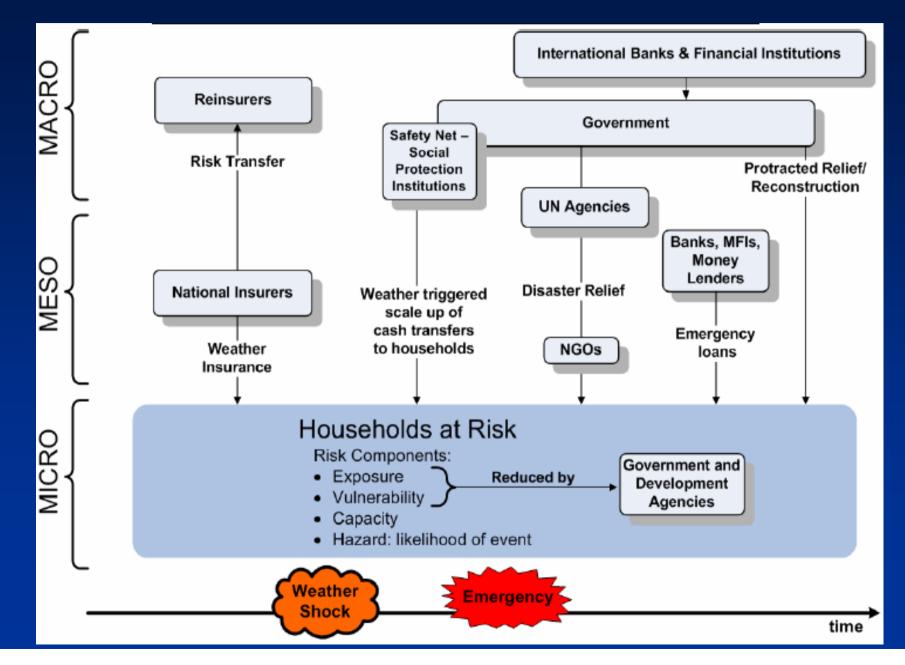
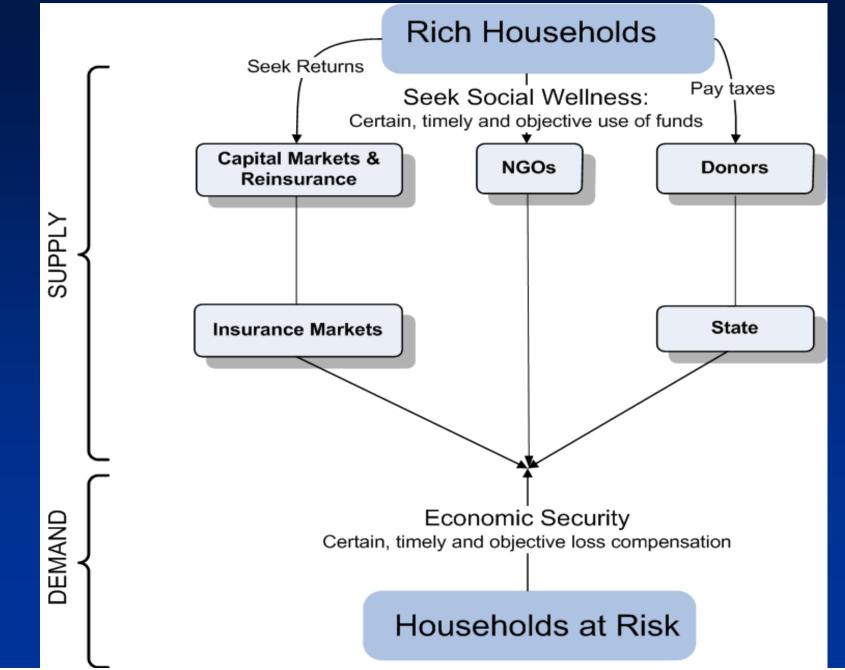

Risk Management Framework - the big LEAP* in Ethiopia and:

Insurance in Catastrophe Risk Management

November 14, 2007 Bündnis Entwicklung Hilft Nachhaltige Entwicklung als Katastrophenvorsorge Gustav-Stresemann Institut, Bonn

Ulrich Hess, Chief of Business Risk Planning, WFP


*Livelihoods + Early Assessment + Protection

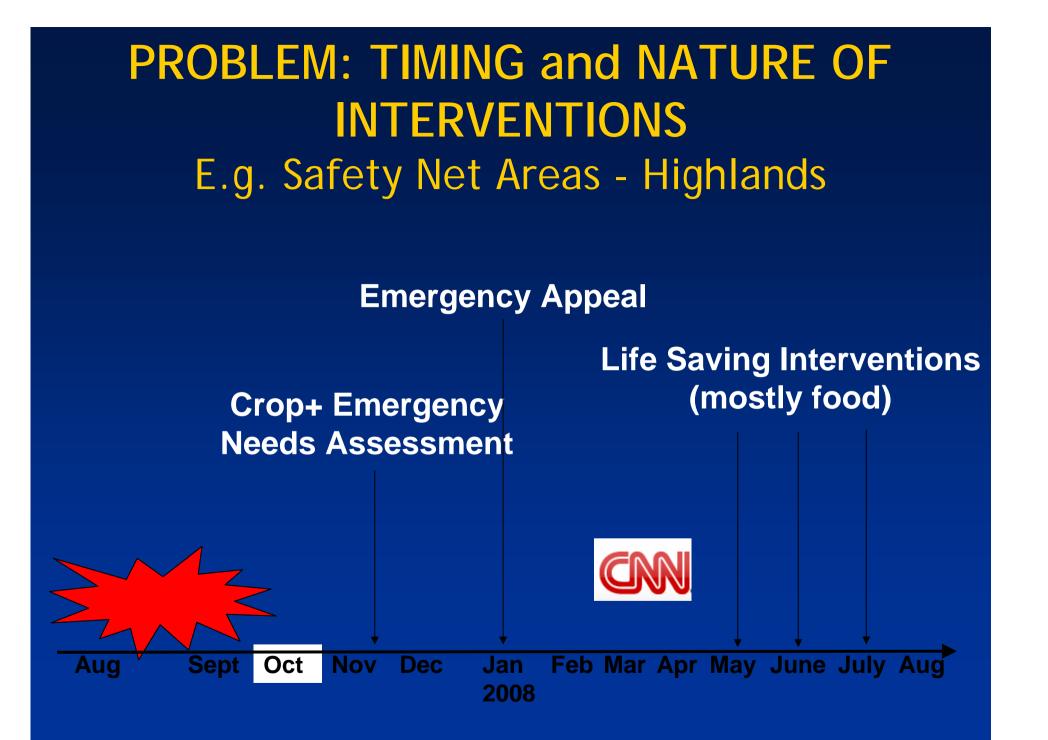

AGENDA

- Context: Disaster Risk Universe
- Problem and Rationale: Managing Risk instead
 of Managing Disasters
- Ethiopia Phase I: Weather Risk Management Pilot
- Ethiopia Phase II: Risk Management Framework
 - I. LEAP: Livelihood stress Early Warning + Index
 - II. Contingency planning
 - III. Capacity building
 - IV. Risk Financing
- Conclusion: Bündnis Catastrophe Bond

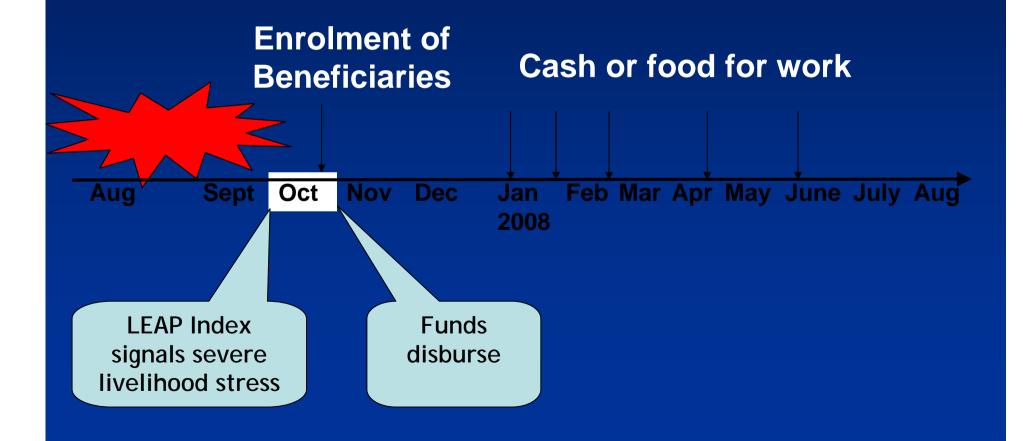
CONTEXT (I): Disaster Risk Universe

Context (II): Demand & Supply for Risk Transfer

Context (III): People want Security -India Weather Insurance Survey

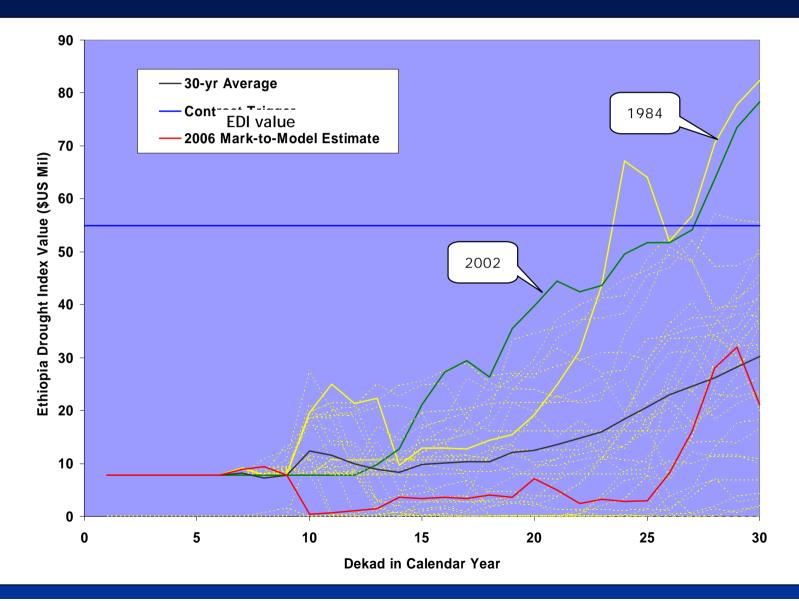

Why did households buy?

	Freque			
	1st	2nd	3rd	average
Security/risk reduction	139	53	20	40.1%
Need harvest income	25	62	12	15.6%
Advice from progressive farmers	17	28	12	8.8%
High payout	9	27	11	6.8%
Other trusted farmers purchased	16	11	16	6.3%
Low premium	17	10	6	5.7%


Why did households not buy?

	Frequence			
	1st	2nd	3rd	average
Do not understand product	45	59	11	24.9%
No cash / credit to pay premium	58	21	11	21.4%
Rain gauge too far away	38	39	9	19.0%
Too expensive	32	23	7	14.1%
No castor, groundnut	13	6	1	4.9%

Research Design: 2004: Household survey of 1052 households in selected villages. 2005: "Minisurvey", follow-up of the same households from 2004. 2006: Direct randomized marketing of insurance to households and follow-up surveys. (Prof. Townsend-Gine-ICRISAT)



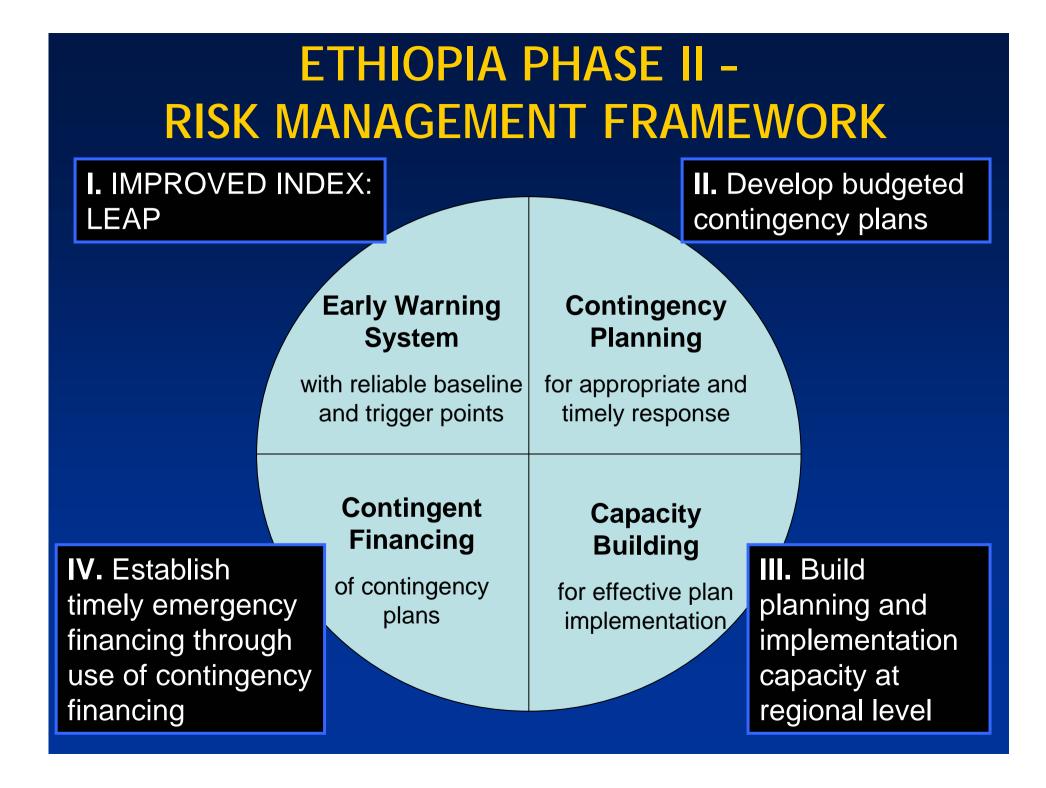
RATIONALE (II) EFFICIENCY -PROTECTING LIVELIHOODS IS CHEAPER

 Cost benefit analysis reveals that for drought risk systematic livelihood protection is 6 times cheaper than ex-post emergency interventions

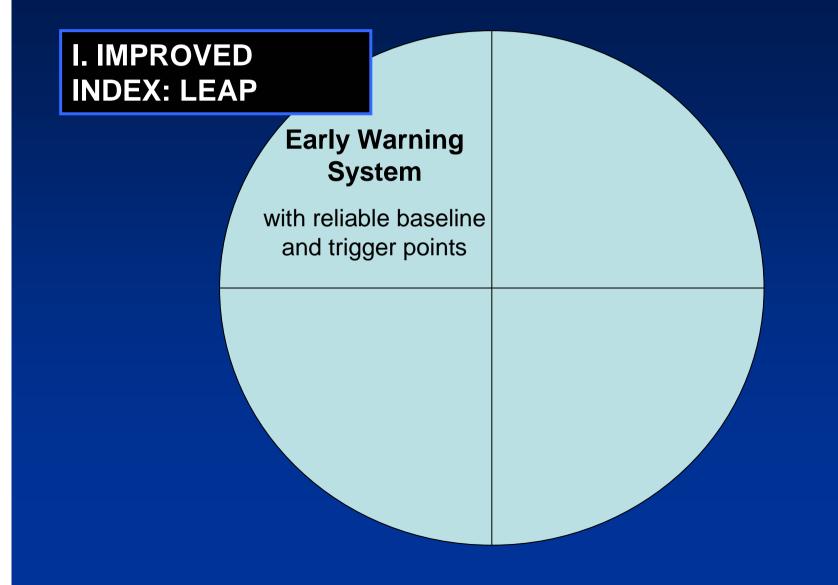
REVIEW OF 2006 PILOT DROUGHT INDEX PERFORMANCE

THE 2006 ETHIOPIA TRANSACTION

 Risk Transfer Structure:


 Counterparty (buyer of option): UN World Food Programme

Competitive Tender Process:
Official UN WFP procurement process
9 companies invited to tender, 5 participated
Tender Winner (seller of option): AXA Re, Paris
Final Transaction:
Premium: \$930,000, paid by USAID mainly
Maximum Payout: \$7,100,000


LESSONS LEARNED

Project demonstrated

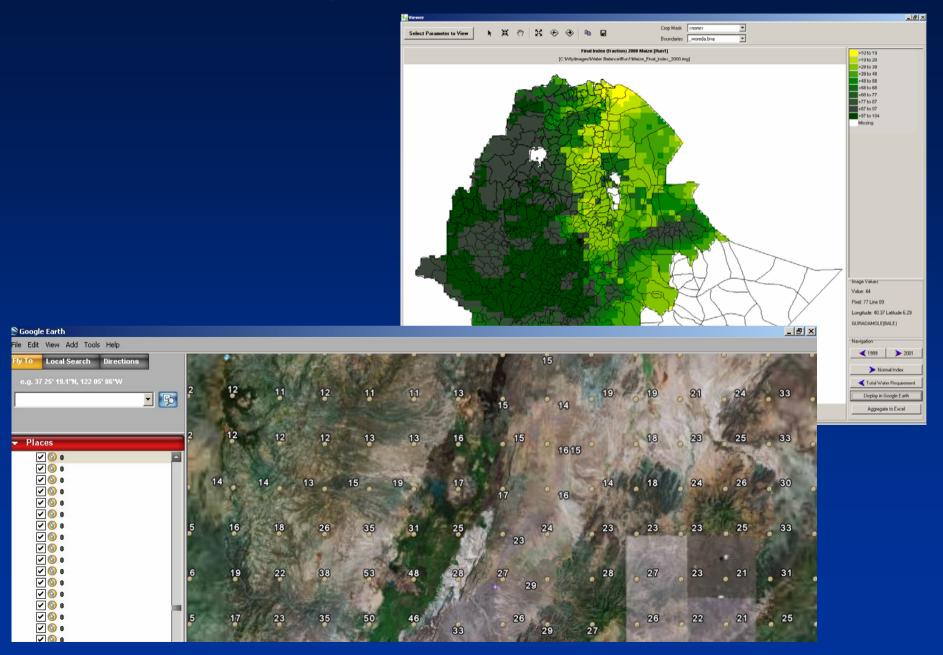
- Weather risk of developing countries can be transferred using market mechanisms;
- It is possible to develop objective, timely and reliable indicators that serve as proxy of actual aggregate needs
- Ethiopia weather data can satisfy international weather risk market standards

IMPROVED INDEX – PART OF RISK MANAGEMENT FRAMEWORK

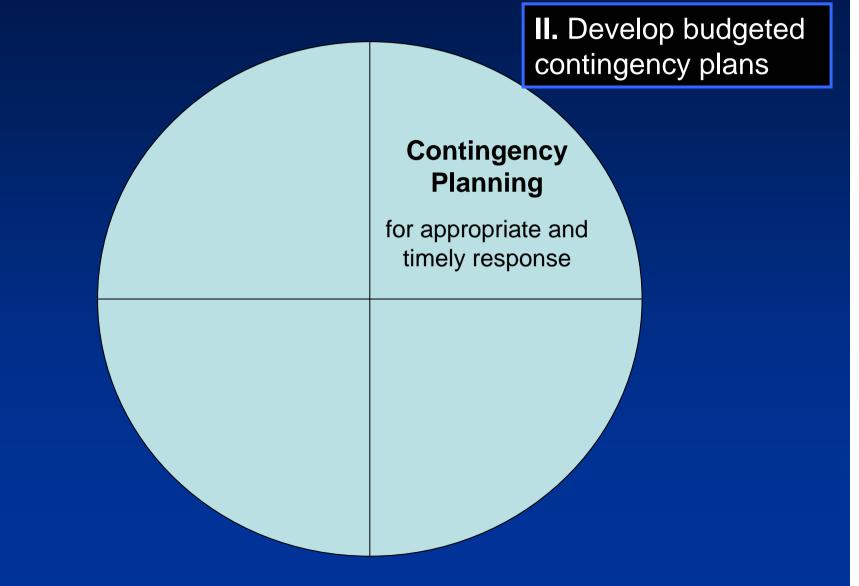


WHAT DO WE WANT FROM LIVELIHOOD PROTECTION COST INDEX?

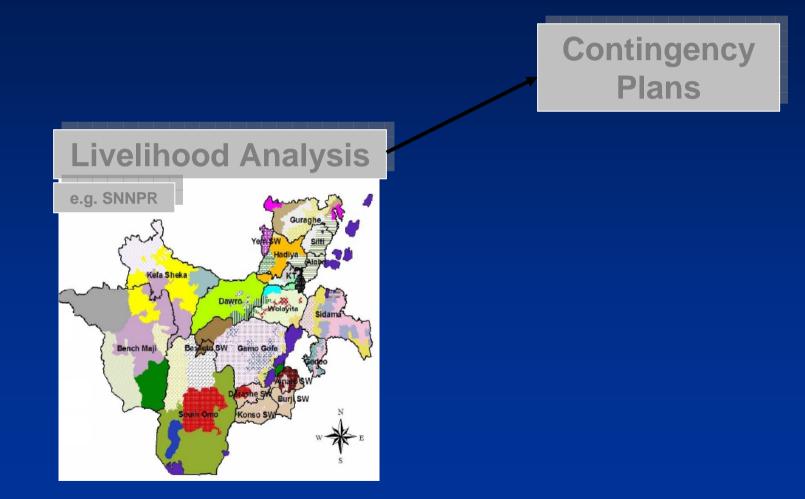
- Represent cost of intervening early to protect vulnerable livelihoods
- Signal amount of financial resources needed for regions to protect vulnerable livelihoods before harvest
- Trusted by GoE and donors to trigger timely resources
- Provide early warning of livelihood stress levels
- Crop and pasture monitoring tool
- Easily customizable according to new purposes
- Open source and available for free

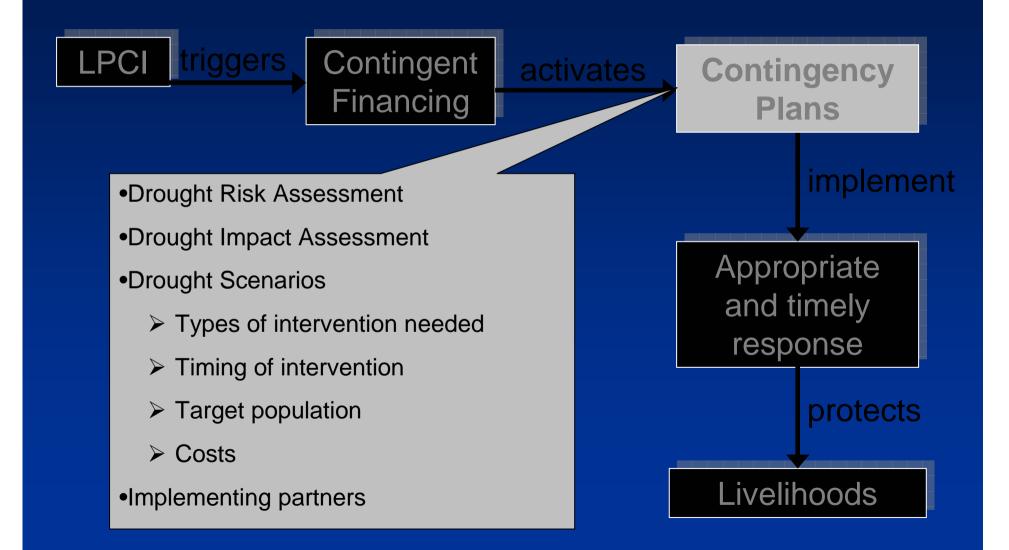

LEAP INDICES

- Objective: capture livelihood protection funding needs at regional level
- Target group: vulnerable population



- Yield reduction in %
- "Hot spot" monitoring


Viewing output parameters


RISK MANAGEMENT FRAMEWORK

II. CONTINGENCY PLANNING IN CONTEXT

II. CONTINGENCY PLANNING IN CONTEXT

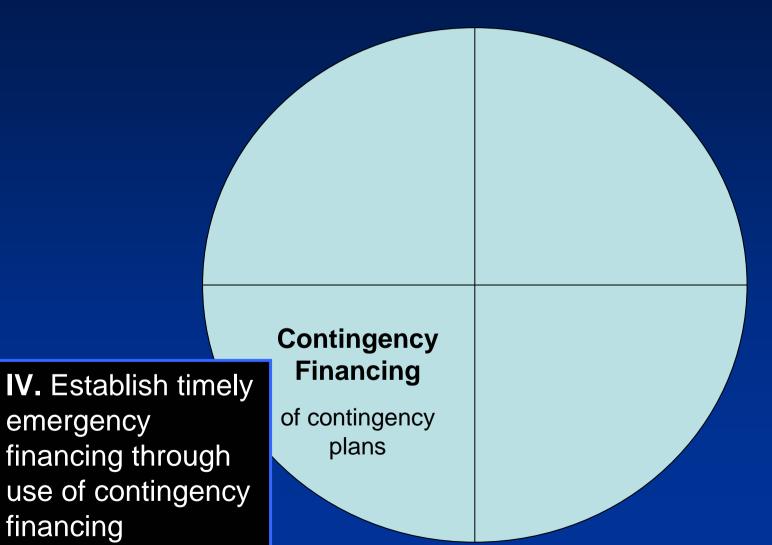
RISK MANAGEMENT FRAMEWORK

Capacity Building

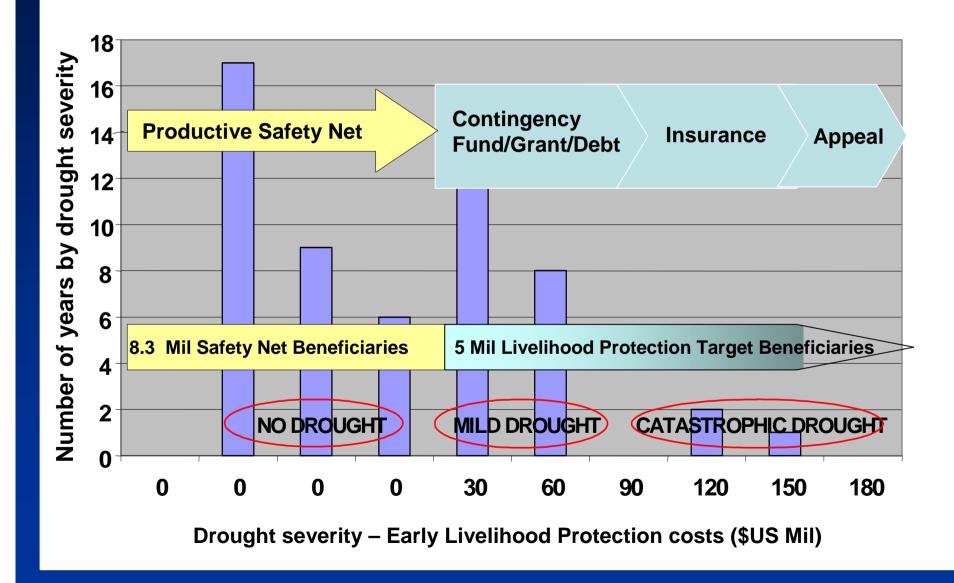
for effective plan implementation

III. Build planning and implementation capacity at regional and woreda level

III. CAPACITY BUILDING + OWNERSHIP

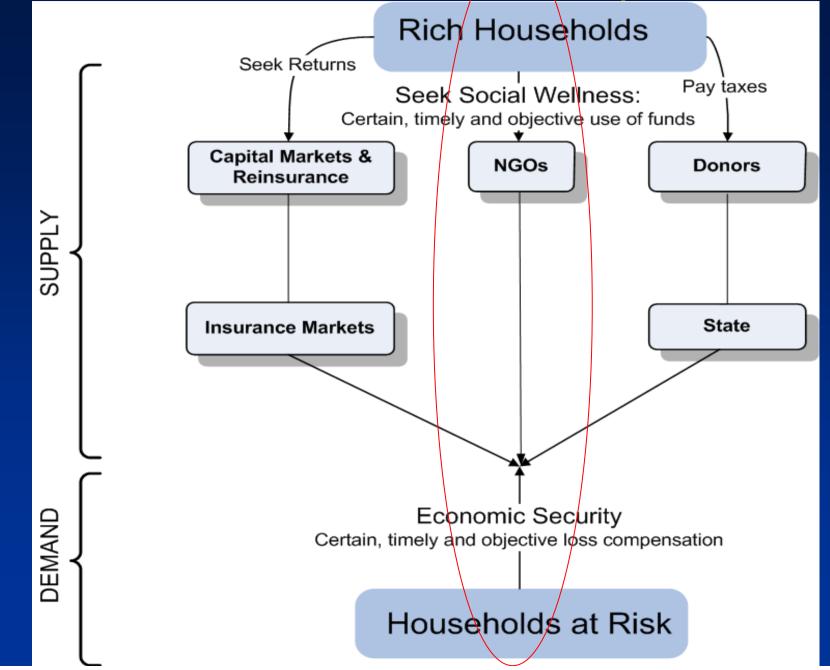

• Planning

- Elaboration and updating of contingency plans


Implementation

- Through state and non-state actors
- Co-ordination of line ministries
- Supervision and Quality control
- Partners
 - DFID
 - WB

RISK MANAGEMENT FRAMEWORK


IV: INTEGRATED CONTINGENCY FINANCING

WHY IS THIS IMPORTANT

- 1. Destitution
- 2. Dignity
- 3. Cost
- 4. Climate Change

Conclusion: Bündnis Catastrophe Bond

Bündnis Catastrophe Bond (II)

- Bündnis issues Natural catastrophe indexed bond to social investors
- Investors earn interest if nothing happens
- Investor loses principal if pre-defined event happens
 - Money pays for livelihood protection by activating Bündnis contingency plans and/or
 - Bündnis members transfer money directly to beneficiaries

Bündnis Catastrophe Bond (III)

- Benefits for investor
 - Certain, timely and objective use of funds
- Benefits for households
 - Certain, timely and objective compensation and/or livelihood support
 - Economic Security
 - Access to credit
 - Innovation technological leap
 - Out of poverty trap

 Risk: Index and payouts do not match actual needs

REFERENCES

Managing Agricultural Production Risk

Innovations in Developing Countries

Agriculture and Rural Development Department

http://www.ruralfinance.org

http://www.wfp.org/policies/ introduction/background

Ethiopia

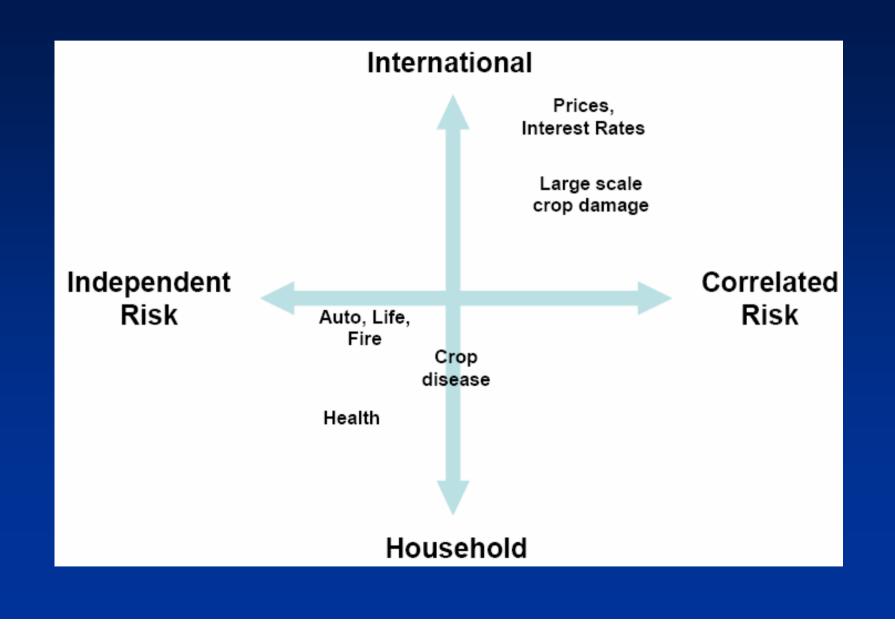
Integrated Risk Financing To Protect Livelihoods and Foster Development

Discussion Paper*

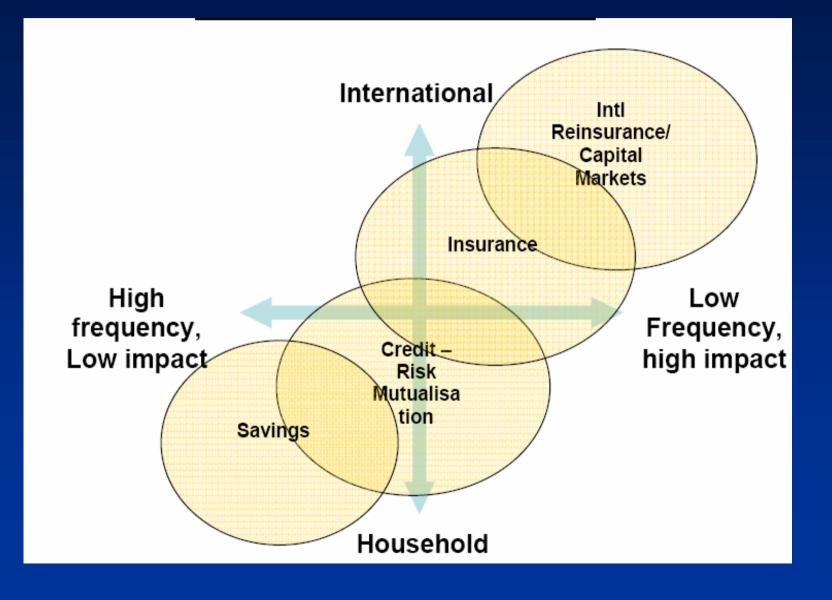
October, 2006

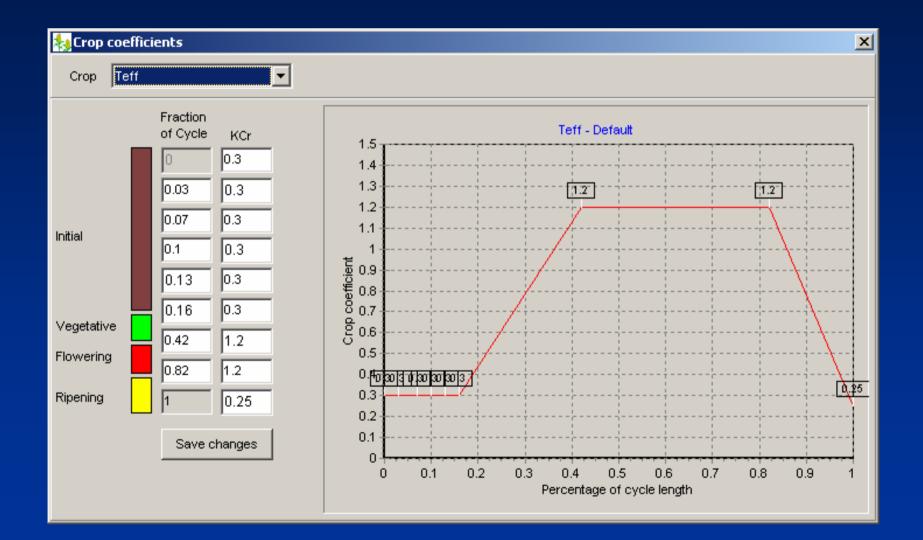
* Ulrich Hess, Chief of Business Risk Planning, WFP William Wiseman, Economist, World Bank Tim Robertson, DFID Ethiopia

THANKS!

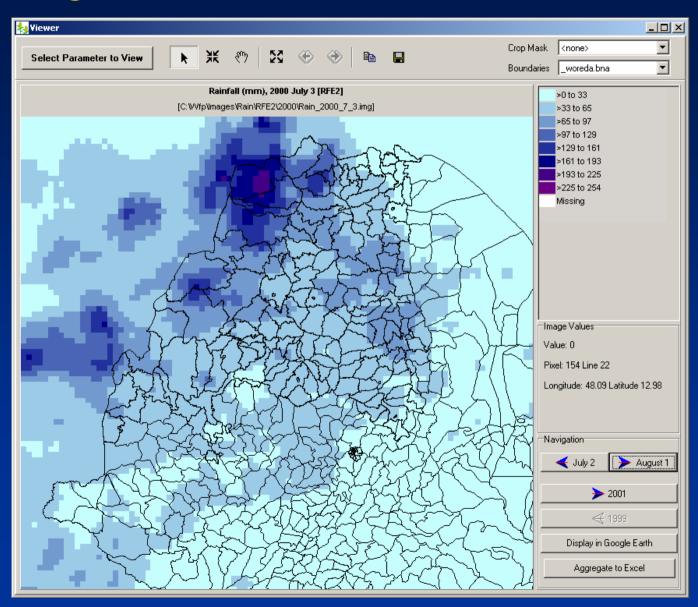

 Ethiopia LEAP Tool download: <u>http://vam.wfp.org/LEAP</u>

Free software download. Please do not distribute without consent of WFP and World Bank


• For questions: <u>ulrich.hess@wfp.org</u>


NATURE OF RISK

WHERE AND HOW TO SHARE RISK


LEAP Software: Defining crops and model for crop water use

Download updated rainfall data from the internet from 5 different sources (example RFE2)

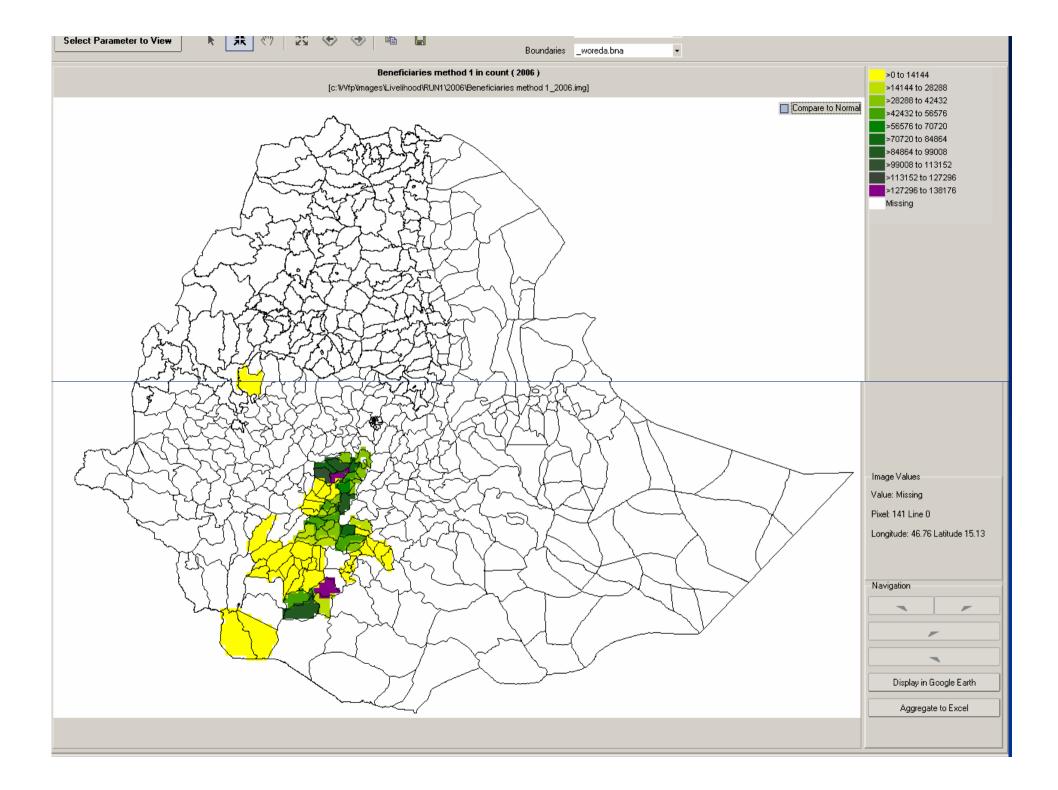
🌈 FTP directory /fews/newalgo_est_dekad/ at ftp.cpc.ncep.noaa.gov - Windows Internet Explorer 📃 🗖 🗙 🖉 ftp://ftp.cpc.ncep.noaa.gov/fews/newalg 🔽 😽 🗙 Google 2 -View Favorites Tools Help » 🟠 Home 🔹 🔊 Feeds (J) 👒 📥 Print 🔹 🔂 Page 🔹 🖉 FTP directory /fews/newal... FTP directory /fews/newalgo est dekad/ at ftp.cpc.ncep.noaa.gov To view this FTP site in Windows Explorer, click Page, and then click Open FTP Site in Windows Explorer. Up to higher level directory 02/12/2002 12:00AM 1,069,370 10day precip.bin.1999121.gz 02/12/2002 12:00AM 1,081,613 10day precip.bin.1999122.gz 02/12/2002 12:00AM 1,041,563 10day precip.bin.1999123.gz 02/12/2002 12:00AM 933,728 10day precip.bin.2000031.gz 1,124,350 10day precip.bin.2000032.gz 02/12/2002 12:00AM 1,270,165 10day precip.bin.2000033.gz 02/12/2002 12:00AM 1,256,252 10day precip.bin.2000041.gz 02/12/2002 12:00AM 1,253,256 10day precip.bin.2000042.gz 02/12/2002 12:00AM 02/12/2002 12:00AM 1,164,244 10day precip.bin.2000043.gz 10day precip.bin.2000051.gz 02/12/2002 12:00AM 1,240,112 02/12/2002 12:00AM 1,121,415 10day precip.bin.2000052.gz 02/12/2002 12:00AM 1,030,264 10day precip.bin.2000053.gz 990,805 10day precip.bin.2000061.gz 02/12/2002 12:00AM 02/12/2002 12:00AM 780,292 10day precip.bin.2000062.gz 02/12/2002 12:00AM 792,671 10day precip.bin.2000063.gz 02/12/2002 12:00AM 762,034 10day precip.bin.2000071.gz 02/12/2002 12:00AM 789,481 10day precip.bin.2000072.gz 02/12/2002 12:00AM 910,618 10day precip.bin.2000073.gz 834,251 10day precip.bin.2000081.gz 02/12/2002 12:00AM 02/12/2002 12:00AM 815,795 10day precip.bin.2000082.gz 783,326 10day precip.bin.2000083.gz 02/12/2002 12:00AM 02/12/2002 12:00AM 881 265 10day precip bin 2000091 gz 😜 Internet 🔍 100% | Done

Integrate this rainfall into the tool

Water balance calculations resulting in WRSI

Selecting output (or input) parameter to view

Narameter selection		
Parameters		
Output Run1 💌		
C Percentage Available Data	O Water Deficit Vegetative Phase	C Yield Reduction
C Total Water Requirement	O Water Deficit Flowering Phase	
 Final Index 	O Water Deficit Ripening Phase	
O Normal Index	O Actual Evapotranspiration Initial Phase	
C Last Index based on Actual Data	C Actual Evapotranspiration Vegetative Phase	
C Water Excess Initial Phase	C Actual Evapotranspiration Flowering Phase	Basket
C Water Excess Vegetative Phase	C Actual Evapotranspiration Ripening Phase	C Basket Final Index by Production
C Water Excess Flowering Phase	Total Water Excess	C Basket Final Index by Area
C Water Excess Ripening Phase	Total Water Deficit	C Basket Yield Reduction by Production
C Water Deficit Initial Phase	Total Actual Evapotranspiration	C Basket Yield Reduction by Area
Input Zonal 💌	-	
C Rainfall	C Effective Rainfall Percentage	Sowing Window Start Dekad
C ETO	Pre-Planting Crop Coefficients	Sowing Window End Dekad
	O Water Holding Capacity	Crop Basket Ave Production
	🔿 Cycle Length	Crop Basket Ave
	O Planting Dekad	🔿 Crop Basket Max Hist. Yield
		C Crop Basket % by Production
		C Crop Basket % by Area
Year 2000 💌	Month May V Dekad 2	x
Crop Maize 🔽		_
	Select X Cancel	


Export all map data to Excel

M	licrosoft Exc	el - Sheet1				<u>_ 0 ×</u>	1
:2)	<u>F</u> ile <u>E</u> dit	View Inst	ert F <u>o</u> rmat	<u>T</u> ools	<u>D</u> ata	Window	
He			_	_	_	& ×	:
_			10			- 1 0000	
1.00	📮 Arial		↓ 10	BI	Ū	≣ <u></u> ∎• ;	Ŧ
	D5		fx				_
	A	В	С	D		E	1
1			2000 Maize				1
2		Value	Number of	pixels			
3	AB ALA	24	7				
4	ABAY CHO		7		_		
5	ABAYA	86	16		_!		
6	ABE DON		10				
7	ABERGEL	65	10				
8	ABICHUNA		5				
9	ABOBO	99	28				
10	ACHEFER		18				
11	ADA'A CH	62	12				
12	ADABA	69	17				
13	ADAMA	46	8				
14	ADAMI TU	96	9				
15	ADDA BEF		9				
16	ADDI ARK	57	22				
17	ADET	89	13				
18	ADOLANA	68	4				
19	ADWA	39	6				
20	AFDEM	33	6				
21	AGARFA	75	8				
22	AGELO M	97	11				
23	AKAKI	87	6				
24	AKOBO	91	35				
25	ALABA	95	9				
26	ALAJE	22	6				
27	ALAMATA	23	7				
28	ALBUKO	36	3				
29	ALE	91	12				
30	ALEFA	.94	55				
H 4	→ → \\Fror	n LPCI /					
Read	dy			r	NUM		1

Work with crop baskets

hы		bing Data Name Change E Format <u>T</u> ools <u>D</u> ata <u>Y</u>		la.									Type a questio	on for help	<u> </u>
		🍄 🕰 X 🖓 🕰 •			<u>)))</u> 💿 🖬	snel afdru	kken •	Tahoma	- 10	• B <i>I</i> U		🛐 S % ,	16 -28 EF EF		
В		Dromiya													
	A	B	C	D	E	F	G	н		J	K	L	M	N	0
	O a si a s			× - 67	0			0		and the second	51-14 Days	11111111111			
-	Region	Zone	Code	Teff	Barley	Wheat	Maize	Sorghum	Finger Millet	Chick Peas	Field Pea	Haricot Bean	Horse Bean	Lentils	Potat
-	TIGRAY	C. Tigray	_		15.35046		16.02252		13.73651	2.228574286	0.6051298	0.940958571	6.0976175	1.088091	
-	TIGRAY	W. Tigray	_	34.48772	1.09354	4.879148			40.62748286	3.46101375	0.37927	0.146645	2.07649	0.012617	
-	TIGRAY	E. Tigray		7.68856	23.06494	17.44227	3.598963	2.651589	2.5168475	2.26919375	1.288705	0.00492	1.953334286	0.682305	0.139
-	TIGRAY	NW Tigray		0	0	0	0	0	0	0	0	0	0	0	0
-	TIGRAY	S. Tigray	_	40.31089		32.77589			0.885298333	2.79117875	2.5742025	0.731366	4.3559875	2.8602	0.1387
-	AFAR	Zone1	_	1.165	0.156797	0	5.477996		0	0	0	0	0	0	0
ŀ	AFAR	Zone3		3.639535	0.05437	0.05327	1.45581 37.60054	3.981691	0	0.295327143	0.0025	0.273668	0.0004975	0.001498	2.59
-	AMHARA	N. Gonder	_	101.0524	41.60476				44.49656875	26.96665625	10.268938	3.0942525	23.4814175	2.438534	
-	AMHARA	S. Gonder	-	115.7902	52.59712		34.33739		33.76539125	19.6640625	10.138293	8.103941667	21.9699475	3.014084	
	AMHARA	N. Wello	-	48.15271		27.30126			0.930242857	8.33192	7.1057375	0.89667	10.86820625	7.583321	
-	AMHARA	S. Wello	-	83.686	31.94233		12.78113		1.87789	11.20891875	15.547018	5.356345	28.8366225	11.32663	
	AMHARA	N. Shewa		96.77332			6.336503		0.071273333	11.99404643	8.3109069	1.863230769	28.29500333	9.056501	
	AMHARA	E. Gojam	-	154.1176			40.19174		0.591094	15.44713125	11.510541	8.053946	23.70230875	1.592633	
-	AMHARA	W. Gojam			25.85097		114.5807		57.907565	8.5342225	9.75152	3.223123333	18.77691	0.223617	
	AMHARA	W. Hamra	_	20.33422			1.619638		0.339848333	0.78312625	2.4078071	2.05157	6.56134625	2.224353	
	AMHARA	Aqew Awi	-	51.9137	15.29111		36.54171		40.854015	0.846076667	2.2929788	1.415755	2.71476875	0	3.448
1	AMHARA	Oromiya	_	9.511043			8.503283		0.21638	0.46222	0.270525	1.119732857	0.23319	0.208048	
1	OROMIA	W. Wellega	_	39.05792		10.72061			38.08104875	1.8269875	2.3717425	9.89154375	7.53526125	0.06753	0.989
	OROMIA	E. Wellega		107.4432			83.00161		19.50099	0.27289	6.64796	1.266318333			-
	OROMEA	Illubabor		47.10662	2.862818		65.99434		5.41632	1.08397	4.113265	3.9129375	Select	Croc)S II
3	OROMEA	Jimma		120.1409			97.44454		5.206922	0.96039	8.4000988	1.500201667		_	
1	OROMIA	West Shewa	_	174.0642		82.91268			0.42805	22.60953667	6.3624814	0.262462			
5	OROMIA	N. Shewa	_	96.77332		57.17331			0.071273333	11.99404643		1.863230769	Sourc	o List	
6	OROMIA	E. Shewa	_	101.4054			116.4357		1.546275714	14.03125875	6.3073113	28.0336675	Sourc	e List	•
1	OROMIA	Arsi		72.23955			68.93779		0.26943	0.73739	12.4389	9.107805			
3	OROMIA	W. Harerge		9.052848	4.491255				1.222457143	0.986026667	0.898016	9.751171429	E		
9	OROMEA	E. Harerge		3.478841		14.73444			0.01228	0.228316	2.212775	7.182522857	F		
)	OROMEA	Bale		29.8387		99.65753			0.0959	0.909056667	8.29246	0.835148			
1	OROMIA	Borena				4.652167			0.01643	0.255013333	1.8641333	5.54598			
2	OROMIA	S.W. Shewa		86.80848			13.23222		0.02259	15.97956	2.9152775	0.925905			
5	OROMIA	Guji	_	8.882535	19.34793				0	0.05051	3.76888	1.44306			
1	SNNPR	Gurage	-	26.45154					0.071453333	1.343636667	3.3121357	1.69627			
5	SNNPR	Hadiya		24.34523	4.29235	29.3401	19.58296		0.433426667	0.208496667	2.6822088	1.27634125			
5	SNNPR	KT		10.76631			20.44886		1.321165	0.080795	0.527765	0.99801125			
1	SNNPR	Sidama		2.332923			31.53168		2.58221	0	1.6049533	9.184995			
1	SNNPR	Gedeo				0.584947			0	0.00427	0.6661129	0.203618			
)	SNNPR	Welayita		18.091	1.08378	4.210428		3.1029	0.075835	0.841323333	1.8573925	7.509785			
)	SNNPR	South Omo		3.068506					0.123418	0.000575	0.876638	1.972755			
	SNNPR	Sheka		0.606128			1.524538		0.14147	0	1.4973425	0.18464			
	SNNPR	Keffa				6.679923			0.593596667	0.00017	8.7649788	2.6096975			
3	SNNPR	Gamo Gofa		27.02321		12.80603		9.915895	0.157075	0.444655	4.1108525	4.5458125			
	SNNPR	Bench Maji				0.240565			0.068206667	0	1.3482013	0.915537143			
5	SNNPR	Yem SW		4.032286			1.651244		0.005975	0.00774	0.806565	0.015515			
	SNNPR	Amaro SW		1.972391		0.779726			0.012045	0.25499	0.4338343	0.288312857			
1	SNNPR	Burji SW		0.833169	0.237646	0.408668	0.634726	0.729163	0	0.3082425	0.049606	0.923115			
3	SNNPR	Konso SW		2.407133	0.142572	0.06	4.394214	9.39251	1.563516667	0.169415	0.202942	1.98685			
1	SNNPR	Dirashe SW		1.270324	0.515035	0.223597	3.37009	6.32641	0	0.371934286	0.0796417	0.903841429			
1	SNNPR	Dawro		10.72968	0.980243	1.484558	3.8512	3.238718	0	0.03815	4.19192	1.300505			
4		t Dekad / Sowing Window													

