# Swiss Re 

## III

## sigma

No 1/2011

Natural catastrophes and man-made disasters in 2010: a year of devastating and costly events

1 Executive summary

2 Overview of catastrophes in 2010

92010 - the year of devastating earthquakes

14 Tables for reporting year 2010

32 Tables showing the major losses 1970-2010

34 Terms and selection criteria

Published by:
Swiss Reinsurance Company Ltd Economic Research \& Consulting
P.O. Box

8022 Zurich
Switzerland
Telephone +41432852551
Fax +41432820075
E-mail: sigma@swissre.com
New York Office:
55 East 52nd Street
40th Floor
New York, NY 10055

Telephone +1 2123175400
Fax +12123175455

Hong Kong Office:
18 Harbour Road, Wanchai
Central Plaza, 61st Floor
Hong Kong, SAR
Telephone + 85225825703
Fax +85225116603

Authors:
Lucia Bevere
Telephone +41432859279

Dr Brian Rogers
Telephone +41432852733
Dr Balz Grollimund
Telephone +41432855758

Managing editor:
Thomas Hess,
Head of Economic Research \& Consulting, is responsible for the sigma series.

The editorial deadline for this study was 28 February 2011.
sigma is available in English (original language), German, French, Spanish, Chinese and Japanese
sigma is available on Swiss Re's website: www.swissre.com/sigma

The internet version may contain slightly updated information.

Translations:
CLS Communication

Graphic design and production: Swiss Re Logistics / Media Production
© 2011
Swiss Reinsurance Company Ltd
All rights reserved.
The entire content of this sigma edition is subject to copyright with all rights reserved The information may be used for private or internal purposes, provided that any copyright or other proprietary notices are not removed. Electronic reuse of the data published in sigma is prohibited.

Reproduction in whole or in part or use for any public purpose is permitted only with the prior written approval of Swiss Re Economic Research \& Consulting and if the source reference "Swiss Re, sigma No 1/2011" is indicated. Courtesy copies are appreciated.

Although all the information used in this study was taken from reliable sources, Swiss Reinsurance Company does not accept any responsibility for the accuracy or comprehensiveness of the information given. The information provided is for informational purposes only and in no way constitutes Swiss Re's position. In no event shall Swiss Re be liable for any loss or damage arising in connection with the use of this information.

## Executive summary

Catastrophes killed nearly 304000 people in 2010. Insured losses rose more than 60\% to USD 43bn.

Over 300 catastrophic events occurred in 2010

The earthquake that struck Haiti and the summer heat wave in Russia killed more than 222000 and nearly 56000 people respectively.

Catastrophes cost society approximately USD 218bn in 2010

Insured losses were USD 43bn; natural catastrophes cost insurers roughly USD 40bn, while man-made disasters accounted for more than USD 3bn.

Earthquakes accounted for almost onethird of insured losses in 2010.

Earthquake fatalities and insured losses are rising because of higher population densities and because populations are growing in seismically active areas

Building standards that are strictly enforced, solid infrastructures and disaster relief efforts are essential

Prevention, mitigation, and risk avoidance are important, but financial preparation s also key.

## Catastrophes claimed nearly 304000 victims and cost insurers approximately USD 43bn in 2010

Natural catastrophes and man-made disasters claimed nearly 304000 victims and resulted in economic losses of close to USD 218bn in 2010. The cost to insurers was more than USD 43bn. In terms of insured losses, 2010 ranks as the seventh highest year since 1970, when sigma began collecting catastrophe data. Compared to 2009, insured losses were more than 60\% higher in 2010, but still below 2005, the year that insured losses soared after Hurricanes Katrina, Wilma and Rita struck the US.

In 2010, 304 catastrophic events occurred, consisting of 167 natural catastrophes and 137 man-made disasters.

Of the nearly 304000 people who were victims of catastrophic events in 2010, more than 222000 died in the massive earthquake that struck Haiti in January. The heat wave and wildfires that affected Russia in the summer claimed nearly 56000 victims due to the combination of the smoke and record high temperatures.

In terms of economic losses, natural catastrophes and man-made disasters cost society approximately USD 218bn in 2010, versus USD 68bn in 2009. Asia suffered the highest economic losses, totalling approximately USD 75bn.

Natural catastrophes cost the global insurance industry roughly USD 40bn in 2010, while man-made disasters triggered additional claims of more than USD 3bn. By comparison, overall insured losses totalled USD 27bn in 2009. Despite notably higher than average earthquake losses, overall catastrophe claims in 2010 were roughly in line with the 10-year average due to unusually modest US hurricane losses. Insured losses were highest in North America, where they exceeded USD 15bn.

Earthquakes losses accounted for almost one-third of all insured losses in 2010. The earthquake in Chile cost the industry USD 8bn and claimed 562 lives, while the New Zealand earthquake cost insurers more than USD 4bn but resulted in no fatalities. Winter storm Xynthia in northwestern Europe led to insured losses of USD 2.8bn, killing 64 people. Other significant events include a major US storm that caused more than USD 2bn of insured losses and the floods in Australia, which, in 2010, triggered approximately USD 2 bn in claims.

A special chapter on earthquakes in this edition of sigma reveals that the number of fatalities and insured losses from earthquakes are rising because population growth and higher population density, especially in urban areas, exposes more people to a single damaging earthquake. Many of the rapidly growing urban areas with high population densities are located in seismically active areas. Due to this, the probability for earthquakes with a high death toll continuously increases, although the seismic threat itself remains unchanged.

Improved building standards that are strictly enforced, along with good infrastructure and efficient disaster relief efforts have helped mitigate the negative consequences of earthquakes.

2010 was a year of extreme weather events, such as floods of unprecedented scale in terms of the territory affected and damage suffered - and devastating earthquakes that ranked among the deadliest, costliest and most powerful in history.

Prevention, mitigation and risk avoidance with measures such as hazard mapping or comprehensive building codes are the most important steps for dealing with catastrophes. But not all risks can be avoided, so preparing for the financial aspects of risks is a key element of any disaster-prone country or region.

## Overview of catastrophes in 2010

| Selection criteria 2010 |  |  |
| :--- | :--- | ---: |
|  | in USDm |  |
| Insured claims: | Maritime disasters | 17.4 |
|  | Aviation | 34.8 |
|  | Other losses | 43.3 |
| or Total economic losses: | 86.5 |  |
|  | Dead or missing | 20 |
|  | Injured | 50 |
|  | Homeless | 2000 |

Figure 1
Number of events 1970-2010

## More than 300 catastrophic events occurred in 2010

Of the 304 catastrophic events that occurred in 2010, 167 were natural catastrophes, while the remaining 137 events were man-made disasters (see Figure 1). Compared to 2009, the number of natural catastrophes increased. In fact, 2010 set a new record for the number of natural catastrophes since sigma began collecting catastrophe data. Also for the first time, the number of natural catastrophes exceeded the number of man-made disasters. Since 2005, the number of man-made disasters has continued to decline.

An event is included in the sigma statistics if insured claims, total economic losses or the number of casualties exceed a certain limit (refer to the Selection criteria 2010 in the margin). Each year, the claims threshold is adjusted for inflation. Thresholds with respect to casualties - ie the number of people killed, missing, severely injured, or homeless - also make it possible to tabulate events in regions where insurance penetration is low.

300


[^0]
## Nearly 304000 people around the world were victims of catastrophes

Natural catastrophes and man-made disasters claimed nearly 304000 lives in 2010.

Man-made disasters claimed 6446 victims in 2010.

Natural disasters and man-made disasters claimed approximately 304000 lives in 2010. More than 297000 of these people died or were missing due to natural catastrophes, while more than 6000 were victims of man-made disasters (see Figure 2) 2010 ranks as the third highest year in terms of victims since 1970, when sigma began collecting catastrophe data. The number of victims in 2010 was especially high in comparison to 2009, when less than 15000 people lost their lives to catastrophes and man-made disasters. The deadliest event in 2010 was the Haiti earthquake in January, which claimed more than 222000 lives.

In 2010, 6446 people were victims of man-made disasters versus 5970 in 2009. The man-made disasters that claimed the most victims in 2010 were a lead poisoning outbreak at an illegal gold mine in Nigeria in March (400 victims, mainly children), a stampede on a bridge at a festival in Cambodia in November ( 375 victims), and the collapse of a gold mine in Sierra Leone in March that killed approximately 200 people. Meanwhile, aviation and maritime disasters accounted for more than 800 and 1100 victims respectively.

1000000


[^1]Total economic losses in 2010 were USD 218bn. Asia was the region with the highest losses at USD 75bn.

## Total economic losses were estimated at approximately USD 218bn

Natural catastrophe and man-made disasters cost society approximately USD 218bn in 2010. Economic losses were highest in Asia, where floods of unprecedented dimensions caused damages of approximately USD 75bn. The earthquakes of Chile and Haiti caused losses for Latin America and the Caribbean to soar to more than USD 53bn

Economic loss estimates from man-made disasters were more than USD 24bn, most of which were attributed to the explosion of the Deepwater Horizon oil rig in April. British Petroleum (BP) stated it had set aside USD 41bn for the event, including punitive damages which are not included in the sigma numbers. sigma initially allocated approximately USD 20bn to the overall direct economic losses caused by the explosion.

## Table 1

Economic loss by region and as a \% of GDP

|  | Economic loss <br> in USD m | as a \% of GDP |
| :--- | ---: | ---: |
| Asia | 74840 | $0.28 \%$ |
| Latin America and Caribbean | 53378 | $1.10 \%$ |
| Europe | 35204 | $0.19 \%$ |
| North America | 20551 | $0.13 \%$ |
| Oceania/Australia | 13131 | $0.95 \%$ |
| Africa | 337 | $0.02 \%$ |
| Seas/Space | 20623 | - |
| World Total | 218064 | $0.31 \%$ |

[^2]Insured losses due to natural catastrophes were nearly USD 40bn.

## Figure 3

Insured catastrophe losses 1970-2010

Ten events triggered insured losses of at least USD 1bn; the earthquake in Chile was the costliest at USD 8bn.

The 2010 North Atlantic hurricane season was active, but resulted in relatively low insured losses.

Insured losses due to man-made disasters were USD 3.6bn

## Insured losses from catastrophic events were approximately USD 43bn

Individuals, companies or state institutions absorbed most of the USD 218bn in total damages caused by catastrophic events in 2010. The cost to insurers was USD 43bn (see Figure 3). Of this amount, natural catastrophes losses accounted for nearly USD 40bn, while man-made disasters accounted for over USD 3bn.


Source: Swiss Re Economic Research \& Consulting

Overall, ten disasters each triggered insured losses of USD 1bn or more in 2010 (see Table 4). With insurance losses of USD 8bn, the earthquake in Chile was the costliest event in 2010, followed by yet another earthquake, which struck New Zealand in September, causing insured losses of more than USD 4.4bn. These two events caused the earthquake losses for 2010 to be the second highest ever, surpassed only by 1994 when the Northridge earthquake struck the US, causing insured losses of USD 21bn (indexed to 2010). Overall, 2010 ranks as the seventh costliest year since sigma began collecting data on disasters.

With nineteen named tropical storms developing into hurricanes - five of which became major hurricanes - the 2010 North Atlantic hurricane season was one of the most active on record. Hurricanes caused extensive damage in Mexico and the Caribbean, but only very moderate damage in the US. This resulted in relatively low hurricane losses when compared to overall insured catastrophe losses.

Man-made disasters triggered additional insured losses of USD 3.6bn in 2010 The biggest man-made disaster of 2010 was the explosion of the Deepwater Horizon oil rig in the Gulf of Mexico. Insured losses from this disaster were estimated at USD 1bn without liability losses which are not included in the sigma estimates.

Aviation disasters triggered additional insured losses of more than USD 1bn. Two events - a large fire at an airport warehouse in Saudi Arabia in June and the loss of a satellite in October - accounted for more than half of these losses.

Insured and economic losses were highest in North America and Asia respectively. Latin America and the Caribeean had the most victims.

Table 2

## Catastrophes in 2010 by region

## Regional overview

Insured losses were highest in North America, exceeding USD 15bn. However, Asia suffered the highest economic losses, with total damages of approximately USD 75bn. Of the regions, Latin America and the Caribbean had the highest number of victims at more than 225000.

|  | Number | Victims | Insured loss <br> (in USDm) | Economic <br> losses <br> (in USDm) | As a \% <br> of GDP |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Region | 36 | 139 | 15348 | 20551 | $0.13 \%$ |

Source: Swiss Re Economic Research \& Consulting

## North America

In terms of insured losses, North America had the highest of the regions with losses of more than USD 15bn in 2010. Losses were primarily caused by harsh weather throughout the year. Hurricane losses were very low. In fact, 2010 was the second consecutive year that hurricanes failed to make landfall; it was the fifth consecutive year without a major hurricane landfall, the last being 2005, when Hurricane Wilma struck Florida.

The year, however, was characterised by large non-hurricane losses. In the US, a May storm triggered insured losses of USD 2bn, while an October storm caused insured property losses of more than USD 2bn. Another storm in March caused insured losses of more than USD 1bn. Severe weather conditions in the US resulted in harsh winter storms, tornadoes, floods, damaging winds and hail. Nine of the twenty costliest events in 2010 occurred in the US. Meanwhile, in Canada, a July hailstorm led to insured losses of more than USD 0.5bn.

## Latin America and the Caribbean

Approximately 226000 people lost their lives in Latin America and the Caribbean in 2010. Most of them (over 220000 ) died in the Haiti earthquake in January, which was the second deadliest earthquake of the last forty years, after the Tangshan earthquake, which struck China in 1976. Another 562 people perished in the powerful earthquake in Chile, which was the second largest earthquake - in terms of seismic energy released - since 1970 and the sixth largest ever recorded worldwide. The event triggered claims of USD 8bn, accounting for the majority of insured losses in the region, and caused economic losses of USD 30bn.

The earthquake in Haiti caused further economic losses of USD 10bn, while triggering only USD 100m in insurance claims. These two events caused total insured losses for this region to soar to well above the long-term average.

The region was also impacted by hurricane-force winds. Hurricanes Alex and Karl wreaked havoc in Mexico, causing total economic losses of more than USD 7bn and insured losses of more than USD 400m.

The region was also affected by a cold wave and harsh weather in Peru, Chile and other South American countries that claimed 522 lives. Another 500 people died during two floods in Brazil and Colombia. Meanwhile, Tropical storm Agatha struck Guatemala and Honduras causing 301 deaths.

| Europe (losses in USDm) |  |
| :--- | ---: |
| Victims | 56490 |
| Total economic losses | 35204 |
| Insured losses | 6303 |

Insured losses in Europe were driven by winter storm Xynthia.

The volcano eruption in Iceland highlighted the importance of assessing volcanic risk.

Oceania/Australia (losses in USDm) Victims
Total economic losses 13131 Insured losses 8860

## Europe

Europe was also significantly affected by disasters in 2010. An unprecedented heat wave and prolonged drought in Russia claimed the lives of nearly 56000 people during the summer, and triggered a staggering number of wildfires that destroyed large parts of the country's vast woodlands. The main cause of death was the combination of smoke and record high temperatures, which together produced heavy smog that blanketed large urban areas. The wildfires caused estimated economic losses of nearly USD 15 bn, according to government statistics.

In terms of insured losses, the costliest event was winter storm Xynthia which struck France and northwestern Europe in February and cost insurers more than USD 2.7bn. It was the third costliest event in 2010, and caused 64 deaths. The summer floods in France caused additional losses to the insurance industry of more than USD 800m. Meanwhile, further summer floods in Central and Eastern Europe generated additional losses of over USD 1bn. A cold wave at the end of the year also triggered insured losses of USD 262 m , although the total cost to society is likely much larger once travel distruption is taken into account.

Unprecedented travel distruptions throughout Europe were caused by the volcano eruption in Iceland during the spring. Since it did not cause property damage, the event did not trigger property insurance claims. However, the prolonged closure of airports and the cancellation of flights produced considerable economic damage, mainly due to business interruption, which was uninsured. The event underscored how vulnerable interconnected societies can be and raised the issue of assessing volcanic risk.

## Oceania/Australia

Natural catastrophes and man-made disasters caused total economic losses of more than USD 13bn in Oceania/Australia. The cost to insurers was approximately USD 9 bn.

With claims of more than USD 4.4 bn, the earthquake that struck New Zealand in September accounted for half of the region's insured losses. While it claimed no victims, it was the second costliest insurance event of 2010 and the third costliest earthquake in history. Insurers paid for most of the USD 5bn in total economic losses caused by this event. The rest of the claims arose from two powerful storms in March, which together cost insurers more than USD 2bn, and from the floods that affected Queensland in December. These floods became the worst floods in the history of Australia.

The preliminary estimate of insured property losses arising from the December floods in Queensland, whose assessment was ongoing when sigma went to press, was over USD 2bn. The economic cost of the floods was estimated at USD 5bn. Should the preliminary estimates prove accurate, these events will become the costliest disasters ever in Australia based on insured losses. The country was struck by further flood events in January 2011, whose damage was still under assessment as sigma went to press.

Despite these devastating catastrophes, the region had just 50 victims, making it the least affected in terms of victims.

## Australia's floods highlight the need for comprehensive flood insurance

Since the early 1970s, the provision of personal lines flood insurance has been debated in Australia. For many years, flood damage from overflowing rivers was explicitly excluded from standard Australian insurance policies on the basis that the exposure was difficult to assess. Furthermore, as "storm" damage is usually covered, the insurance industry often found itself paying for losses when floods were triggered by storms, as the distinction between wind, rainfall/flash flood damage and overflow damage is difficult to prove and political pressure can be substantial. For this reason, some insurance companies began to offer comprehensive flood coverage in 2010. Given the pressure on the industry to pay claims, the industry has decided to work with the Insurance Council of Australia to increase flood coverage and to harmonise the terms and conditions of flood policies.

| Asia (losses in USDm) |  |
| :--- | ---: |
| Victims | 17955 |
| Total economic losses | 74840 |
| Insured losses | 2240 |

Insurers absorbed only a fraction of the USD 53bn economic loss caused by the floods in China

Maritime and mining accidents together claimed more than 1000 lives in Asia.

## Asia

In terms of total damage to society, Asia was the hardest hit region in 2010. China and Pakistan experienced extraordinary rainfall during the summer, resulting in unprecedented floods affecting the entire length of the country in Pakistan and several large regions in China. More than 6000 people died as a result. Moreover, flash floods and massive landslides added to the overall damage to dwellings and infrastructure in the affected areas. Entire towns were washed away. More than 2 million houses were destroyed and more than 38 million hectares of farmland were completely flooded, with severe soil erosion occurring in some areas according to the Red Cross. In Pakistan,
$20 \%$ of the country's agricultural land was affected, severely impairing the livelihood of more than 20 million people. For Pakistan, this was the worst natural disaster in its history. In China, an estimated 230 million people were affected, 15 million of whom became homeless.

The overall damage was estimated to be approximately USD 53bn for China and more than USD 6bn for Pakistan. With estimated insured losses of USD 761m, insurers absorbed only a small fraction of the total losses from the floods in China, leaving the rest of the losses to be borne by individuals, government and NGOs.

Cyclone Phet, which struck Oman and Pakistan, triggered additional insured claims of USD 150 m and claimed the lives of 39 people. Typhoon Kompasu killed 32 people and cost insurers USD 143bn. An earthquake in Qinghai, China killed 2968 people, resulting in insured claims estimated at less than USD 1m.

The region was also affected by a large number of man-made disasters, namely maritime disasters, in which an estimated 665 people lost their lives. Mining accidents many of which occurred in illegal mines - claimed 378 lives.

Africa
The number of victims in Africa was approximately 2 600. The floods in Uganda and in Central and Western Africa claimed the most lives.

A lead poisining outbreak from illegal gold mining claimed 400 victims, mostly children. Mining accidents caused 320 deaths. Maritime accidents claimed the lives of 410 people, many of whom were illegal immigrants.

## 2010 - the year of devastating earthquakes

Earthquakes caused $76 \%$ of all natural catastrophe-related fatalities in 2010.

The Chile earthquake was much more severe from a seismological point of view than the Haiti and New Zealand earthquakes.

Chile's earthquake resulted in economic losses of approximately USD 30bn.

Since 1970, the 2010 earthquake in Haiti, the 2004 earthquake in Indonesia and the 1976 earthquake in China have been the deadliest.

## Figure 4

Comparison of annual fatalities due to earthquakes since 1970

[^3]
## The year's biggest earthquakes

Some of the most devastating earthquakes in history occurred in 2010. In fact, nearly $76 \%$ of the approximately 297000 fatalities caused by natural disasters in 2010 were attributed to earthquakes. The most notable of these events in terms of their impact on society were in Chile ( $M_{w} 8.8$ ), Indonesia( $M_{w} 7.8$ and $M_{w} 7.0$ ). Mexico ( $M_{w} 7.2$ ), New Zealand ( $M_{w} 7.0$ ), and Haiti ( $M_{w} 7.0$ ). The Haiti earthquake, which struck in January 2010, was by far the most deadly, claiming more than 220000 lives - more than $2 \%$ of the Caribbean nation's population. In contrast, the five other earthquakes combined claimed approximately 1100 victims.

From a seismological point of view, the Haiti and New Zealand events were similar. Both had a moment magnitude ( $\mathrm{M}_{\mathrm{w}}$ ) of 7.0, and each produced a similar amount of seismic energy, thought to be the equivalent of 475 kilotonnes of explosives. Both events also exposed roughly $1000 \mathrm{~km}^{2}$ of land to severe shaking for roughly 1 minute. By comparison, the Chile event released roughly 500 times the energy of the Haiti event. It was also 500 times more powerful than the New Zealand event, subjecting an area of roughly $100000 \mathrm{~km}^{2}$ to severe shaking for up to 3 minutes.

In terms of economic losses, the six aforementioned earthquakes generated damages of more than USD 46bn. The Chile event resulted in the largest economic loss - USD 30 bn - which is $15 \%$ of the nation's GDP.

## Long-term trends in earthquake activity

A review of historical earthquake data dating back to 1970 reveals that the number of fatalities was highest in 1976, 2004 and 2010 (see Figure 4). In December 2004, a massive earthquake struck Indonesia and triggered the deadly tsunami that claimed 220000 lives, an event that was nearly as deadly as the January 2010 earthquake in Haiti (estimated 220570 lives lost). Only one other earthquake - the 1976 Tangshan earthquake in China - was as deadly, since 1970, claiming 255000 lives.


Source: Swiss Re Economic Research \& Consulting

In terms of insured losses, 2 of the 3 costliest earthquakes since 1970 occurred in 2010. The Chile event cost insurers approximately USD 8bn, while the New Zealand event led to insured losses estimated at more than USD 4.4bn. Only one event since 1970 has resulted in higher insured losses - the 1994 Northridge earthquake in California - which, at prices of 2010, cost insurers USD 21 bn.

2010 was not an unusually active year for earthquakes with a magnitude of 7 to 7.9.

Figure 5
Average number of earthquakes per year of magnitude 7 to 7.9 and 8 to 8.9, 1900-2010

Figure 6
Average number of earthquakes per year of magnitude 7 to 7.9 and 8 to 8.9, 1970-2010

Do the large earthquake losses in 2010 signal a long-term increase in earthquake activity? Since 1900, events with a similar moment magnitude of 7 to 7.9 have occurred about 15 times per year on average (see Figure 5). Most of these events occur in remote regions and do not attract much attention. The number of these types of events can vary significantly from year to year. For instance, 1989 was an extremely calm year with only 5 earthquakes of this magnitude, while 31 such earthquakes occurred in 1943. Any year in which the number of earthquakes of this magnitude falls between 11 and 20 can be considered "normal" from a seismological point of view. In 2010, 21 such events occurred, which is slightly above the "normal" long term range. However, similar levels have occurred repeatedly in the past (eg 25 in 1968, 22 in 1957, 26 in 1950).

## 35 Number of events per year



35 Number of events per year
30
$\qquad$


$$
\begin{array}{ll}
\text { - M } 7 \text { to } 7.9 & \text { - M } 8 \text { to } 9.9 \\
\text { - - Average } 7 \text { to } 7.9- & \text { - - Average } 8 \text { to } 9.9+ \\
\text { - - Average } 7 \text { to } 7.9+ & \text { - Average } 8 \text { to } 9.9
\end{array}
$$

$$
\text { — Average } 7 \text { to } 7.9
$$

The dashed lines indicate the expected variation according to one standard deviation.
Source: Swiss Re, based on the Centennial and PDE earthquake catalogues provided by the US Geological Survey.

2010 was also not an extraordinary year for earthquakes with a magnitude of 8 or higher.

Figure 7
Historical epicentres with a moment magnitude of 6 or higher

For larger earthquakes - ie those with a moment magnitude of 8 or higher - 2010 was not an extraordinary year. Since 1900, 82 such events have occurred worldwide, which corresponds to slightly less than 1 event per year. The Chile earthquake was the only event in 2010 with a moment magnitude higher than 8.


Source: Swiss Re CatNet
http://www.nxtbook.fr/webapp/nxt/CatNet-Guide/Geoportal/index.php\#/O

Based on these observations, the number of earthquakes in 2010 fell within the expected ranges. In contrast to weather-related natural perils, no long-term trend in global earthquake activity has emerged.

However, as the 2004 Indonesia earthquake with a moment magnitude of 9.0 has shown, mega earthquakes often result in increased earthquake activity in the surrounding region. In Chile, especially in the areas near the fault rupture of the February 27, 2010 event, the probability of further earthquake activity will remain high for some time. This was seen in the January 2, 2011 earthquake which had a moment magnitude 7.1 in Araucana, Chile - south of Concépcion where the 2010 event occurred. Also, the devastating February 22, 2011 earthquake in Christchurch occurred on the fringes of the September 4, 2010 earthquake. (Re)insurers are likely to take this effect into account when calculating risk-adequate earthquake premiums.

While global seismic activity was not markedly above average in 2010, the number of fatalities and the size of insured losses have soared. A significant trend has been noted on the exposure side: population growth and higher population density, especially in urban areas, exposes more people to a single damaging earthquake. Moreover, many of the rapidly growing urban areas with high population densities are located in seismically active areas (eg Istanbul, Mexico City, Jakarta, Manila, Tokyo). As a result, the probability of earthquakes with a high death toll continuously increases, although the seismic threat itself remains unchanged.

The deadliest earthquakes tend to occur in emerging market countries, while the costliest earthquakes tend to occur in industrialised regions.

Improved building standards that are strictly enforced, solid infrastructures and disaster relief efforts help mitigate the negative effects of earthquakes.

The earthquakes in Chile and New Zealand underscored the importance of stringent building codes that are strictly enforced.

Insurance has become a key pillar for postdisaster financing.

Proper prevention- and post- disaster management remains a challenge in the emerging market countries.

While the deadliest earthquakes typically occur in emerging market countries, the costliest earthquakes in terms of insured losses occur much more often in industrialised regions. The costliest earthquakes for insurers over the past 20 years were in Northridge, California (1994), Concépcion, Chile (2010), Darfield, New Zealand (2010) and Kobe, Japan (1995). A few factors contributed to the large insurance and overall economic losses - eg property exposure and values are increasing around urban areas, leading to an increased potential for large financial losses from a single earthquake. Also, in many markets such as Chile, earthquake insurance penetration is increasing. Therefore, the insurance industry carries an increasing portion of the financial burden to the overall economy. And finally, the increasing technological complexity of industrial processes makes damages to industrial facilities more difficult and costly to fix.

Fortunately, the death toll in industrialised countries has not risen along with insured earthquake losses. Continuously improved building standards that are strictly enforced, along with good infrastructure and efficient disaster relief efforts have helped mitigate the negative consequences of disasters in these countries. The relatively low number of deaths from the earthquakes in Chile and New Zealand in 2010 is certainly testimony to this.

## Lessons learned

As with any large catastrophic event, the earthquakes in 2010 provided a unique learning experience and offered invaluable insights. For example, effective loss prevention measures, such as earthquake-resistant building designs, are one of the key reasons why the Chile earthquake ( 562 deaths) did not result in more fatalities. This is striking given that the event, which had a moment magnitude of 8.8 , was the second largest earthquake - in terms of seismic energy released - since 1970 and the sixth largest ever recorded worldwide. The existence of stringent building codes and their rigorous application in New Zealand proved very effective in saving lives in the September 4, 2010 earthquake. It is too early to determine to what degree this is also applicable to the February 22, 2011 earthquake in Christchurch.

The insurance industry has become a key enabler of post-disaster financing in industrialised countries. Insurers are paying more than one quarter of the total economic cost of the Chile event, and the proportion is even higher in New Zealand. The bulk of the insurance loss in Chile was carried by international (re)insurance companies. The corresponding inflow of capital serves to stimulate the Chilean economy via the reconstruction efforts without putting a large burden on the local insurance industry.

Meanwhile, the devastating event in Haiti reveals that proper prevention- and disaster management remains a challenge in emerging market countries. Given that these countries have virtually no earthquake insurance market, what can be done to reduce the impact of a future earthquake on the population? More comprehensive and stringent building standards should be implemented during reconstruction, especially in hgh risk areas. Swiss Re developed an earthquake hazard map for Haiti immediately following the event that has served as the basis for such decisions (see Box).

## An earthquake hazard map for Haiti

The powerful earthquake that struck Haiti on January 12 lasted less than a minute, but the devastation it left behind will impact the country for years to come. To support reconstruction efforts, Swiss Re issued a preliminary seismic hazard map for Haiti based on the available data.

An estimated three million people in Haiti were affected by the earthquake, more than 220000 people lost their lives, and hundreds of thousands were left without shelter after their homes collapsed.

Haiti sits on a seismically active zone and has a history of earthquakes. Disaster can strike again at any time. Constructing an infrastructure that is better equipped to withstand future quakes will be critical to protecting lives and assets. Earthquake hazard maps are important tools to build this first line of defence. They highlight varying threat levels across Haiti and - as more refined data becomes available - help officials appropriately apply earthquake-resistant building standards for buildings, bridges, roads, utilities, and other structures.

Swiss Re's seismic hazard map for Haiti was revised using its in-house risk models. It uses colour coding to illustrate the risk for potential ground shaking intensities across the country. The map is only indicative of current threat levels. It will be updated as soon as more in-depth research becomes available.

## Features and potential use

- The preliminary hazard maps can be used to highlight regional hazard differences within Haiti. The maps also allow comparisons of the hazard levels in Haiti to other regions of the world.
- The maps contain more in-depth fault information than previously developed maps for the same region and therefore provide a more detailed picture of hazard variations across Haiti. This includes preliminary seismological findings gathered after the 2010 Enriquillo fault event.
- The maps can support reconstruction efforts in Haiti until more sophisticated maps are available.

For more details, refer to http://media.swissre.com/documents/ Earthquake_Haiti_Factsheet.pdf

Secondary loss agents have increased in importance due to the events in Chile and New Zealand

The earthquake in Chile has highlighted the need for insurers to better assess and model certain industrial risks

For the insurance industry, the events in New Zealand and Chile highlighted the importance of secondary loss agents - ie losses that do not directly result from the ground shaking. These losses significantly contribute to overall losses, but are not sufficiently considered in earthquake risk models. In Chile, the tsunami following the earthquake resulted in a large number of fatalities and led to significant insurance losses. In New Zealand, an effect known as liquefaction played a major part in the unfolding of the overall financial loss. Liquefaction is a phenomenon whereby soil substantially loses strength in response to earthquake shaking, causing it to behave like a liquid. If liquefaction occurs under a building or a highway, severe structural damage will also usually occur. In New Zealand, many property owners not only have to repair or rebuild their homes, but also must restore the land itself. The cost of this is substantial and has exceeded the prediction of available earthquake risk models.

The size of insurance claims stemming from industrial exposure in Chile has also come as a surprise and warrants a review of the way the insurance industry assesses and models certain industrial risks. This is especially true for business interruption covers, which compensate companies for loss of profits due to damages to their production facilities. Roughly half of the total insurance payout to industrial facilities in Chile was made for business interruption claims. In certain industry segments, such as pulp and paper, business interruption claims comprise two-thirds of total insurance claims. Large business interruption losses were also observed after previous earthquakes in Japan, where the electronics industry was impacted, and in Turkey, where the automotive industry filed significant business interruption claims.

## Tables for reporting year 2010

Table 3
List of major losses in 2010 according to loss category

|  | Number | in \% | Victims ${ }^{1}$ | in \% | Insured loss ${ }^{2}$ <br> (in USD m) | in \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Natural catastrophes | 167 | 54.9\% | 297127 | 97.9\% | 39869 | 91.7\% |
| Floods | 69 |  | 11027 |  | 6393 |  |
| Storms | 63 |  | 1702 |  | 20126 |  |
| Earthquakes | 13 |  | 227050 |  | 12943 |  |
| Droughts, bush fires, heat waves | 9 |  | 56276 |  | 10 |  |
| Cold, frost | 10 |  | 1024 |  | 397 |  |
| Hail | 1 |  | 28 |  |  |  |
| Other natural catastrophes | 2 |  | 20 |  |  |  |
|  |  |  |  |  |  |  |
| Man-made disasters | 137 | 45.1\% | 6446 | 2.1\% | 3606 | 8.3\% |
|  |  |  |  |  |  |  |
| Major fires, explosions | 27 | 8.9\% | 783 | 0.3\% | 1060 | 2.4\% |
| Industry, warehouses | 15 |  | 186 |  | 824 |  |
| Oil, gas | 3 |  | 137 |  | 25 |  |
| Hotels | 1 |  | 30 |  |  |  |
| Other buildings | 5 |  | 265 |  |  |  |
| Other fires, explosions | 3 |  | 165 |  | 210 |  |
|  |  |  |  |  |  |  |
| Aviation disasters | 16 | 5.3\% | 820 | 0.3\% | 1070 | 2.5\% |
| Crashes | 14 |  | 820 |  | 504 |  |
| Damage on ground | 1 |  |  |  | 250 |  |
| Space | 1 |  |  |  | 317 |  |
|  |  |  |  |  |  |  |
| Maritime disasters | 27 | 8.9\% | 1192 | 0.4\% | 1262 | 2.9\% |
| Passenger ships | 22 |  | 1058 |  | 27 |  |
| Drilling platforms | 2 |  | 11 |  | 1235 |  |
| Other maritime accidents | 3 |  | 123 |  |  |  |
|  |  |  |  |  |  |  |
| Rail disasters (incl. cableways) | 7 | 2.3\% | 337 | 0.1\% | 117 | 0.3\% |
|  |  |  |  |  |  |  |
| Mining accidents | 18 | 5.9\% | 903 | 0.3\% | 78 | 0.2\% |
|  |  |  |  |  |  |  |
| Collapse of buildings/bridges | 6 | 2.0\% | 283 | 0.1\% |  | 0.0\% |
|  |  |  |  |  |  |  |
| Miscellaneous | 36 | 11.8\% | 2128 | 0.7\% | 18 | 0.0\% |
| Social unrest | 7 |  | 285 |  |  |  |
| Terrorism | 21 |  | 969 |  |  |  |
| Other miscellaneous losses | 8 |  | 874 |  | 18 |  |
|  |  |  |  |  |  |  |
| Total | 304 | 100.0\% | 303573 | 100.0\% | 43475 | 100.0\% |

Source: Swiss Re Economic Research \& Consulting

[^4]Table 4
The 20 most costly insurance losses in 2010

## Insured loss ${ }^{3}$

| (in USD m) | Victims ${ }^{4}$ | Date (start) | Event | Country |
| :---: | :---: | :---: | :---: | :---: |
| 8000 | 562 | 27.02.2010 | Earthquake ( $\mathrm{M}_{\mathrm{w}} 8.8$ ) triggers tsunami, over 200 aftershocks | Chile |
| 4453 | 0 | 04.09.2010 | Earthquake ( $\mathrm{M}_{\mathrm{w}} 7.0$ ), over 300 aftershocks | New Zealand |
| 2754 | 64 | 27.02.2010 | Winter storm Xynthia, winds up to $160 \mathrm{~km} / \mathrm{h}$ | France, Germany, Belgium et al |
| 2165 | - | 04.10.2010 | Thunderstorms, tornadoes, hail, floods | United States |
| 2050 | 1 | 23.12.2010 | Floods caused by heavy rains, tropical cyclone Tasha | Australia |
| 2000 | - | 12.05.2010 | Storms, winds up to $130 \mathrm{~km} / \mathrm{h}$, hail | United States |
| 1231 | - | 13.03.2010 | Storm, winds up to $120 \mathrm{~km} / \mathrm{h}$, heavy rain, floods | United States |
| 1079 | - | 22.03.2010 | Storm, winds up to $120 \mathrm{~km} / \mathrm{h}$, hail, rain, mudslides | Australia |
| 1070 | - | 06.03.2010 | Storms, hail, rain, floods | Australia |
| 1000 | 11 | 20.04.2010 | Explosion on Deepwater Horizon oil rig | Gulf of Mexico, United States |
| 820 | 33 | 30.04.2010 | Floods caused by heavy rain, storms | United States |
| 818 | 25 | 15.06.2010 | Floods, caused by heavy rain | France |
| 785 | 5 | 20.07.2010 | Storms, floods, hail, tornado | United States |
| 761 | 2490 | 29.05.2010 | Floods, mudslides caused by heavy monsoonal rain | China |
| 695 | 20 | 10.06.2010 | Storms, winds up to $97 \mathrm{~km} / \mathrm{h}$, hail, heavy rain, floods | United States |
| 620 | 20 | 17.06.2010 | Thunderstorms, heavy rains, floods | United States |
| 610 | 5 | 10.05.2010 | Tornadoes, hail | United States |
| 600 | - | 09.02.2010 | Winter storm, winds up to $80 \mathrm{~km} / \mathrm{h}$, snow | United States |
| 591 | 18 | 06.08.2010 | Floods caused by heavy rain | Germany, Czech Republic et al |
| > 500 | - | 12.07.2010 | Hailstorm, heavy rain; damage to buildings and cars | Canada |

Source: Swiss Re Economic Research \& Consulting

Table 5
The 20 worst catastrophes in terms of victims 2010

| Victims $^{6}$ | Insured loss <br> (in USD m) | Date (start) | Event | Country |
| ---: | ---: | ---: | :--- | :--- |
| 222570 | 100 | 12.01 .2010 | Earthquake (Mw 7.0), aftershocks | Haiti |
| 55630 | - | 15.06 .2010 | Heat wave with temperatures up to 40 degrees Celsius | Russia, Czech Republic |
| 2968 | 1 | 14.04 .2010 | Earthquake ( $M_{w}$ 6.9), aftershocks | China |
| 2490 | 761 | 29.05 .2010 | Floods, mudslides caused by heavy monsoonal rain | China |
| 1980 | - | 21.07 .2010 | Floods caused by heavy monsoonal rains | Pakistan |
| 1765 | 3 | 08.08 .2010 | Mudslide caused by heavy rain | China |
| 562 | 8000 | 27.02 .2010 | Earthquake ( $M_{w} 8.8$ ) triggers tsunami, >200 aftershocks | Chile |
| 545 | - | 25.10 .2010 | Earthquake (MW 7.8), triggers tsunami | Indonesia |
| 522 | - | 17.07 .2010 | Cold wave with temperatures close to freezing | Peru, Chile, Argentina et al |
| 400 | - | 25.02 .2010 | Floods and landslides caused by heavy rain | Uganda |
| 400 | - | 01.03 .2010 | Lead poisoning outbreak from illegal gold mining | Nigeria |
| 375 | - | 22.11 .2010 | Stampede on a bridge at Festival | Cambodia |
| 327 | - | 15.07 .2010 | Floods caused by heavy rains | Nigeria, Ghana, Benin et al |
| 322 | - | 25.10 .2010 | Mount Merapi volcano erupts | Indonesia |
| 301 | 50 | 29.05 .2010 | Tropical storm Agatha, winds up to 75 km/h, floods | Guatemala, Honduras, El Salvador |
| 291 | - | 04.10 .2010 | Floods caused by monsoonal rain | Indonesia |
| 256 | - | 04.04 .2010 | Floods and landslides caused by heavy rain | Brazil |
| 250 | - | 01.03 .2010 | Heat wave with temperatures of over 47 degrees Celsius | India |
| 232 | 7 | 13.11 .2010 | Floods caused by heavy rain, tornado, hail, landslides | Colombia |
| 200 | - | 17.09 .2010 | Floods and monsoonal rains | India |

Source: Swiss Re Economic Research \& Consulting

[^5]Table 6
Chronological list of all natural catastrophes 2010

## Floods

| Date | Country <br> Place | Event | No. of victims/amount of damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 1.1.-4.1. | Brazil <br> Rio de Janeiro, Angra dos Reis, Sao Paolo, Minas Gerais | Floods and mudslides caused by heavy rain; collapse of hillside buries bungalows at luxury beach resort | 85 dead <br> USD 145m total damage |
| 1.1.-15.1. | Kenya <br> North Rift, South Rift, Nyanza | Floods caused by heavy rains; 6664 houses, croplands, infrastructure destroyed | 40 dead 8270 homeless |
| 18.1.-22.1. | United States CA (La Conchita), AZ | Floods and mudslides caused by heavy rain, snow | USD 100-300m insured loss* |
| 18.1.-12.3. | Peru, Bolivia Cuzco, Puno, Huancavelica, Ayacucho, Lima, Puno, Chuquisaca, Cochabamba, Beni | Floods and landslides caused by heavy rain; 4779 houses, 24 schools, 11756 hectares of crops destroyed | 125 dead, 66 missing <br> 422 injured <br> 34000 homeless <br> PEN 873m (USD 311m) total damage |
| 3.2.-6.2. | Mexico <br> Michoacan, Angangueo | Heavy rain, floods, landslides, cold | 43 dead <br> 20000 homeless <br> MXN 192m (USD 16m) total damage |
| 21.2.-23.2. | Portugal Madeira, Funchal, Curral das Freiras | Floods and mudslides caused by heavy rain, wind; damage to houses, bridges, roads, cars | 42 dead, 10 missing <br> 80 injured <br> 600 homeless <br> EUR 135m (USD 181m) insured loss <br> EUR 350m (USD 470m) total damage |
| 22.2.-5.3. | Zambia <br> Lusaka, Lake Tanganyka | Floods caused by heavy rains, landslides | 87 dead |
| 22.2.-5.3. | Australia <br> Northern Territory, Queensland | Floods caused by heavy rain; damage to highways and rail lines | 20 dead <br> AUD 47m (USD 48m) insured loss |
| 23.2.-1.3. | Indonesia <br> West Java, Bandung, Ciwidey | Floods and landslides caused by heavy rain | 35 dead, 9 missing |
| 25.2.-4.3. | Uganda <br> Bududa, Butaleja Katakwi, Amuria, Pallisa, Mbale, Moroto, Nakapiripirit, Sironko, Manafwa, Bukwo, Budaka | Floods and landslides caused by heavy rain | 105 dead, 295 missing 8177 homeless |
| 1.3.-14.5. | Kenya <br> Marsabit, Turkana, Moyale | Floods caused by heavy rain; destruction of cropland, infrastructure; 40 bridges collapsed | 94 dead <br> 71954 homeless |
| 26.3.-31.3. | United States ND, Fargo | Wet snow, storms with winds up to $72 \mathrm{~km} / \mathrm{h}$; floods along the Red River | 2 dead 60 injured USD 166m total damage |
| 10.3. | China <br> Shaanxi | Landslide caused by heavy snow; 25 houses destroyed | 27 dead 152 homeless |
| 11.3.-12.3. | Kazakhstan <br> Aksuisky, Karatalsky | Floods, six dams burst after snow melt; 1400 private and public buildings, 3000 hectares of farmland destroyed, 6000 livestock killed | 46 dead <br> 300 injured <br> KZT 5.4bn (USD 37m) total damage |
| 15.3.-16.3. | Angola, Zambia Luanda | Floods and landslides caused by heavy rains | 20 dead |
| 26.3.-31.3. | Rwanda Rubavu | Floods, heavy rains, mudslide | 14 dead 5920 homeless |
| 1.4.-6.4. | Peru <br> Huánuco, Chinchao, Ambo, <br> Trujillo, Porvenir | Floods and mudslides caused by heavy rain | 68 dead 50 injured |
| 4.4.-12.4. | Brazil <br> Rio de Janeiro, Niteroi | Floods and landslides caused by heavy rain; mudslides bury houses in slums of hill areas | 256 dead <br> 403 injured <br> 74535 homeless <br> USD 200m total damage |
| 30.4.-3.5. | United States <br> TN (Nashville), KY, GA, AR | Floods caused by heavy rain, storms; Country Music Hall of Fame, Grand Ole Opry House flooded | 33 dead <br> USD 600m-1bn insured loss* <br> USD 1.5bn total damage |

[^6]|  | Country |  | No. of victims/amount of damage |
| :--- | :--- | :--- | :--- |
| Date | Place | Event | in original currency and (USD) |


| Date | Country Place | Event | No. of victims/amount of damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 15.7.-22.10. | Nigeria, Ghana, Benin, Chad, Mauritania, Burkina Faso, Cameroon, Gambia, Niger, Togo, Ivory Coast, Democratic Republic of Congo | Floods caused by heavy rains | 327 dead <br> 917 injured <br> 262955 homeless <br> USD 150m total damage |
| 16.7.-27.7 | Sudan <br> River Nile, Gedaref, White Nile, <br> North Kordofan, North Bahr <br> El Ghazal, Sennar, Central <br> Equatoria, Jonglei | Floods caused by heavy rain; 22177 houses destroyed | 3 dead 12 injured 6238 homeless |
| 21.7.-8.10. | Pakistan <br> Khyber Pakhtunkhwa, Punjab, <br> Sindh, Balochistan | Floods caused by heavy monsoonal rains; 1600000 houses, 22200000 hectares of cropland destroyed, 10860 villages flooded | 1980 dead <br> 2946 injured <br> 6000000 homeless <br> USD 100m insured loss <br> PKR 5 522bn (USD 6.4bn) total damage |
| 23.7.-25.7. | Indonesia <br> Maluku, South Kalimantan | Floods caused by heavy rains, mudslides | 21 dead |
| 26.7.-28.7. | Afghanistan <br> Kapisa, Laghman | Floods caused by heavy rains | 80 dead |
| 26.7.-17.9. | Colombia <br> Sucre, Cordoba, Atlantico, <br> Bolivar, Antioquia, Magdalena, <br> Guajira | Floods caused by heavy rains, hail, landslides; 618 houses destroyed 132135 houses damaged | 74 dead, 19 missing <br> 149 injured <br> 739816 homeless <br> COP 13bn (USD 7m) insured loss <br> COP 762bn (USD 397m) total damage |
| 5.8.-8.8. | India <br> Leh, Kashmir | Floods caused by heavy rains, 10000 houses destroyed, 5000000 hectares of cropland flooded | 196 dead 200 injured |
| 6.8.-8.8. | Germany, Czech Republic, Poland, Slovakia Bogatynia, Chrastava, Frydlant, Bad Muskau, Neukirchen, Goerlitz | Floods caused by heavy rain; river dykes burst; dam destroyed; houses, buildings, vehicles and one coal mine damaged | 15 dead, 3 missing USD 591m insured loss USD 1.37bn total damage |
| 8.8.-9.8. | China <br> Gansu, Zhouqu | Mudslide caused by heavy rain; 67 buildings, 200 hectares of cropland, water pipes, electricity lines destroyed | 1481 dead, 284 missing <br> 47000 homeless <br> CNY 18m (USD 3m) insured loss CNY 5bn (USD 759m) total damage |
| 17.8.-16.9. | Nicaragua Jinoteca, Masaya, Granada | Floods and landslides caused by heavy rains; 6492 houses damaged; roads and bridges destroyed; croplands flooded; shortage of food, clean water and basic health services | 48 dead <br> 48000 homeless |
| 21.8.-24.8. | Nepal <br> Sankhuwasabha, Udayapur | Floods caused by monsoonal rains. Lohandra River breached several embankments; over 8000 houses damaged | 138 dead |
| 22.8.-24.8. | Ethiopia <br> Amhara, Afar, Tigray | Floods caused by seasonal rains | 19 dead 8864 homeless |
| 3.9.-8.9. | Guatemala | Floods and over 200 landslides caused by heavy rain; over 75000 houses damaged, 13 bridges collapsed, highway damaged, croplands destroyed | 53 dead <br> 56 injured <br> 50640 homeless <br> USD 500m total damage |
| 11.9 . | Indonesia, Barbados Borneo | Floods caused by heavy rain | 10 dead, 14 missing |
| 12.9.-14.9. | Sudan Duk County | Floods caused by heavy rain | 2180 homeless |
| 17.9.-27.9. | India <br> Uttar Pradesh, Bihar, Uttarakhand | Floods caused by monsoonal rains; 150000 houses destroyed, 500000 hectares of cropland destroyed; damage to transport infrastructure | 200 dead <br> 2000000 homeless <br> INR 75bn (USD 1.68bn) total damage |
| 20.9.-22.9. | Slovenia, Croatia <br> Savinjska, Posavje, Dolenjska, <br> Primorkso | Floods caused by heavy rains; river overflowed its banks; houses damaged, 30000 hectares of cropland flooded, damage to infrastructure | 4 dead <br> EUR 50m (USD 67m) insured loss <br> EUR 130 m (USD 174 m ) total damage |
| 20.9 . | Mexico <br> Villa Guerrero | Landslide caused by heavy rain; houses flooded; highway damaged | 25 dead |


| Date | Country <br> Place | Event | No. of victims/amount of damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 27.9. | Colombia Giraldo, Antioquia | Mudslide caused by heavy rain | 30 dead |
| 28.9.-29.9 | Mexico Oaxaca (Santa Maria Tlahuitoltepec), Chiapas | Landslide caused by heavy rain; vehicles, livestock, light poles, and over 515 houses, destroyed | 44 dead |
| 30.9.-6.10. | China Hainan | Floods caused by heavy rains; 182 towns submerged | 1 dead, 3 missing CNY 1.13bn (USD 171m) total damage |
| 2.10.-7.10 | Viet Nam <br> Quang Binh, Ha Tinh, Quang Tri, Nghe An, Thua Thien Hue | Tropical Depression/No 14, heavy rains, floods, landslides; 70000 houses destroyed, damage to transport infrastructure | 64 dead <br> VND 2 750bn (USD 141m) total damage |
| 4.10.-15.10. | Indonesia West Papua | Floods caused by monsoonal rains | 173 dead, 118 missing <br> 41 injured <br> 9011 homeless <br> IDR 700bn (USD 78m) total damage |
| 14.10.-18.10. | Viet Nam <br> Ha Tinh, Nghe An, Quang Binh | Floods caused by heavy rains; 280000 houses damaged, damage to transport infrastructure | 75 dead <br> 18 injured <br> VND 3 000bn (USD 154m) total damage |
| 16.10. | Russia <br> Tuapsinsky, Apsheronsky | Floods caused by heavy rain; 400 houses, cropland, roads, dams, bridges damaged | 14 dead, 9 missing <br> 5000 homeless <br> RUB 2bn (USD 66m) total damage |
| 29.10.-9.11. | Thailand Had Yai, Songkha, Surat Thani, Nakhon Sri Thamarat | Floods caused by monsoonal rains; mudslides; 1022422 hectares of farmland damaged | 181 dead <br> THB 10bn (USD 332m) total damage |
| 12.11.-14.11. | Belgium, France Brabant, Hainaut | Floods caused by heavy rains, rivers overflow their banks, mudslides; hundreds of buildings flooded, rail traffic suspended | 4 dead <br> EUR 50m (USD 67m) insured loss |
| 13.11.-5.12. | Colombia <br> Bolivar, Magdalena, Córdoba, <br> Sucre, Choco, Antioquia, Atlántico, <br> Valle del Cauca | Floods caused by heavy rains, tornado, hail, landslides; 1431 houses destroyed, 143434 houses damaged. | 144 dead, 88 missing <br> 23 injured <br> 1614676 homeless <br> COP 13bn (USD 7m) insured loss <br> COP 567bn (USD 295m) total damage |
| 14.11.-19.11. | Viet Nam <br> Thua Thien Hue, Quang Tri, Quang Nam, Quang Ngai | Flood caused by heavy rains. 110000 houses, 50000 hectares of cropland and 156 km of roads damaged | 29 dead, 41 missing VND 5000bn (USD 256m) total damage |
| 24.11.-4.12. | Venezuela <br> Falcón, Miranda, Vargas, Merida, Zulia, Trujillo, Nueva Esparta, Caracas | Floods caused by heavy rains, landslides; 46000 hectares of farmland destroyed, damage to public infrastructures | 35 dead <br> 204056 homeless <br> USD 170 m total damage |
| 26.11.-7.12. | Croatia, Bosnia and Herzegovina, <br> Albania <br> Drina River | Floods caused by heavy rains, landslides; travel disruption | 4 dead <br> 3400 homeless <br> EUR 76m (USD 102m) insured loss <br> EUR 340m (USD 456m) total damage |
| 29.11.-2.12. | Morocco <br> Rabat, Souss Mass Draa, Gharb | Floods caused by torrential rains; damage to highways, railways, disruption to communication lines | 32 dead <br> 22 injured <br> 4000 homeless <br> USD 29 m total damage |
| 1.12.-16.12. | India <br> Tamil Nadu, Thanjavur, Nagapattinam, Cuddalore, Tiruvarur | Floods caused by heavy rains | 150 dead <br> INR 1bn (USD 22m) total damage |
| 7.12.-11.12. | Panama <br> Chiriquí, Veraguas, Colón, <br> Darién, Coclé | Floods caused by heavy rains, landslides; 145 houses destroyed, more than 1740 houses damaged; damage to infrastructure, temporary closure of Panama Canal | 13 dead 2720 homeless |
| 23.12.-28.12. | Australia <br> New South Wales, Victoria, <br> Central Queensland | Floods caused by heavy rains, tropical cyclone Tasha; 22 towns affected; extensive damage to property, infrastructures, coal production halted | 4 dead <br> AUD 2bn (USD 2.05bn) insured loss <br> AUD 5bn (USD 5.13bn) total damage |

## Storms

| Date | Country Place | Event | No. of victims/amount of damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 17.1.-18.1. | Egypt, Red Sea, Israel, Jordan Sinai, Aswan, Hurghada | Storms, floods caused by heavy rain; damage to roof of Sharm el-Sheik's old airport | 12 dead <br> 17 injured <br> 3500 homeless <br> EGP 200m (USD 34m) total damage |
| 4.2.-6.2. | United States MD, VA, PA, NJ, WV, DC, DE | Winter storm with winds up to $80 \mathrm{~km} / \mathrm{h}$, heavy snow, ice; damage to buildings, power outages | USD 100m-300m insured loss* USD 300m total damage |
| 9.2-11.2. | United States <br> PA, MD, VA, DC, DE, NJ, NC, WV | Winter storm with winds up to $80 \mathrm{~km} / \mathrm{h}$, snow; aircraft hangar roof collapsed, train derailed | USD 600m-1bn insured loss* USD 1.5bn total damage |
| 23.2.-28.2. | United States <br> PA, NY, NH, NJ, MA, ME, CT, RI, VT | Winter storm with winds up to 151 km/h, heavy snowfall | USD 300m-600m insured loss* USD 500m total damage |
| 27.2-28.2. | France, Germany, Belgium, Luxembourg, Netherlands, Switzerland, Spain, Portugal Pyrenees, Vendee, Charente Maritime, Madeira, Canary Islands | Winter storm Xynthia with winds up to $160 \mathrm{~km} / \mathrm{h}$, heavy rain; damage to property, cars, forestry | 64 dead <br> 79 injured <br> EUR 2.05bn (USD 2.75bn) insured loss <br> USD 4bn total damage |
| 6.3.-10.3. | Australia <br> New South Wales, Victoria, Mel- <br> bourne, <br> Ferntree <br> Gully, Tasmania | Storm with winds up to $100 \mathrm{~km} / \mathrm{h}$; hail, heavy rain, floods; damage to homes, businesses, vehicles | AUD 1.04bn (USD 1.07bn) insured loss USD 1.33bn total damage |
| 8.3. | Spain Catalonia | Storm, snowfall; power outages | EUR 41 m (USD 54 m ) insured loss EUR 50m (USD 67m) total damage |
| 10.3.-12.3. | Madagascar, Indian <br> Ocean <br> Nosy Varika, Mananjary, <br> Manakara, Vohipeno, Farafangana, <br> Vangaindrano, Ambatondrazaka | Tropical storm Hubert, heavy rains, floods | 85 dead, 35 missing <br> 132 injured <br> 38000 homeless |
| 13.3.-15.3. | United States NJ, NY, MA, CT, PA, RI | Storm with winds up to $120 \mathrm{~km} / \mathrm{h}$; heavy rain, floods | USD 1bn-3bn insured loss* <br> USD 1.7bn total damage |
| 22.3 . | Australia <br> Western Australia, Perth, Kings Park | Storm with winds up to $120 \mathrm{~km} / \mathrm{h}$; hail, rain, mudslides; damage to University of Western Australia | AUD 1.05bn (USD 1.08bn) insured loss USD 1.39bn total damage |
| 28.3.-31.3. | United States RI, MA, NC, SC, CT | Storms, hail, heavy rain; floods | USD 100m-300m insured loss* USD 350m total damage |
| 4.4.-6.4. | United States IA, IL, MI, OH, IN | Thunderstorms with winds up to $97 \mathrm{~km} / \mathrm{h}$; hail, heavy rain | USD 300m-600m insured loss* USD 500m total damage |
| 13.4. | India, Bangladesh, Bay of Bengal Bihar, West Bengal, North Dinajpur, Rangpur, Kurigram, Nilphamari, Lalmonirhat, Dinajpur, Gaibandha, Sirajganj, Bogra | Tropical storm with winds up to $160 \mathrm{~km} / \mathrm{h}$; 200000 houses destroyed | 145 dead <br> 300 injured <br> 100000 homeless |
| 23.4.-25.4. | United States <br> AL, TX, LA, MS (Yazoo), TN, MO, AR | Storm, tornado with winds up to $320 \mathrm{~km} / \mathrm{h}$ | 12 dead USD 100m-300m insured loss* USD 500m total damage |
| 1.5.-2.5. | Bangladesh | Storms, hail; damage to crops | 15 dead 50 injured |
| 5.5.-24.5. | China <br> Chongqing, Hunan, Guangdong, Jiangxi, Guizhou, Anhui, Hubei | Storms with winds up to $110 \mathrm{~km} / \mathrm{h}$, heavy rain, floods | 115 dead, 21 missing <br> 160 injured <br> CNY 130m (USD 20m) insured loss <br> CNY 5.9bn (USD 895m) total damage |
| 7.5 . | India <br> Bihar | Thunderstorm, heavy rain, floods | 54 dead |
| 7.5.-8.5. | United States NY, OH, PA, NJ | Storms, thunderstorms with winds up to $97 \mathrm{~km} / \mathrm{h}$, hail | USD 25m-100m insured loss* |

[^7]|  | Country |  | No. of victims/amount of damage <br> Date |
| :--- | :--- | :--- | :--- |
| Place | Event | original currency and (USD) |  |

[^8]| Date | Country <br> Place | Event | No. of victims/amount of damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 20.7.-25.7. | United States | Storms, floods, hail, tornado | 5 dead |
|  | CT, IL, IA, MD, MN, NY, PA, VA; WI |  | USD 600m-1bn insured loss* |
| 22.7. | China, Viet Nam, Hong Kong Wuchuan City, Guangdong, Northern Vietnam, Nghe An, Ha Tinh, Thanh Hoa, Ha Giang, Cao Bang, Lao Cai | Typhoon Chanthu/No 3 with winds up to $126 \mathrm{~km} / \mathrm{h}$, heavy rains, floods; 2915 houses damaged in China | 14 dead <br> 5 injured <br> CNY 2.4bn (USD 364m) total damage |
| 8.8.-12.8. | United States | Thunderstorms, floods | 1 dead |
|  | IA, MD, MN |  | USD 100m-300m insured loss* |
| 14.8 | Denmark | Cloudburst, heavy rains | DKK 1.2bn (USD 216m) insured loss |
|  | Zealand |  |  |
| 15.8 | Czech Republic | Thunderstorms, hail; severe damage to houses | EUR 105 (USD 141m) insured loss |
|  | Prague, Bohemia |  | USD 350m total damage |
| 24.8 . | Viet Nam | Typhoon Mindulle with winds up to $230 \mathrm{~km} / \mathrm{h}$; | 14 dead |
|  | Nghe An, Ha, Quang Binh | 461 houses destroyed, 89600 hectares of farmland | 64 injured |
|  |  | flooded, over 35 fishing boats sank, 11 ships damaged | 20700 homeless |
|  |  |  | VND 850bn (USD 44m) total damage |
| 29.8.-4.9. | Antigua and Barbuda, | Hurricane Earl/No 3 with winds up to $142 \mathrm{~km} / \mathrm{h}$; | 1 dead |
|  | United States, Canada | damages to houses, power outages | USD 50m insured loss |
|  | NC, VA, Leeward Islands, Western |  |  |
|  | Head, Halifax, Nova Scotia |  |  |
| 31.8.-2.9. | South Korea, North Korea, Japan | Typhoon Kompasu/No 7 with winds up to $185 \mathrm{~km} / \mathrm{h}$; | 32 dead |
|  | Okimawa, Junigami, Nago, | over 3550 houses, 30000 hectares of farmland | KRW 162bn (USD 143m) insured loss |
|  | Motobu, Yomitan, Incheon, | destroyed; damage to residential, commercial, | KRW 585bn (USD 515m) total damage |
|  | Gyeonggi, Kaesong | industrial buildings and infrastructure, power outages |  |
| 6.9.-9.9. | Mexico, United States | Tropical storm Hermine/No 8 with winds up to | 6 dead |
|  | La Pesca, TX (Brownsville, Austin, | $100 \mathrm{~km} / \mathrm{h}$, heavy rains, floods; damages to houses, | USD 120m insured loss |
|  | Arlington, Dallas, Georgetown, Corpus Christi) | public buildings, power outages | USD 200m total damage |
| 9.9. | China | Typhoon Meranti with winds up to $100 \mathrm{~km} / \mathrm{h}$; | 3 dead |
|  | Shishi City, Fujian, Zhejiang | heavy rains; damage to cropland | 186000 homeless |
|  |  |  | CNY 800m (USD 121m) total damage |
| 14.9.-17.9. | Mexico, United States | Hurricane Karl/No 6, Category 3 with winds up to | 22 dead |
|  | Puerto Bravo, Quintana, Roo State, | 195 km/h, heavy rains, floods, landslides; 160000 | 230000 homeless |
|  | Yucatan Peninsula, Chetumal, Matamoros, Veracruz, Tabasco, Oaxaca, Puebla | houses damaged or destroyed, damages to transport network, over 952000 hectares of cropland flooded | MXN 2.5bn (USD 203m) insured loss USD 4.13bn total damage |
| 15.9.-16.9. | United States | Thunderstorms, tornadoes, hail, floods | 2 dead |
|  | KS, NY, OH |  | USD 300m-600m insured loss* |
|  |  |  | USD 500m total damage |
| 18.9.-22.9. | Bermuda, Canada | Hurricane Igor with winds up to $150 \mathrm{~km} / \mathrm{h}$, heavy rains, | 4 dead |
|  | 65 km West of Bermuda, | floods; hundreds of houses, roads damaged | USD 140m insured loss |
|  | Burin Peninsula |  | USD 201m total damage |
| 18.9.-19.9. | United States | Thunderstorms, hail, floods | USD 100m-300m insured loss* |
|  | MO |  | USD 210 m total damage |
| 19.9.-21.9. | China, Taiwan | Typhoon Fanapi/No 11 with winds up to $169 \mathrm{~km} / \mathrm{h}$; | 135 dead, 61 missing |
|  | China (Fujian, Guangdong), | heavy rain, floods, landslides; 66400 hectares of crops | 128000 homeless |
|  | Taiwan | flooded, 16000 houses collapsed; landslide caused damage to a tin mine causing water pollution | TWD 2bn (USD 69m) insured loss USD 800m total damage |
| 29.9.-1.10. | Jamaica, United States, | Tropical Storm Nicole/No 14, heavy rains, floods, | 21 dead |
|  | Bahamas, Cuba | landslides; roads, highways flooded, bridges | 141 homeless |
|  | Kingston, Santiago, Clarendon, | collapsed, power outages | USD 135m insured loss |
|  | MD, NC, NY, PA, VA |  | USD 333m total damage |
| 4.10.-6.10. | United States | Thunderstorms, tornadoes, hail, floods | USD 1bn-3bn insured loss* |
|  | AZ |  |  |
| 17.10.-23.10. | China, Philippines, Taiwan | Super Typhoon Megi with winds up to $220 \mathrm{~km} / \mathrm{h}$, | 46 dead, at least 4 missing |
|  | Maconacon, Palanan, Divilican, | floods, mudslides; 30048 houses destroyed | 42 injured |
|  | Zhangpu City, Fujian |  | USD 100m insured loss |
|  |  |  |  |

[^9]| Date | Country <br> Place | Event | No. of victims/amount of damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 21.10-24.10. | United States TX | Thunderstorms, tornado with wind up to $217 \mathrm{~km} / \mathrm{h}$; floods, hail | USD 25m-100m insured loss* |
| 22.10 | Myanmar (Burma) <br> Magway, Mandalay, Sagaing, <br> Kyaukpyu, Minbya, Myanaung, <br> Myebon, Pauktaw | Cyclone Giri with winds up to $177 \mathrm{~km} / \mathrm{h}$; heavy rains, tidal waves; 20380 houses, 16185 hectares of riceland destroyed; damage to infrastructure | 45 dead, at least 10 missing <br> 49 injured <br> 81000 homeless <br> USD 57 m total damage |
| 26.10. | United States <br> IL, IN, KY, MN, OH, WI | Storms with winds up to $129 \mathrm{~km} / \mathrm{h}$, hail, floods, tornadoes | USD 300m-600m insured loss* |
| 30.10.-6.11. | Saint Lucia, Saint Vincent and <br> The Grenadines, Barbados, <br> Trinidad and Tobago, Haiti | Hurricane Tomas/No 11, heavy rains, landslides | 55 dead USD 588m total damage |
| 31.10.-2.1. | Italy <br> Veneto, Toscana, Ligura, Valle d'Aosta, Lombardia, Friuli, Sicilia | Storms, floods, mudslides due to heavy rains, rivers overflow their banks; train derailed, houses destroyed, railways, roads damaged | 3 dead <br> 5 injured <br> EUR 650m (USD 872m) total damage |
| 31.10-3.11. | India <br> Andhra Pradesh | Cyclone Jal with winds up to $100 \mathrm{~km} / \mathrm{h}$; heavy rains, floods; damage to crops and transport infrastructure | 22 dead |
| 29.11.-1.12. | United States MS, SC, GA | Storms, tornadoes | 1 dead USD 25m-100m insured loss* USD 100 m total damage |
| 17.12.-22.12. | United States CA | Storms, hail, floods | USD 100m-300m insured loss* |

## Earthquakes

| Date | Country Place | Event | No. of victims/amount of damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 12.1. | Haiti <br> Port au Prince, Leogane, <br> Petionville, Gressier, Carrefour, <br> Delmas | Earthquake ( $\mathrm{M}_{\mathrm{w}} 7.0$ ), aftershocks | 222570 dead <br> 300000 injured <br> 1200000 homeless <br> USD 100m insured loss <br> USD 10bn total damage |
| 27.2 | Chile <br> Conception Valparaiso, Santiago, Curico, Chillan, Conception, Talca | Earthquake ( $M_{w} 8.8$ ) triggers tsunami and over 200 aftershocks; buildings, bridges, roads destroyed, damage to infrastructure | 488 dead, 74 missing 500 injured 44000 homeless USD 8bn insured loss USD 30bn total damage |
| 4.3 . | Taiwan <br> Kaohsiung, Taitung, Tainan, Jiayi | Earthquake ( $\mathrm{M}_{\mathrm{w}} 6.4$ ), 19 aftershocks | 96 injured <br> TWD 2.6bn (USD 89m) insured loss USD 1bn total damage |
| 8.3 | Turkey Okcular, Bingol, Elazig, Erzincan | Earthquake ( $\mathrm{M}_{\mathrm{w}}$ 5.9) | 51 dead 100 injured |
| 4.4. | Mexico, United States <br> Baja California, Mexicali, CA | Earthquake ( $\mathrm{M}_{\mathrm{w}} 7.2$ ), aftershocks; damage to buildings and infrastructure | 2 dead <br> 100 injured <br> 5000 homeless <br> USD 300m insured loss <br> USD 1.1 bn total damage |
| 14.4. | China <br> Tibet, Qinghai, Yushu, Jiegu | Earthquake ( $\left.\mathrm{M}_{\mathrm{w}} 6.9\right)$, aftershocks | 2698 dead, 270 missing <br> 12000 injured 100000 homeless <br> CNY 4m (USD 1m) insured loss <br> CNY 670m (USD 102m) total damage |
| 15.4. | Iceland, United Kingdom, Ireland, Germany, France, Switzerland, Netherlands | Eruption of Eyiafiallajökull volcano; prolonged airline traffic disruption | USD 1.7bn total damage |

[^10]| Date | Country Place | Event | No. of victims/amount of damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 18.4. | Afghanistan | Earthquake ( $\mathrm{M}_{\mathrm{w}} 5.3$ ), over 2000 houses destroyed | 11 dead |
|  | Samangan |  | 70 injured |
| 16.6. | Indonesia | Earthquake ( $\mathrm{M}_{\mathrm{w}} 7.0$ ), aftershocks, over 2500 houses destroyed | 17 dead |
|  | Papua, Yapen Island |  | 4600 homeless |
| 4.9 . | New Zealand | Earthquake ( $\mathrm{M}_{\mathrm{w}} 7.0$ ), over 300 aftershocks; 500 buildings destroyed, 100000 buildings and 300-400 farms damaged, damage to roads, railways, irrigation infrastructure | 100 injured |
|  | Darfield, Christchurch, |  | 400 homeless |
|  | South Island |  | NZD 5.7bn (USD 4.45bn) insured loss NZD 6.5bn (USD 5.08bn) total damage |
| 25.10.-5.11. | Indonesia | Mount Merapi volcano erupted, 867 hectares of forest destroyed | 322 dead |
|  | Central Java, Yogyakarta |  | 136686 homeless |
| 25.10 . | Indonesia | Earthquake ( $\mathrm{M}_{\mathrm{w}} 7.8$ ), triggers tsunami | 449 dead, 96 missing |
|  | South Pagai, Mentawai Islands |  | 14983 homeless |
| 3.11.-11.3. | Serbia | Earthquake ( $\mathrm{M}_{\mathrm{w}} 5.3$ ), aftershocks; >6 000 buildings damaged | 2 dead |
|  | Kragujevac |  | 50 injured |
|  |  |  | RSD 11.3bn (USD 143m) total damage |

## Droughts, bush fires, heat waves

| Date | Country Place | Event | No. of victims/amount of damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 1.1.-1.5. | China <br> Guizhou, Yunnan, Sichuan, Chongqing, Guangxi | Drought; millions of hectares of farmland destroyed | CNY 23.7bn (USD 3.6bn) total damage |
| 8.2.-13.2. | Brazil <br> Santos | Heat wave with temperatures of over $39^{\circ}$ Celsius | 32 dead |
| 1.3.-20.5. | India Orissa, Rajasthan, Punjab, Haryana | Heat wave with temperatures of over $47^{\circ}$ Celsius | 250 dead |
| 15.6.-15.8. | Russia, Czech Republic | Heat wave with temperatures up to $40^{\circ}$ Celsius, railways, highways closed due to heat | 55630 dead <br> RUB 33bn (USD 1.08bn) total damage |
| 1.7.-18.8 | Russia <br> Voronezh, Belgorod, Ivanovo, <br> Kirov, Nizhny, Novgorod, <br> Moscow | Wildfires caused by drought and prolonged heat wave, smoke pollution in Moscow; 26739 wildfires destroyed 2500 houses, 816515 hectares of forest, 64000 flights cancelled, damage to transport infrastructure | 130 dead 1500 injured 3500 homeless USD 15 bn total damage |
| 19.7.-25.7. | Japan | Heat wave with temperatures of over $35^{\circ}$ Celsius | 170 dead |
| 29.7.-30.7. | Finland | Heat wave with temperatures of over $37^{\circ}$ Celsius | USD 99m total damage |
| 2.12.-5.12. | Israel <br> Carmel Forest | Forest fire spread by strong, dry winds; bus, 250 houses 5000000 trees destroyed | , 42 dead ILS 36m (USD 10m) insured loss ILS 200m (USD 56m) total damage |
| 5.12.-6.12. | China <br> Sichuan | Grassland fires spread by strong, dry winds | 22 dead |

## Cold, frost

| Date | Country Place | Event | No. of victims/amount of damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 1.1.-19.1. | China Xinjiang, Altay | Heavy snow, avalanches, cold temperatures of $-45^{\circ}$ Celsius | 20 dead <br> 1100 injured <br> CNY 650m (USD 99m) total damage |
| 5.1.-23.1. | India Uttar Pradesh, New Delhi, Punjab, Haryana, Bihar | Cold wave with temperatures close to freezing, dense fog | 100 dead |
| 7.1.-11.1. | United Kingdom | Cold wave with temperatures below $0^{\circ}$ Celsius | 28 dead, 3 missing <br> GBP 700m (USD 1.1bn) total damage |
| 7.1.-12.1. | United States TX, GA, OK, MO, NC, AR, AL, FL, SC, LA | Long stretch of below-freezing temperatures; damage to agriculture | USD 100m-300m insured loss* USD 1.38bn total damage |
| 10.1.-25.1. | Romania, Germany, Poland, Czech Republic, Bulgaria, Turkey | Extreme cold weather with temperatures of $-35^{\circ}$ Celsius | 87 dead |
| 8.2.-9.2. | Afghanistan Parwan, Salang Pass | Avalanches hit mountain highway; cars, buses and trucks jammed inside Salang Tunnel | 169 dead <br> 130 injured |
| 28.2.-1.3. | China Shangdon | Heavy snow; 5883 houses and 66310 hectares of farmland destroyed | CNY 1.64bn (USD 249m) total damage |
| 9.3. | Afghanistan Badakhshan | Avalanche after heavy snowfall | 30 dead, 5 missing |
| 17.7.-24.7. | Peru, Chile, Argentina, Uruguay, <br> Bolivia, Paraguay, Brazil | Cold wave with temperatures close to freezing; livestock died | 522 dead |
| 26.11.-6.12. | United Kingdom, Germany, Poland, France, Italy, Russia, Albania, Spain, Norway, Denmark, Portugal, Czech Republic, Switzerland | Heavy snow, prolonged period of icy conditions; severe transport disruption | 60 dead USD 262m insured loss |

## Hail

|  | Country | Event | No. of victims/amount of damage <br> in original currency and (USD) |
| :--- | :--- | :--- | :--- |
| Date | Place | Hailstorm; damage to buildings, crops | 28 dead |
| 10.4. | India |  | 5000 homeless |

## Other natural catastrophes

|  | Country | Event | No. of victims/amount of damage <br> in original currency and (USD) |
| :--- | :--- | :--- | :--- |
| Date | Place | Landslide destroyed 46 houses, blocked Hunza | 20 dead |
| 4.1. | Pakistan | River; damage to Karakoram Highway | PKR 1.5bn (USD 18m) total damage |
|  | Gilgit Baltistan, Hunza, |  |  |
| 12.4. | Peru | Glacier melts; Hualcan River overflows its banks; | 50 injured |
|  | Ancash | 50 houses destroyed |  |

[^11]Table 7
Chronological list of all man-made disasters 2010

## Major fires, explosions

| Date | Country Place | Event | No. of victims/amount of total damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 4.1. | China | Gas pipeline leak at steel plant | 21 dead |
|  | Hebei |  |  |
| 11.1. | Australia | Fire at poultry supplier and producer |  |
|  | Victoria, Sommerville |  |  |
| 15.1. | Spain | Fire at food processing plant |  |
|  | Murcia |  |  |
| 1.2 . | United Kingdom | Fire at food plant |  |
|  | Suffolk |  |  |
| 7.2 . | United States | Gas explosion at power station | 6 dead |
|  | CT, Middletown |  | 16 injured |
| 25.2. | Bangladesh | Fire at garment factory | 21 dead |
|  | Gazibur |  | 50 injured |
| 26.2 | China | Fire and explosion at fireworks factory | 23 dead |
|  | Guangdong |  | 48 injured |
| 23.3. | India | Fire at multi-storey house | 32 dead |
|  | West Bengal, Kolkata |  | 20 injured |
| 10.4 | India | Fire at warehouse | INR 1Obn (USD 224m) total damage |
|  | Tughlakabad |  |  |
| 3.6. | Bangladesh | Fire and explosion of electrical transformer; | 120 dead |
|  | Dhaka, Neemtoli | fire spreads to residential and commercial areas | 100 injured |
| 11.6 | Russia | Fire at 3-storey warehouse |  |
|  | Kaliningrad |  |  |
| 14.7. | Germany | Fire at paint and coating plant |  |
|  | Fulda |  |  |
| 15.7. | Iraq | Fire at hotel in commercial street | 30 dead |
|  | Sulaimaniya |  | 22 injured |
| 1.8.-2.8. | South Africa | Fire at retirement home | 22 dead |
|  | Johannesburg |  |  |
| 3.8. | Chile | Fire at pasta factory | USD 128m total damage |
|  | Nos, Santiago |  |  |
| 7.8. | Iraq | Electricity generator explodes | 45 dead |
|  | Basra |  |  |
| 9.8. | Qatar | Power failure at aluminium factory |  |
|  | Mesaieed |  |  |
| 16.8 | China | Explosion at illegal fireworks factory | 20 dead, 4 missing |
|  |  |  | 153 injured |
| 9.9. | United States | Gas pipeline explosion and fire; 37 houses | 8 dead |
|  | San Bruno, CA | destroyed | 60 injured |
|  |  |  | USD 250m total damage |
| 10.9.-13.9. | United States | Fire at Four Mile Canyon fuelled by winds up to | 2 injured |
|  | CO (Four Mile Canyon) | $75 \mathrm{~km} / \mathrm{h} ; 170$ houses, 2575 hectares of land destroyed | USD 310m total damage |
| 17.9. | Sri Lanka | Explosion at explosives depot | 62 dead |
|  | Karadiyanaru |  |  |
| 27.10. | Myanmar (Burma) | Fire caused by leaking oil pipeline | 100 dead |
|  | Pakkoku |  | 58 injured |
| 15.11. | China | Fire at 28-storey residential building | 58 dead |
|  | Shanghai |  | 71 injured |
| 15.11. | India | Collapse of five-storey building | 70 dead |
|  | Laxmi Nagar, New Delhi |  | 80 injured |
| 8.12. | Chile | Fire at prison during a riot | 83 dead |
|  | San Miguel, Santiago |  | 14 injured |
| 14.12 | Bangladesh | Fire at garment factory | 29 dead |
|  | Dhaka |  |  |
| 19.12 | Mexico | Fire in oil pipeline, 32 houses destroyed | 29 dead |
|  | San Martin Texmelucan, Puebla |  | 52 injured |
|  |  |  | 84 homeless |

## Aviation disasters

| Date | Country Place | Event | No. of victims/amount of total damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 25.1. | Mediterranean Sea, Lebanon | Ethiopian Airlines Boeing 737 crashes into sea shortly after takeoff | 90 dead |
| 10.4. | Russia Smolensk | Polish Air Force Tupolev 154M crashes on approach | 96 dead |
| 12.5. | Libya <br> Tripoli International Airport | Afriqiyah Airways A330 crashes upon landing | 103 dead <br> 1 injured |
| 17.5 | Afghanistan <br> Hindu Kush Mountains, <br> Salang Pass | Pamir Airways Antonov 24 crashes in heavy fog | 44 dead |
| 22.5 . | India Mangalore-Bajpe Airport | Air India Express Boeing 737-800 crashes upon landing; catches fire | 158 dead 8 injured |
| 10.6 . | Saudi Arabia Jeddah airport | Fire at airport warehouse |  |
| 27.7. | Saudi Arabia <br> Riyadh | Lufthansa MD11 (D-ALCO) crashes upon landing |  |
| 28.7 . | Pakistan Islamabad | Airblue A321 (AP-BJB) crashes upon landing | 152 dead |
| 16.8 | Colombia <br> San Andres Island | AIRES Boeing 737-700 crashes upon landing | 2 dead 100 injured |
| 24.8 . | China <br> Yichun Lindu Airport | Embraer 190LR crashes upon landing | 42 dead |
| 25.8. | Democratic Republic of Congo Bandundu | Filair Bi-Turbopropulseur Let-410 crashes on landing | 20 dead |
| 3.9. | United Arab Emirates Dubai | UPS Boeing 747F crashes at military base; catches fire | 2 dead |
| 29.10. | Space | Loss of Eutelsat's W3B satellite |  |
| 4.11. | Cuba Guasimal | Aero Caribbean ATR-72-212 crashes in Guasimal | 68 dead |
| 5.11 . | Pakistan Karachi | Jahangir Siddiqui Beechcraft 1900 crashes shortly after takeoff | 21 dead |
| 15.12. | Nepal Okhaldhunga | Tara Air Twin Otter crashes shortly after takeoff | 22 dead |

## Maritime disasters

| Date | Country Place | Event | No. of victims/amount of total damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 27.1. | Indian Ocean, Indonesia Aru islands | Ferry sinks in stormy weather | 7 dead, 27 missing |
| 7.3.-8.3. | Cameroon Bakassi | Overloaded boat capsizes in the Gulf of Guinea | 24 dead |
| 26.3. | South Korea Yellow Sea, Baengnyeong Island | Navy ship sinks after explosion | 46 dead |
| 7.4. | Rwanda Nyamunini Island | Boat capsizes on Lake Kivu during storm | 21 dead 19 injured |
| 20.4.-22.4. | Gulf of Mexico, United States LA, MS, AL, FL | Explosion on Deepwater Horizon oil rig causing the drilling platform to sink; $166937 \mathrm{~m}^{3}$ of oil spilled | 11 dead 17 injured USD 1bn insured loss USD 20bn total damage |
| 13.5. | Caribbean Sea, Venezuela Mariscal Sucre | Semi-submersible gas exploration rig Aban Pearl sinks |  |
| 26.5. | Peru Loreto, Santa Rosa | Overloaded ferry Camila sinks in the Amazon river | At least 21 dead, 15 missing |
| 29.5. | Italy Naples | Fire on passenger ferry |  |
| 7.6. | Indian Ocean, Mozambique Cabo Delgado | Boat carrying illegal immigrants capsizes | 49 dead |


| Date | Country Place | Event | No. of victims/amount of total damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 8.6 . | Bangladesh | Boat capsizes during storm | 18 dead, at least 19 missing |
|  | Sunamganj |  |  |
| 14.6. | India | Overloaded boat capsizes on the Ganges river | 62 dead |
|  | Uttar Pradesh, Dubahar, Ballia |  |  |
| 28.7. | Congo, Democratic Republic of (DRC) | Boat carrying illegal immigrants capsizes on Kasai river | 140 dead |
|  | Kasai river, Bandundu |  |  |
| 1.8. | Uganda | Overloaded boat capsizes on Lake Albert | 33 dead, 17 missing |
|  | Lake Albert |  |  |
| 5.9. | Congo, Democratic Republic of (DRC) | Overloaded boat capsizes on Ruki river | 70 dead |
|  | Ruki River, Equateur Province |  |  |
| 15.9. | Indian Ocean, Bay of Bengal, | Boat carrying tourists capsizes | 20 dead, at least 14 missing |
|  | Muriganga river |  |  |
| 27.9 . | Indian Ocean, Arabian Sea, | Boat carrying illegal immigrants capsizes | 21 dead |
|  | Gulf of Aden, Somalia |  |  |
|  | Gulf of Aden |  |  |
| 5.10. | Myanmar (Burma) | Ferry carrying school children and teachers capsizes | 19 dead, 3 missing |
|  | Irrawaddy Delta |  |  |
| 10.10 | India | Overloaded passenger ship capsizes on the Ganges river | 36 dead, 2 missing |
|  | Bihar, Buxar, Ganges river |  |  |
| 20.10. | Indonesia | Karya Terang ferry capsizes during bad weather | 22 dead |
|  | Palue Island, East Nusa |  |  |
|  | Tenggara |  |  |
| 30.10. | India | Pilgrims boat capsizes hitting a sand bar on Buriganga river | 54 dead, 73 missing |
|  | Ghoramara island, West Bengal |  |  |
| 30.10. | Indian Ocean, Bay of Bengal, | Ferry carrying pilgrims capsizes | 79 dead, 50 missing |
|  | India |  |  |
|  | Kolkata, Bay of Bengal |  |  |
| 10.11. | Philippine Sea, Japan | Cargo sinks off Okinawa Island | 1 dead, 20 missing |
|  | Okinawa |  |  |
| 16.11. | Mozambique | Boat carrying illegal immigrants capsizes on Lake Niassa | 15 dead, 20 missing |
|  | Lake Niassa |  |  |
| 13.12. | Antarctic Ocean, New Zealand | Fishing boat capsizes on Southern Ocean | 22 dead |
|  | Southern Ocean |  |  |
| 15.12. | Australia | Boat carrying asylum seekers capsizes | 30 dead, 18 missing 5 injured |
|  | Christmas Island |  |  |
| 16.12.-19.12. | Indian Ocean, South China Sea, | 22 fishing vessels capsize due to strong winds | 5 dead, 51 missing |
|  | Viet Nam |  |  |
|  | South China Sea |  |  |
| 18.12. | Bangladesh | Boat capsizes on Surma river after colliding with a cargo ship | 37 dead |
|  | Surma river |  |  |

## Rail disasters including cableways

|  | Country |  | No. of victims/amount of total damage <br> in original currency and (USD) |
| :--- | :--- | :--- | :--- |
| Date | Place | Event | 18 dead |
| 15.2 | Belgium | Head-on collision of two commuter trains | 171 injured |
| 28.5. | Brussels, Halle, Vlaams-Brabant |  | 148 dead |
|  | India | 13 coaches of Jnaneswari Express train derail: | 180 injured |
|  | West Bengal, Kharagpur, Tata | oncoming goods train rams derailed coaches |  |
| 23.6. | Republic of Congo |  | Four coaches of a passenger train derail and |
|  | Pointe Noire | plunge into ravine | 54 dead |


|  | Country <br> Date | Place | Event |
| :--- | :--- | :--- | :--- | | No. of victims/amount of total damage |
| :--- |
| in original currency and (USD) |

## Mining accidents

| Date | Country Place | Event | No. of victims/amount of total damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 6.1. | China | Fire at coal mine | 30 dead |
|  | Hunan, Xiangtan |  |  |
| 1.3.-15.3. | China | Flood at coal mine after heavy rain | 32 dead |
|  | Inner Mongolia, Luotuo Mountain |  |  |
| 15.3 . | China | Fire at coal mine | 25 dead |
|  | Henan, Zhengzhou, Xinmi |  |  |
| 19.3 | Sierra Leone | Collapse of gold mine | 200 dead |
|  | Baomahun |  |  |
| 28.3 . | China | Flooding of Wangjialing coal mine | 38 dead 115 injured |
|  | Shanxi |  |  |
| 31.3. | China | Gas explosion at coal mine | At least 43 dead |
|  | Henan, Luoyang, Yichuan |  |  |
| 5.4. | United States | Explosion at coal mine | 27 dead <br> 2 injured |
|  | WV, Montcoal |  |  |
| 8.5 . | Russia | Explosions at Raspadskaya coal mine | 66 dead, 22 missing 129 injured |
|  | Siberia, Kemerovo, |  |  |
|  | Mezhdurechensk |  |  |
| 13.5 | China | Gas explosion at illegal coal mine | 21 dead |
|  | Guizhou |  |  |
| 17.5 . | Turkey | Gas explosion at Karadon coal mine | 28 dead <br> 8 injured |
|  | Zonguldak |  |  |
| 16.6 | Colombia | Gas explosion at San Fernando coal mine | 73 dead |
|  | Antioquia |  |  |
| 21.6 | China | Explosion at coal mine | 47 dead |
|  | Henan, Pingdingshan |  |  |
| 29.6. | Ghana | Dunkwa Akyempim mine collapse due to heavy rain | At least 88 dead, 20 missing |
|  | Accra, Ashaiman |  |  |
| 17.7 . | China | Fire at coal mine | 28 dead |
|  | Hancheng, Shaanxi |  |  |
| 6.8. | China | Fire at gold mine | 23 dead |
|  | Lingnan |  |  |
| 16.10. | China | Gas explosion at coal mine | 37 dead |
|  | Yuzhou City, Henan |  |  |
| 19.11.-25.11. | New Zealand | Gas explosions at coal mine | 29 dead |
|  | South Island |  |  |
| 7.12. | China | Explosion at coal mine | 26 dead |
|  | Mianchi County, Henan |  |  |

## Collapse of buildings/bridges

|  | Country | Event | No. of victims/amount of total damage <br> in original currency and (USD) |
| :--- | :--- | :--- | :--- |
| Date | Place | Collapse of mosque minaret | 41 dead |
| 19.2 | Morocco |  | 70 injured |

## Miscellaneous

| Date | Country Place | Event | No. of victims/amount of total damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 1.1. | Pakistan | Car bomb explodes in crowded volleyball stadium | 101 dead |
|  | Lakki Marwat |  | 60 injured |
| 20.1. | Mexico | Riots at prison | 24 dead |
|  | Durango |  |  |
| 18.2. | Pakistan | Suicide bomb attack outside a mosque | 29 dead |
|  | Terah valley |  | 50 injured |
| 25.2 . | Mali | Stampede at mosque | 24 dead |
|  | Timbuktu |  | 55 injured |
| 1.3.-20.6. | Nigeria | Lead poisoning outbreak from illegal gold mining | 400 dead |
|  | Zamfara, Anka, Bungudu |  |  |
| 8.3. | Pakistan | Suicide bomb attack on a police intelligence unit | 15 dead |
|  | Punjab, Lahore |  | 60 injured |
| 12.3 . | Pakistan | Two suicide bombings in residential area and shopping district | 45 dead |
|  | Lahore |  | 120 injured |
| 29.3 . | Russia | Bomb explosions at the metro stations Lubyanka und Park Kultury | 40 dead |
|  | Moscow |  | 160 injured |
| 5.4. | Pakistan | Suicide bomb attack on a political party rally | 38 dead |
|  | Lower Dir, Timergarah |  | 100 injured |
| 7.4.-8.4. | Kyrgyzstan | Clashes between demonstrators and police | 75 dead |
|  | Bishkek |  | 1500 injured |
| 10.4 . | Thailand | Clashes between security forces and anti-government protestors | 21 dead |
|  | Bangkok |  | 312 injured |
| 19.4. | Pakistan | Suicide bomb attacks protest rally at Qissa Khwani Bazaar | 24 dead |
|  | North West Frontier, Peshawar |  | 42 injured |
| 22.4. | Thailand | Clashes between military troops and anti-government protestors | 3 dead |
|  | Bangkok |  | 75 injured |
| 13.5.-16.5. | Thailand | Clashes between military troops and anti-government protesters; over 30 buildings damaged | 24 dead |
|  | Bangkok |  | 198 injured |
|  |  |  | THB 30bn (USD 995m) total damage |
| 19.5.-20.5. | Thailand | Clashes between military troops and anti-government protestors | 41 dead |
|  | Bangkok, Udon Thani, Khon Kean |  | 346 injured |
| 20.5. | France | Art robbery; five paintings stolen from Museum of Modern Art | EUR 120m (USD 161m) total damage |
|  | Paris |  |  |
| 28.5. | Pakistan | Bomb attacks on two mosques | 80 dead |
|  | Lahore |  | 107 injured |
| 10.6 . | Afghanistan | Suicide bombing at wedding party | 56 dead |
|  | Kandahar, Arghandab |  | 70 injured |
| 10.6.-14.6. | Kyrgyzstan | Riots between ethnic communities | 118 dead |
|  | Osh, Jalalabat, Batken |  | 600 injured |


| Date | Country Place | Event | No. of victims/amount of total damage in original currency and (USD) |
| :---: | :---: | :---: | :---: |
| 1.7. | Pakistan | Suicide bombings at shrine | 50 dead |
|  | Lahore |  |  |
| 9.7. | Pakistan | Suicide bombings at tribal meeting | 105 dead |
|  | Mohmand Agency |  |  |
| 15.7. | Iran | Suicide bombings at mosque | 27 dead |
|  | Zahedan |  | 270 injured |
| 24.7. | Germany | Stampede at Loveparade 2010 | 21 dead |
|  | Duisburg |  | 500 injured |
| 11.8. | Uganda | Series of bombs explode on World Cup Final gatherings | 84 dead |
|  | Kampala |  | 114 injured |
| 1.9. | Pakistan | Series of bomb explosions in Lahore | 38 dead |
|  | Lahore |  |  |
| 2.9. | Pakistan | Series of suicide bombings in mosques | 35 dead |
|  | Lahore |  |  |
| 3.9. | Pakistan | Suicide bombing at religious procession | 65 dead |
|  | Quetta |  | 150 injured |
| 7.9 . | Pakistan | Suicide bombing at police station | 20 dead |
|  | Kohat |  | 50 injured |
| 4.10. | Hungary | Toxic leak at aluminium factory | 9 dead |
|  | Ajka, Kolontar |  | 150 injured |
|  |  |  | 7120 homeless |
|  |  |  | USD 103m total damage |
| 11.11. | Pakistan | Suicide bombing at government building | 20 dead |
|  | Karachi |  |  |
| 22.11. | Cambodia | Stampede on bridge during a festival | 375 dead |
|  | Koh Pich, Phnom Penh |  | 758 injured |
| 2.12. | Nigeria | Fuel tanker explodes on motorway | 21 dead |
|  | Lagos |  |  |
| 10.12. | Pakistan | Suicide bombing at hospital | 20 dead |
|  | Khyber-Pakhtunkhwa, Hangu |  |  |
| 24.12. | Nigeria | Series of bomb explosions at churches on Christmas Eve | 32 dead <br> 74 injured |
|  | Jos |  |  |
| 25.12. | Pakistan | Suicide bombing at UN food distribution centre | 45 dead |
|  | Khar, Bajaur |  |  |

## Tables showing the major losses 1970-2010

Table 8
The 40 most costly insurance losses 1970-2010

## Insured loss ${ }^{7}$

(in USD m,

| indexed to 2010) | Victims ${ }^{8}$ | Date (start) | Event | Country |
| :---: | :---: | :---: | :---: | :---: |
| 72302 | 1836 | 25.08.2005 | Hurricane Katrina; floods, dams burst, damage to oil rigs | US, Gulf of Mexico, Bahamas, North Atlantic |
| 24870 | 43 | 23.08.1992 | Hurricane Andrew; floods | US, Bahamas |
| 23131 | 2982 | 11.09.2001 | Terror attack on WTC, Pentagon and other buildings | US |
| 20601 | 61 | 17.01.1994 | Northridge earthquake (M 6.6) | US |
| 20483 | 136 | 06.09.2008 | Hurricane lke; floods, offshore damage | US, Caribbean: Gulf of Mexico et al |
| 14876 | 124 | 02.09.2004 | Hurricane Ivan; damage to oil rigs | US, Caribbean; Barbados et al |
| 14028 | 35 | 19.10.2005 | Hurricane Wilma; floods | US, Mexico, Jamaica, Haiti et al |
| 11266 | 34 | 20.09.2005 | Hurricane Rita; floods, damage to oil rigs | US, Gulf of Mexico, Cuba |
| 9295 | 24 | 11.08.2004 | Hurricane Charley; floods | US, Cuba, Jamaica et al |
| 9041 | 51 | 27.09.1991 | Typhoon Mireille/No 19 | Japan |
| 8043 | 71 | 15.09.1989 | Hurricane Hugo | US, Puerto Rico et al |
| 8000 | 562 | 27.02.2010 | Earthquake ( $\mathrm{M}_{\mathrm{w}} 88.8$ ) triggers tsunami | Chile |
| 7794 | 95 | 25.01.1990 | Winter storm Daria | France, UK, Belgium, NL et al |
| 7594 | 110 | 25.12.1999 | Winter storm Lothar | Switzerland, UK, France et al |
| 6410 | 54 | 18.01.2007 | Winter storm Kyrill; floods | Germany, UK, NL, Belgium et al |
| 5951 | 22 | 15.10.1987 | Storm and floods in Europe | France, UK, Netherlands et al |
| 5941 | 38 | 26.08.2004 | Hurricane Frances | US, Bahamas |
| 5326 | 64 | 25.02.1990 | Winter storm Vivian | Europe |
| 5290 | 26 | 22.09.1999 | Typhoon Bart/No 18 | Japan |
| 4723 | 600 | 20.09.1998 | Hurricane Georges; floods | US, Caribbean |
| 4453 | - | 04.09.2010 | Earthquake ( $\mathrm{M}_{\mathrm{w}}$ 7.0) | New Zealand |
| 4439 | 41 | 05.06.2001 | Tropical storm Allison; floods | US |
| 4390 | 3034 | 13.09.2004 | Hurricane Jeanne; floods, landslides | US, Caribbean: Haiti et al |
| 4139 | 45 | 06.09.2004 | Typhoon Songda/No 18 | Japan, South Korea |
| 3800 | 45 | 02.05.2003 | Thunderstorms, tornadoes, hail | US |
| 3695 | 70 | 10.09.1999 | Hurricane Floyd; floods | US, Bahamas, Columbia |
| 3586 | 59 | 01.10.1995 | Hurricane Opal; floods | US, Mexico, Gulf of Mexico |
| 3538 | 6425 | 17.01.1995 | Great Hanshin earthquake (M 7.2) in Kobe | Japan |
| 3315 | 25 | 24.01.2009 | Winter storm Klaus | France, Spain |
| 3142 | 45 | 27.12.1999 | Winter storm Martin | Spain, France, Switzerland |
| 2963 | 246 | 10.03.1993 | Blizzard, tornadoes, floods | US, Canada, Mexico, Cuba |
| 2799 | 38 | 06.08.2002 | Severe floods | UK, Spain, Germany, Austria et al |
| 2754 | 64 | 27.02.2010 | Winter storm Xynthia | France, Germany, Belgium at al |
| 2723 | 26 | 20.10.1991 | Forest fires which spread to urban areas, drought | US |
| 2710 | - | 06.04.2001 | Hail, floods, tornadoes | US |
| 2653 | 135 | 26.08.2008 | Hurricane Gustav, floods; offshore damage | US, Caribbean, Gulf of Mexico et al |
| 2616 | 4 | 25.06.2007 | Floods caused by heavy rain | UK |
| 2581 | 30 | 18.09.2003 | Hurricane Isabel | US, Canada |
| 2528 | 39 | 05.09.1996 | Hurricane Fran | US |
| 2494 | 20 | 03.12.1999 | Winter storm Anatol | Denmark, Sweden, UK et al |

[^12][^13]Table 9
The 40 worst catastrophes in terms of victims 1970-2010

## Insured loss ${ }^{10}$

(in USD m,

| Victims ${ }^{9}$ | indexed to 2009) | Date (start) | Event | Country |
| :---: | :---: | :---: | :---: | :---: |
| 300000 | - | 14.11.1970 | Storm and flood catastrophe | Bangladesh, Bay of Bengal |
| 255000 | - | 28.07.1976 | Earthquake (M 7.5) | China |
| 222570 | 100 | 12.01.2010 | Earthquake ( $\mathrm{M}_{\mathrm{w}} 7.0$ ) | Haiti |
| 220000 | 2309 | 26.12.2004 | Earthquake ( $\mathrm{M}_{\mathrm{w}} 9$ ), tsunami in Indian Ocean | Indonesia, Thailand et al |
| 138300 | - | 02.05.2008 | Tropical cyclone Nargis; Irrawaddy Delta flooded | Myanmar (Burma), Bay of Bengal |
| 138000 | 3 | 29.04.1991 | Tropical cyclone Gorky | Bangladesh |
| 87449 | 371 | 12.05.2008 | Earthquake ( $\mathrm{M}_{\mathrm{W}} 7.9$ ) in Sichuan, aftershocks | China |
| 73300 | - | 08.10.2005 | Earthquake ( $\mathrm{M}_{\mathrm{W}} 7.6$ ); aftershocks, landslides | Pakistan, India, Afghanistan |
| 66000 | - | 31.05.1970 | Earthquake (M 7.7); rock slides | Peru |
| 55630 | - | 15.06.2010 | Heat wave in Russia | Russia |
| 40000 | 192 | 21.06.1990 | Earthquake (M 7.7); landslides | Iran |
| 35000 | - | 01.06.2003 | Heat wave and drought in Europe | France, Italy, Germany et al |
| 26271 | - | 26.12.2003 | Earthquake (M 6.5) destroys 85\% of Bam | Iran |
| 25000 | - | 07.12.1988 | Earthquake (M 6.9) | Armenia, ex-USSR |
| 25000 | - | 16.09.1978 | Earthquake (M 7.7) in Tabas | Iran |
| 23000 | - | 13.11.1985 | Volcanic eruption on Nevado del Ruiz | Colombia |
| 22084 | 287 | 04.02.1976 | Earthquake ( M 7.5 ) | Guatemala |
| 19737 | 123 | 26.01.2001 | Earthquake ( $M_{w} 7.6$ ) in Gujarat | India, Pakistan, Nepal et al |
| 19118 | 1309 | 17.08.1999 | Earthquake ( $\mathrm{M}_{\mathrm{L}} 7$ ) in Izmit | Turkey |
| 15000 | - | 11.08.1979 | Macchu dam burst in Morvi | India |
| 15000 | - | 01.09.1978 | Floods following monsoon rains in the north | India, Bangladesh |
| 15000 | 131 | 29.10.1999 | Cyclone 05B devastates Orissa state | India, Bangladesh |
| 11069 | - | 25.05.1985 | Tropical cyclone in Bay of Bengal | Bangladesh |
| 10800 | - | 31.10.1971 | Floods in Bay of Bengal and Orissa state | India |
| 10000 | 288 | 12.12.1999 | Floods, mudflows and landslides | Venezuela, Colombia |
| 10000 | - | 20.11.1977 | Tropical cyclone in Andrah Pradesh | India, Bay of Bengal |
| 9500 | 653 | 19.09.1985 | Earthquake (M 8.1) | Mexico |
| 9475 | - | 30.09.1993 | Earthquake (M 6.4) in Maharashtra | India |
| 9000 | 669 | 22.10.1998 | Hurricane Mitch in Central America | Honduras, Nicaragua et al |
| 6425 | 3538 | 17.01.1995 | Great Hanshin earthquake (M 7.2) in Kobe | Japan |
| 6304 | - | 05.11.1991 | Typhoons Thelma and Uring | Philippines |
| 6000 | - | 02.12.1984 | Accident in chemical plant in Bhopal | India |
| 6000 | - | 01.06.1976 | Heat wave, drought | France |
| 5778 | 43 | 27.05.2006 | Earthquake ( $\mathrm{M}_{\mathrm{L}}$ 6.3); Bantul almost completely destroyed | Indonesia |
| 5422 | - | 26.06.1976 | Earthquake ( M 7.1 ) | Papua New Guinea, Indonesia et al |
| 5374 | - | 10.04.1972 | Earthquake (M 6.9) in Fars | Iran |
| 5300 | - | 28.12.1974 | Earthquake (M 6.3) | Pakistan |
| 5112 | - | 15.11.2001 | Floods and landslides caused by heavy rain | Brazil |
| 5000 | 1286 | 05.03.1987 | Earthquake; oil pipeline damaged | Ecuador |
| 5000 | 678 | 23.12.1972 | Earthquake (M 6.3) in Managua | Nicaragua |

Source: Swiss Re Economic Research \& Consulting

[^14]
## Terms and selection criteria

A natural catastrophe is caused by natural forces

A man-made or technical disaster is triggered by human activities.

The amount of the total losses is a general indication only

The term "losses" refer to insured losses, but do not include liability

NFIP flood damage in the US is included

## Natural catastrophes

The term "natural catastrophe" refers to an event caused by natural forces. Such an event generally results in a large number of individual losses involving many insurance policies. The scale of the losses resulting from a catastrophe depends not only on the severity of the natural forces concerned, but also on man-made factors, such as building design or the efficiency of disaster control in the afflicted region. In this sigma study, natural catastrophes are subdivided into the following categories: floods, storms, earthquakes, droughts/forest fires/heat waves, cold waves/frost, hail, tsunami and other natural catastrophes.

## Man-made disasters

This study categorises as "man-made" or "technical" disasters major events associated with human activities. Generally, a large object in a very limited space is affected, which is covered by a small number of insurance policies. War, civil war and war-like events are excluded. sigma subdivides man-made disasters into the following categories: major fires and explosions, aviation and space disasters, shipping disasters, rail disasters, mining accidents, collapse of buildings/bridges and miscellaneous (including terrorism). In Tables 6 and 7 (pages 16-31), all major natural catastrophes and man-made disasters and the associated losses are listed chronologically.

## Total losses

For the purposes of the present sigma study, total losses are all the financial losses directly attributable to a major event, ie damage to buildings, infrastructure, vehicles etc. The term also includes losses due to business interruption as a direct consequence of the property damage. A figure identified as "total damage" or "economic loss" includes all damage, insured and uninsured. Total loss figures do not include indirect financial losses - ie loss of earnings by suppliers due to disabled businesses, estimated shortfalls in gross domestic product, and non-economic losses, such as loss of reputation or impaired quality of life.

Generally, total (or economic) losses are estimated and communicated in very different ways. As a result, they are not directly comparable and should be seen only as an indication of the general order of magnitude.

Insured losses
"Losses" refer to all insured losses except liability. Leaving aside the liability losses, on one hand, allows a relatively swift assessment of the insurance year; on the other hand, however, it tends to understate the cost of man-made disasters. Life insurance losses are also not included.

## NFIP flood damage in the US

The sigma catastrophe database also includes flood damage covered by the National Flood Insurance Program (NFIP) in the US, provided that it fulfils the sigma selection criteria.

Thresholds for insured losses and casualties in 2010

Losses are determined using year-end exchange rates and are then adjusted for inflation.

## Figure 8

Alternative methods of adjusting for inflation, by comparison

## Selection criteria

sigma has been publishing tables listing major losses since 1970. Thresholds with respect to casualties - the number of dead, missing, severely injured, and homeless also make it possible to tabulate events in regions where the insurance penetration is below average.

For the 2010 reporting year, the lower loss thresholds were set as follows:

| Insured losses: |  |
| :--- | ---: |
| Maritime disasters | USD 17.4 m |
| Aviation | USD 34.8 m |
| Other losses | USD 43.3 m |
|  |  |
| or Total economic losses: | USD 86.5 m |
|  |  |
| or Casualties: | 20 |
| Dead or missing | 50 |
| Injured | 2000 |

Adjustment for inflation, changes to published data, information sigma converts all losses for the occurrence year not given in USD into USD using the end-of-year exchange rate. To adjust for inflation, these USD values are extrapolated using the US consumer price index to give current (2010) values.

This can be illustrated by examining the insured property losses arising from the floods which occurred in the UK between 29 October and 10 November 2000:
$\begin{array}{ll}\text { Insured loss at } 2000 \text { prices: } & \text { USD } 1045.7 \mathrm{~m} \\ \text { Insured loss at } 2009 \text { prices: } & \text { USD } 1324.2 \mathrm{~m}\end{array}$
Alternatively, were one to adjust the losses in the original currency (GBP) for inflation and then convert them to USD using the current exchange rate, one would end up with an insured loss at 2010 prices of USD $1348 \mathrm{~m}, 2 \%$ more than with the standard sigma method. The reason for the difference is that the value of the GBP rose by $5 \%$ against the USD in the period 2000-2010, ie more than the difference in inflation between the US (26.6\%) and the UK (23\%) over the same period.

## Floods UK

29 October-10 November 2000

|  | Exchange rate <br> USD/GBP |  |  | USDm | US inflation <br> USDm |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Original loss | 700.0 | 1.4939 | 1045.7 | 1045.7 |  |
|  |  |  |  |  |  |
| Level of consumer price index 2000 | 93.1 |  | 172.2 |  |  |
| Level of consumer price index 2010 | 114.4 |  | 218.1 |  |  |
| Inflation factor | 1.230 |  |  | 1.266 |  |
|  |  |  | 1.5657 | 1347.8 | 1324.2 |
| Adjusted for inflation to 2010 | 860.8 | 1.5 | $102 \%$ | $100 \%$ |  |
| Comparison |  |  | 102 |  |  |

[^15]Changes to loss amounts of previously published events are updated in the sigma database.

Information on individual events is not available.

Newspapers, direct insurance and reinsurance periodicals, specialist publications and other reports are used to compile this study.

Table 10
Exchange rates used when converting total damage and/or insured losses

If changes to the loss amounts of previously published events become known, sigma takes these into account in its database. However, these changes only become evident when an event appears in the table of the 40 most costly insured losses or the 40 disasters with the most fatalities since 1970 (See Tables 8 and 9 on pages 32-33).

In the chronological lists of all man-made disasters, the insured losses are not shown for data protection reasons. However, the total of these insured losses is included in the list of major losses in 2010 according to loss category. sigma does not provide further information on individual insured losses or about updates made to published data.

## Sources

Information is collected from newspapers, direct insurance and reinsurance periodicals, specialist publications (in printed or electronic form) and reports from insurers and reinsurers. ${ }^{11}$ In no event shall Swiss Re be liable for any loss or damage arising in connection with the use of this information (see the copyright information in the impressum).

Exchange rate used, ${ }^{12}$ national currency per USD

| Country | Currency | Exchange rate, end 2010 |
| :--- | :--- | ---: |
| Australia | AUD | 0.9756 |
| Bosnia | BAM | 1.4700 |
| Brazil | BRL | 1.6600 |
| Canada | CAD | 0.9937 |
| China, PRC | CNY | 6.5898 |
| Colombia | COP | 1920.0000 |
| Denmark | DKK | 5.5549 |
| Egypt | EGP | 5.8050 |
| Europe | EUR | 0.7454 |
| Hungary | HUF | 207.4840 |
| Indonesia | IDR | 9010.0000 |
| Israel | ILS | 3.5416 |
| India | INR | 44.7150 |
| Kazakhstan | KZT | 147.3700 |
| Mexico | MXN | 12.3340 |
| New Zealand | NZD | 1.2801 |
| Oman | OMR | 0.3850 |
| Peru | PEN | 2.8066 |
| Pakistan | PKR | 85.6450 |
| Russia | RUB | 30.5270 |
| South Korea | KRW | 1134.9000 |
| Thailand | THB | 30.1450 |
| Tadjikistan | TJS | 4.4031 |
| Taiwan, ROC | TWD | 29.1566 |
| United Kingdom | GPB | 0.6387 |
| USA | USD | 1.00 |
| Vietnam | VND | 19497.5000 |
| Serbia | RSD | 79.0400 |

Source: Swiss Re Economic Research \& Consulting

[^16]2011 No 1 Natural catastrophes and man-made disasters in 2010: a year of devastating and costly events

No 1 Natural catastrophes and man-made disasters in 2009: catastrophes claim fewer victims, insured losses fall
No 2 World insurance in 2009: premiums dipped, but industry capital improved
No 3 Regulatory issues in insurance
No 4 The impact of inflation on insurers
No 5 Insurance investment in a challenging global environment
No 6 Microinsurance - risk protection for 4 billion people

2009 No 1 Scenario analysis in insurance
No 2 Natural catastrophes and man-made disasters in 2008:
North America and Asia suffer heavy losses
No 3 World insurance in 2008: life premiums fall in the industrialised countries - strong growth in the emerging economies
No 4 The role of indices in transferring insurance risks to the capital markets
No 5 Commercial liability: a challenge for businesses and their insurers

2008 No 1 Natural catastrophes and man-made disasters in 2007: high losses in Europe
No 2 Non-life claims reserving: improving on a strategic challenge
No 3 World insurance in 2007: emerging markets leading the way
No 4 Innovative ways of financing retirement
No 5 Insurance in the emerging markets: overview and prospects for Islamic insurance

2007 No 1 Insurance in emerging markets: sound development; greenfield for agricultural insurance
No 2 Natural catastrophes and man-made disasters in 2006: low insured losses
No 3 Annuities: a private solution to longevity risk
No 4 World insurance in 2006: premiums came back to "life"
No 5 Bancassurance: emerging trends, opportunities and challenges
No 6 To your health: diagnosing the state of healthcare and the global private medical insurance industry

2006 No 1 Getting together: globals take the lead in life insurance M\&A
No 2 Natural catastrophes and man-made disasters 2005: high earthquake casualties, new dimension in windstorm losses
No 3 Measuring underwriting profitability of the non-life insurance industry
No 4 Solvency II: an integrated risk approach for European insurers
No 5 World insurance in 2005: moderate premium growth, attractive profitability
No 6 Credit and surety: solidifying commitments
No 7 Securitization - new opportunities for insurers and investors

2005 No 1 Natural catastrophes and man-made disasters in 2004: more than 300000 fatalities, record insured losses
No 2 World insurance 2004: growing premiums and stronger balance sheets
No 3 Insurers' cost of capital and economic value creation: principles and practical implications
No 4 Innovating to insure the uninsurable
No 5 Insurance in emerging markets: focus on liability developments

Swiss Reinsurance Company Ltd
Economic Research \& Consulting
Mythenquai 50/60
P.O. Box

8022 Zurich
Switzerland

Telephone +41432852551
Fax +41 432820075
sigma@swissre.com


[^0]:    Source: Swiss Re Economic Research \& Consulting

[^1]:    Source: Swiss Re Economic Research \& Consulting

[^2]:    Source: Swiss Re Economic Research \& Consulting

[^3]:    Two of the three costliest earthquakes since 1970 - in terms of insured losses occurred in 2010.

[^4]:    ${ }^{1}$ Dead or missing
    ${ }^{2}$ Property and business interruption, excluding liability and life insurance losses

[^5]:    ${ }^{3}$ Property and business interruption, excluding liability and life insurance losses; US natural catastrophe figures: with the permission of Property Claim Services (PCS)/ incl. NFIP losses (see page 34 "Terms and selection criteria"). Canada natural catastrophe figures with the permission of Property Claim Services (PCS Canada)
    ${ }^{4}$ Dead and missing
    5 Property and business interruption, excluding liability and life insurance losses
    ${ }_{6}$ Dead or missing

[^6]:    * Loss ranges for natural catastrophes in the US in Table 6: defined by Property Claim Services (PCS)

[^7]:    * Loss ranges for natural catastrophes in the US in Table 6: defined by Property Claim Services (PCS)

[^8]:    * Loss ranges for natural catastrophes in the US in Table 6: defined by Property Claim Services (PCS)
    ** Canada natural catastrophe figures with the permission of Property Claim Services (PCS Canada)

[^9]:    * Loss ranges for natural catastrophes in the US in Table 6: defined by Property Claim Services (PCS)

[^10]:    * Loss ranges for natural catastrophes in the US in Table 6: defined by Property Claim Services (PCS)

[^11]:    * Loss ranges for natural catastrophes in the US in Table 6: defined by Property Claim Services (PCS)

[^12]:    Source: Swiss Re Economic Research \& Consulting

[^13]:    7 Property and business interruption, excluding liability and life insurance losses;
    US natural catastrophe figures: with the permission of Property Claim Services (PCS)/incl. NFIP losses (see page 34 "Terms and selection criteria")
    8 Dead or missing

[^14]:    9 Dead or missing
    ${ }^{10}$ Property and business interruption, excluding liability and life insurance losses

[^15]:    Source: Swiss Re Economic Research \& Consulting

[^16]:    11 Natural catastrophes in the US: those sigma figures which are based exclusively on estimates of Property Claim Services (PCS), a unit of the Insurance Services Office, Inc (ISO), are given for each individual event in ranges defined by PCS. The estimates are the property of ISO and may not be printed or used for any purpose, including use as a component in any financial instruments, without the express consent of ISO.
    12 The losses for 2010 were converted to USD using these exchange rates. No losses in any other currencies were reported.

