom-up and top-down methodology with results from the Barents region. Global Environmental Change-Human and Policy Dimensions, 45, 124-132, doi:10.1016/j.gloenvcha.2017.06.001.
  2271. Liggett, D., B. Frame, N. Gilbert and F. Morgan, 2017: Is it all going south? Four future scenarios for Antarctica. Polar Record, 53 (5), 459-478, doi:10.1017/S0032247417000390.
  2272. Nilsson, A. E. et al., 2017: Towards extended shared socioeconomic pathways: A combined participatory bottom-up and top-down methodology with results from the Barents region. Global Environmental Change-Human and Policy Dimensions, 45, 124-132, doi:10.1016/j.gloenvcha.2017.06.001.
  2273. Planque, B. et al., 2019: A participatory scenario method to explore the future of marine social‐ecological systems. Fish and Fisheries, 20 (3), 434-451, doi:10.1111/faf.12356.
  2274. Vargas-Moreno, J. C., B. Fradkin, S. Emperador and O. L. (eds), 2016: Project Summary: Prioritizing Science Needs Through Participatory Scenarios for Energy and Resource Development on the North Slope and Adjacent Seas. . GeoAdaptive, LLC, Boston, Massachusetts. [Available at: http://northslope.org/scenarios/%5D.
  2275. Ernst, K. M. and M. van Riemsdijk, 2013: Climate change scenario planning in Alaska’s National Parks: Stakeholder involvement in the decision-making process. Applied Geography, 45, 22-28, doi:10.1016/j.apgeog.2013.08.004.
  2276. Flynn, M., J. D. Ford, T. Pearce and S. L. Harper, 2018: Participatory scenario planning and climate change impacts, adaptation and vulnerability research in the Arctic. Environmental Science & Policy, 79, 45-53, doi:10.1016/j.envsci.2017.10.012.
  2277. Planque, B. et al., 2019: A participatory scenario method to explore the future of marine social‐ecological systems. Fish and Fisheries, 20 (3), 434-451, doi:10.1111/faf.12356.
  2278. Gregory, R. et al., 2012: Structured Decision Making. John Wiley & Sons Ltd, Chichester, United Kingdom.
  2279. Christie, K. S., T. E. Hollmen, H. P. Huntington and J. R. Lovvorn, 2018: Structured decision analysis informed by traditional ecological knowledge as a tool to strengthen subsistence systems in a changing Arctic. Ecology and Society, 23 (4), 42, doi:https://doi.org/10.5751/ES-10596-230442.
  2280. Wheeler, H. C. et al., 2018: Identifying key needs for the integration of social-ecological outcomes in arctic wildlife monitoring. Conserv Biol, doi:10.1111/cobi.13257.
  2281. Trump, B. D., M. Kadenic and I. Linkov, 2018: A sustainable Arctic: Making hard decisions. Arctic, Antarctic, and Alpine Research, 50 (1), doi:10.1080/15230430.2018.1438345.
  2282. Kofinas, G. et al., 2016: Building resilience in the Arctic: From theory to practice. In: Arctic Resilience Report [Council, A. (ed.)][Carson, M. and G. Peterson (eds.)]. Stockholm Environment Institute and Stockholm Resilience Centre, Stockholm, 180-208.
  2283. Chapin III, F. S., G. P. Kofinas and C. Folke, Eds., 2009: Principles of Ecosystem Stewardship: Resilience-Based Natural Resource Management in a Changing World. Springer-Verlag, New York, USA., 401 pp.
  2284. Forbes, B. C. et al., 2015: Arctic Human Development Report II [Larsen, J. N. and G. Fondal (eds.)]. Chapter 7 Resource Governanc, Denmark, 253-289.
  2285. Chapin III, F. S. et al., 2010: Resilience of Alaska’s boreal forest to climatic change. . In: The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming. Canadian Journal of Forest Research. NRC Research Press, 40, 1360-1370.
  2286. Chapin III, F. S., M. Sommerkorn, M. D. Robards and K. Hillmer-Pegram, 2015: Ecosystem stewardship: A resilience framework for arctic conservation. Global Environmental Change, 34, 207-217, doi:doi.org/10.1016/j.gloenvcha.2015.07.003.
  2287. Chapin III, F. S., G. P. Kofinas and C. Folke, Eds., 2009: Principles of Ecosystem Stewardship: Resilience-Based Natural Resource Management in a Changing World. Springer-Verlag, New York, USA., 401 pp.
  2288. Chapin III, F. S. et al., 2010: Resilience of Alaska’s boreal forest to climatic change. . In: The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming. Canadian Journal of Forest Research. NRC Research Press, 40, 1360-1370.
  2289. Chapin III, F. S., M. Sommerkorn, M. D. Robards and K. Hillmer-Pegram, 2015: Ecosystem stewardship: A resilience framework for arctic conservation. Global Environmental Change, 34, 207-217, doi:doi.org/10.1016/j.gloenvcha.2015.07.003.
  2290. Biggs, R. et al., 2012: Toward Principles for Enhancing the Resilience of Ecosystem Services. Annual Review of Environment and Resources, Vol 37, 37 (1), 421-448, doi:10.1146/annurev-environ-051211-123836.
  2291. Biggs, R. et al., 2012: Toward Principles for Enhancing the Resilience of Ecosystem Services. Annual Review of Environment and Resources, Vol 37, 37 (1), 421-448, doi:10.1146/annurev-environ-051211-123836.
  2292. Chapin III, F. S., M. Sommerkorn, M. D. Robards and K. Hillmer-Pegram, 2015: Ecosystem stewardship: A resilience framework for arctic conservation. Global Environmental Change, 34, 207-217, doi:doi.org/10.1016/j.gloenvcha.2015.07.003.
  2293. Quinlan, A. E. et al., 2016: Measuring and assessing resilience: broadening understanding through multiple disciplinary perspectives. Journal of Applied Ecology, 53 (3), 677-687, doi:10.1111/1365-2664.12550.
  2294. Armitage, D. R. et al., 2009: Adaptive co-management for social–ecological complexity. Frontiers in Ecology and the Environment, 7 (2), 95-102, doi:10.1890/070089.
  2295. Dale, A. and D. Armitage, 2011: Marine mammal co-management in Canada’s Arctic: Knowledge co-production for learning and adaptive capacity. Marine Policy, 35 (4), 440-449, doi:10.1016/j.marpol.2010.10.019.
  2296. Chapin III, F. S., M. Sommerkorn, M. D. Robards and K. Hillmer-Pegram, 2015: Ecosystem stewardship: A resilience framework for arctic conservation. Global Environmental Change, 34, 207-217, doi:doi.org/10.1016/j.gloenvcha.2015.07.003.
  2297. Arp, C. D. et al., 2019: Ice roads through lake-rich Arctic watersheds: Integrating climate uncertainty and freshwater habitat responses into adaptive management. Arctic, Antarctic, and Alpine Research, 51 (1), 9-23, doi:10.1080/15230430.2018.1560839.
  2298. Gunn, A. et al., 2011: Understanding the cumulative effects of human activities on barren-ground caribou. In: Cumulative Effects in Wildlife Management: Impact Mitigation [Krausman, P. R. and L. K. Harris (eds.)]. CRC Press, Boca Raton, 113-134.
  2299. Russell, D., 2014a: Energy-protein modeling of North Baffin Island caribou in relation to the Mary River Project: a reassessment from Russell (2012). Prepared for EDI Environmental Dynamics Inc., Whitehorse YT and Baffinland Iron Mines Corporation, Oakville Ontario.
  2300. Russell, D., 2014b: Kiggavik Project Effects: Energy-Protein and Population Modeling of the Qamanirjuaq Caribou Herd. Prepared for EDI Environmental Dynamics Inc., Whitehorse YT and AREVA Resources Canada.
  2301. Kaiser, B. A. et al., 2015: Spatial issues in Arctic marine resource governance workshop summary and comment. Marine Policy, 58, 1-5, doi:10.1016/j.marpol.2015.03.033.
  2302. Bengtsson, J. et al., 2003: Reserves, resilience and dynamic landscapes. AMBIO, 32 (6), 389-96, doi:10.1579/0044-7447-32.6.389.
  2303. Cumming, G. S., 2011: Spatial resilience: integrating landscape ecology, resilience, and sustainability. Landscape Ecology, 26 (7), 899-909, doi:10.1007/s10980-011-9623-1.
  2304. Allen, C. R. et al., 2016: Quantifying spatial resilience. Journal of Applied Ecology, 53 (3), 625-635, doi:10.1111/1365-2664.12634.
  2305. Ban, N. C. et al., 2014: Systematic Conservation Planning: A Better Recipe for Managing the High Seas for Biodiversity Conservation and Sustainable Use. Conservation Letters, 7 (1), 41-54, doi:10.1111/conl.12010.
  2306. McLeod, E., R. Salm, A. Green and J. Almany, 2009: Designing marine protected area networks to address the impacts of climate change. Frontiers in Ecology and the Environment, 7 (7), 362-370, doi:10.1890/070211.
  2307. Nyström, M. and C. Folke, 2001: Spatial Resilience of Coral Reefs. Ecosystems, 4 (5), 406-417, doi:10.1007/s10021-001-0019-y.
  2308. Hope, A. G. et al., 2013: Future distribution of tundra refugia in northern Alaska. Nature Climate Change, 3, 931, doi:10.1038/nclimate1926.
  2309. Thomas, C. D. and P. K. Gillingham, 2015: The performance of protected areas for biodiversity under climate change. Biological Journal of the Linnean Society, 115 (3), 718-730, doi:10.1111/bij.12510.
  2310. Solovyev, B. et al., 2017: Identifying a network of priority areas for conservation in the Arctic seas: Practical lessons from Russia. Aquatic Conservation: Marine and Freshwater Ecosystems, 27 (S1), 30-51, doi:10.1002/aqc.2806.
  2311. Juvonen, S.-K. and A. E. Kuhmonen, 2013: Evaluation of the Protected Area Network in the Barents Region Using the Programme of Work on Protected Areas of the Convention on Biological Diversity as a Tool. In: Reports of the Finnish Environment Institute, Helsinki, 37.
  2312. Coetzee, B. W. T., P. Convey and S. L. Chown, 2017: Expanding the Protected Area Network in Antarctica is Urgent and Readily Achievable. Conservation Letters, 10 (6), 670-680, doi:10.1111/conl.12342.
  2313. Arctic Council, 2015b: Framework for a Pan-Arctic Network of Marine Protected Areas. Protection of the Arctic Marine Environment (PAME), Iceland, 52 pp [Available at: https://oaarchive.arctic-council.org/handle/11374/417; Access Date: 28 March 2019].
  2314. CCAMLR, 2016a: Commission for the Conservation of Antarctic Marine Living Resources: Report of the Thirty-fifth Meeting of the Commission. Report of the meeting of the Commission, 35, Hobart, Tasmania, Australia, 222.
  2315. Wenzel, L. et al., 2016: Polar opposites? Marine conservation tools and experiences in the changing Arctic and Antarctic. Aquatic Conservation: Marine and Freshwater Ecosystems, 26, 61-84, doi:10.1002/aqc.2649.
  2316. CAFF, 2015a: The Economics of Ecosystems and Biodiversity (TEEB) Scoping Study for the Arctic. Conservation of Arctic Flora and Fauna (CAFF), Akureyri, Iceland, 168pp.
  2317. Malinauskaite, L. et al., 2019: Ecosystem services in the Arctic: a thematic review. Ecosystem Services, 36, 100898, doi:10.1016/j.ecoser.2019.100898.
  2318. Sarkki, S. and N. Acosta García, 2019: Merging social equity and conservation goals in IPBES. Conservation Biology, 33 (5), 1214-1218, doi:10.1111/cobi.13297.
  2319. CAFF, 2015a: The Economics of Ecosystems and Biodiversity (TEEB) Scoping Study for the Arctic. Conservation of Arctic Flora and Fauna (CAFF), Akureyri, Iceland, 168pp.
  2320. Malinauskaite, L. et al., 2019: Ecosystem services in the Arctic: a thematic review. Ecosystem Services, 36, 100898, doi:10.1016/j.ecoser.2019.100898.
  2321. Chapin III, F. S., M. Sommerkorn, M. D. Robards and K. Hillmer-Pegram, 2015: Ecosystem stewardship: A resilience framework for arctic conservation. Global Environmental Change, 34, 207-217, doi:doi.org/10.1016/j.gloenvcha.2015.07.003.
  2322. Guerry, A. D. et al., 2015: Natural capital and ecosystem services informing decisions: From promise to practice. Proceedings of the National Academy of Sciences, 112 (24), 7348, doi:10.1073/pnas.1503751112.
  2323. Díaz, S. et al., 2019: Summary for policymakers of the global assessment report on biodiversity and ecosystem services – unedited advance version [Manuela Carneiro da Cunha, Georgina Mace and Harold Mooney (eds.)]. The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) [Available at: https://www.ipbes.net/system/tdf/spm_global_unedited_advance.pdf?file=1&type=node&id=35245%5D.
  2324. Mengerink, K., D. Roche and G. Swanson, 2017: Understanding Arctic Co-Management: The U.S. Marine Mammal Approach. The Yearbook of Polar Law Online, 8 (1), 76-102, doi:10.1163/22116427_008010007.

Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities